updated some comments

This commit is contained in:
saschuta 2024-04-20 12:47:06 +02:00
parent 7212d55c19
commit 5a1e2fb120
81 changed files with 1021603 additions and 423673 deletions

View File

@ -1,24 +1,31 @@
TEXBASE=susceptibility1
TEXBASE=highbeats
BIBFILE=references.bib
REBUTTALBASE=
REBUTTALBASE=rebuttal3
TEXFILE=$(TEXBASE).tex
PDFFILE=$(TEXBASE).pdf
TXTFILE=$(TEXBASE).txt
REVISION=
REVISION=cb626892bd10b2908691bd95767f87c3d6a57dfe
ALLPDFFIGURES=$(shell sed -n -e '/^[^%].*includegraphics/{s/^.*includegraphics.*{\([^}]*\)}.*/\1.pdf/;p}' $(TEXFILE))
PDFFIGURES=$(filter-out toblerone_animated.pdf, $(ALLPDFFIGURES))
PT=$(wildcard *.py)
PYTHONFILES=$(filter-out plotstyle.py myfunctions.py numerical_compar_both.py, $(PT))
PYTHONPDFFILES=$(PYTHONFILES:.py=.pdf)
ifdef REBUTTALBASE
REBUTTALTEXFILE=$(REBUTTALBASE).tex
REBUTTALPDFFILE=$(REBUTTALBASE).pdf
endif
REBUTTALREVISION=
REBUTTALREVISION=68900a1
# all ###########################################################
ifdef REBUTTALBASE
all: bib rebuttalbib
all: bib supplement rebuttalbib
else
all: bib
all: bib supplement
endif
# python #########################################################
@ -30,9 +37,9 @@ watchplots :
while true; do ! make -q plots && make plots; sleep 0.5; done
# rescue_local_eod manuscript #################################################
# manuscript #####################################################
bib: $(TEXBASE).bbl
$(TEXBASE).bbl: $(TEXFILE) $(BIBFILE)
$(TEXBASE).bbl: $(TEXFILE) $(BIBFILE) $(PDFFIGURES)
lualatex $(TEXFILE)
bibtex $(TEXBASE)
lualatex $(TEXFILE)
@ -43,12 +50,17 @@ $(TEXBASE).bbl: $(TEXFILE) $(BIBFILE)
@sed -n -e '1,/You.ve used/p' $(TEXBASE).blg
pdf: $(PDFFILE)
$(PDFFILE) : $(TEXFILE)
$(PDFFILE) : $(TEXFILE) $(PDFFIGURES)
lualatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && lualatex -interaction=scrollmode $< || true
again :
lualatex $(TEXFILE)
supplement: supplement.pdf
supplement.pdf : supplement.tex
lualatex $<
lualatex $<
# watch files #######################################################
watchpdf :
while true; do ! make -s -q pdf && make pdf; sleep 0.5; done
@ -109,7 +121,7 @@ $(REBUTTALPDFFILE) : $(REBUTTALTEXFILE)
lualatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && lualatex -interaction=scrollmode $< || true
watchrebuttal :
while true; do ! make -q rebuttal && make rebuttal; sleep 0.5; done
while true; do ! make -s -q rebuttal && make rebuttal; sleep 0.5; done
rebuttaldiff :
latexdiff-git -r $(REBUTTALREVISION) --append-textcmd="response,issue" --pdf $(REBUTTALTEXFILE)
@ -167,7 +179,7 @@ help :
@echo -e \
"make pdf: make the pdf file of the paper.\n"\
"make bib: run bibtex and make the pdf file of the paper.\n"\
"make again: run pdflatex and make the pdf file of the paper,\n"\
"make again: run lualatex and make the pdf file of the paper,\n"\
" no matter whether you changed the .tex file or not.\n"\
"make watchpdf: make the pdf file of the paper\n"\
" whenever the tex file is modified.\n"\

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

After

Width:  |  Height:  |  Size: 144 KiB

View File

@ -1,4 +1,4 @@
from utils_suseptibility import ampullary_punit
from utils_suseptibility import ampullary_punit, fr_name_rm
from utils_all import p_units_to_show
#from utils_all import load_folder_name
#from plt_RAM import plt_punit
@ -9,4 +9,4 @@ if __name__ == '__main__':
#stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv')
cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True,
ampullary_punit(eod_metrice = False, color_same = False,base_extra = True, fr_name = '$f_{base}$', cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''],tags_individual = True, xlim_p = [0,1.15])#Low-CV P-unit,
ampullary_punit(eod_metrice = False, color_same = False,base_extra = True, fr_name = fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''],tags_individual = True, xlim_p = [0,1.15])#Low-CV P-unit,

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

After

Width:  |  Height:  |  Size: 145 KiB

View File

@ -1,4 +1,4 @@
from utils_suseptibility import ampullary_punit
from utils_suseptibility import ampullary_punit, fr_name_rm
from utils_all import p_units_to_show
#from utils_all import load_folder_name
#from plt_RAM import plt_punit
@ -7,4 +7,4 @@ from IPython import embed
if __name__ == '__main__':
cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True,
ampullary_punit(base_extra = True,eod_metrice = False, color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'],)#High-CV P-unit,
ampullary_punit(base_extra = True,eod_metrice = False, color_same = False, fr_name = fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'],)#High-CV P-unit,

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

After

Width:  |  Height:  |  Size: 80 KiB

View File

@ -8,7 +8,7 @@ from utils_all_down import default_settings
from utils_suseptibility import colors_overview
from utils_suseptibility import default_figsize, NLI_scorename2,pearson_label, exclude_nans_for_corr, kernel_scatter, \
scatter_with_marginals_colorcoded, \
version_final
version_final, basename, stimname
from utils_all import update_cell_names, load_overview_susept, make_log_ticks, p_units_to_show, save_visualization, setting_overview_score
from scipy import stats
try:
@ -128,7 +128,7 @@ def data_overview3():
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
var_types = ['response_modulation','response_modulation','']#,'']#'response_modulation'
max_x = max_xs[c]
x_axis_names = ['CV$_{Base}$','CV$_{stim}$','Response Modulation [Hz]']#$_{Base}$,'Fr$_{Base}$',]
x_axis_names = ['CV$'+basename()+'$','CV$'+stimname()+'$','Response Modulation [Hz]']#$'+basename()+'$,'Fr$'+basename()+'$',]
#score = scores[0]
score_n = ['Perc99/Med', 'Perc99/Med', 'Perc99/Med']
score = scores[c]

View File

@ -37,6 +37,11 @@ copy:
cp $(file).sty ../
# python #########################################################
plots: $(PYTHONPDFFILES)
$(PYTHONPDFFILES): %.pdf: %.py plotstyle.py
python3 $<

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 54 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,723 +1,243 @@
,spikes
0,0.007
1,0.0135
2,0.0222
3,0.0328
4,0.037200000000000004
5,0.04805
6,0.0599
7,0.0654
8,0.07175000000000001
9,0.08565
10,0.0911
11,0.09875
12,0.10830000000000001
13,0.1149
14,0.1277
15,0.13325
16,0.14485
17,0.15145
18,0.1612
19,0.17285
20,0.17715
21,0.1847
22,0.19440000000000002
23,0.19990000000000002
24,0.20850000000000002
25,0.2139
26,0.22565000000000002
27,0.23320000000000002
28,0.24080000000000001
29,0.24945
30,0.2559
31,0.26880000000000004
32,0.27845000000000003
33,0.2838
34,0.29135
35,0.29785
36,0.30660000000000004
37,0.31615000000000004
38,0.32585000000000003
39,0.33355
40,0.34525
41,0.34945000000000004
42,0.35710000000000003
43,0.36895
44,0.3766
45,0.38405
46,0.38945
47,0.40230000000000005
48,0.41105
49,0.4164
50,0.4218
51,0.42935
52,0.44105
53,0.44855
54,0.45515
55,0.4617
56,0.4692
57,0.47990000000000005
58,0.49065000000000003
59,0.49825
60,0.5069
61,0.5134000000000001
62,0.5209
63,0.5305500000000001
64,0.53805
65,0.55435
66,0.5617
67,0.56925
68,0.57575
69,0.5823
70,0.5908
71,0.59735
72,0.6059
73,0.6188
74,0.6263500000000001
75,0.6351
76,0.6424500000000001
77,0.6533
78,0.6587000000000001
79,0.6695
80,0.67495
81,0.6802
82,0.6899500000000001
83,0.69425
84,0.7083
85,0.71465
86,0.7190000000000001
87,0.73095
88,0.7406
89,0.74595
90,0.7568
91,0.76215
92,0.7761
93,0.7848
94,0.7912
95,0.7987000000000001
96,0.80515
97,0.8137000000000001
98,0.82245
99,0.8278000000000001
100,0.83435
101,0.85145
102,0.8590500000000001
103,0.8656
104,0.872
105,0.8815500000000001
106,0.8881
107,0.90005
108,0.90535
109,0.91605
110,0.9246500000000001
111,0.93015
112,0.9365
113,0.94845
114,0.9549000000000001
115,0.96565
116,0.9732500000000001
117,0.9817
118,0.9872000000000001
119,0.998
120,1.00345
121,1.0098500000000001
122,1.0152
123,1.0313
124,1.0358
125,1.0455
126,1.05945
127,1.06475
128,1.0712000000000002
129,1.08105
130,1.0863
131,1.09285
132,1.1067
133,1.11325
134,1.11965
135,1.13045
136,1.1413
137,1.14995
138,1.15965
139,1.1649
140,1.17345
141,1.17785
142,1.1853500000000001
143,1.1994
144,1.2058
145,1.2123000000000002
146,1.2188
147,1.2275
148,1.23925
149,1.2489000000000001
150,1.2544
151,1.26295
152,1.26945
153,1.2779500000000001
154,1.2856
155,1.2963500000000001
156,1.30495
157,1.31575
158,1.3201
159,1.3285500000000001
160,1.3351
161,1.34595
162,1.3502
163,1.35775
164,1.3684500000000002
165,1.3760000000000001
166,1.3847500000000001
167,1.39005
168,1.40185
169,1.4116
170,1.4171500000000001
171,1.42775
172,1.4354
173,1.4407
174,1.4493500000000001
175,1.45795
176,1.4654
177,1.47075
178,1.4815500000000001
179,1.49015
180,1.4967000000000001
181,1.5074
182,1.51725
183,1.52255
184,1.53645
185,1.54515
186,1.5559
187,1.5613000000000001
188,1.5678
189,1.57325
190,1.58505
191,1.5904
192,1.59685
193,1.6075000000000002
194,1.6205
195,1.6269
196,1.6356000000000002
197,1.6421000000000001
198,1.6528500000000002
199,1.6594
200,1.6668
201,1.6733500000000001
202,1.6808
203,1.69055
204,1.69595
205,1.7067
206,1.7142000000000002
207,1.71855
208,1.73455
209,1.7401
210,1.74655
211,1.75725
212,1.7616500000000002
213,1.7757
214,1.7886000000000002
215,1.7938
216,1.79925
217,1.8057500000000002
218,1.81325
219,1.8218500000000002
220,1.8326500000000001
221,1.84135
222,1.8499
223,1.8585
224,1.8661
225,1.8768
226,1.8823
227,1.88985
228,1.89945
229,1.9069500000000001
230,1.9156000000000002
231,1.92415
232,1.9297000000000002
233,1.9351500000000001
234,1.949
235,1.9554500000000001
236,1.9651500000000002
237,1.9737500000000001
238,1.9804000000000002
239,1.9856500000000001
240,1.99865
241,2.00705
242,2.01695
243,2.02215
244,2.03405
245,2.0439000000000003
246,2.0492
247,2.05775
248,2.0643000000000002
249,2.0783
250,2.0858000000000003
251,2.09005
252,2.0966
253,2.1052500000000003
254,2.116
255,2.12025
256,2.1310000000000002
257,2.1386000000000003
258,2.1460500000000002
259,2.15795
260,2.16445
261,2.1709
262,2.18275
263,2.18925
264,2.1957500000000003
265,2.2043500000000003
266,2.21815
267,2.22595
268,2.2313
269,2.2387
270,2.24535
271,2.2517
272,2.257
273,2.2668
274,2.28185
275,2.2884
276,2.297
277,2.3035
278,2.3087500000000003
279,2.31625
280,2.325
281,2.3356500000000002
282,2.34435
283,2.34965
284,2.36265
285,2.36905
286,2.37455
287,2.3853
288,2.3961
289,2.4014
290,2.4111000000000002
291,2.41865
292,2.4261500000000003
293,2.43475
294,2.44545
295,2.4584
296,2.4628
297,2.4703500000000003
298,2.4778000000000002
299,2.4843
300,2.4919000000000002
301,2.5036
302,2.5101500000000003
303,2.5220000000000002
304,2.5317000000000003
305,2.537
306,2.54245
307,2.5563000000000002
308,2.5619
309,2.56725
310,2.57805
311,2.5845000000000002
312,2.5953
313,2.6039000000000003
314,2.6094
315,2.6168
316,2.6254
317,2.63295
318,2.6437
319,2.65125
320,2.65985
321,2.6685000000000003
322,2.6782500000000002
323,2.68675
324,2.69755
325,2.70405
326,2.7116000000000002
327,2.72135
328,2.7309
329,2.7374
330,2.7438000000000002
331,2.7503
332,2.75895
333,2.774
334,2.7794000000000003
335,2.78805
336,2.7946500000000003
337,2.80205
338,2.8085500000000003
339,2.81725
340,2.8236000000000003
341,2.8312
342,2.8408
343,2.8504
344,2.85805
345,2.8677
346,2.8764000000000003
347,2.8839
348,2.8915
349,2.89995
350,2.9065000000000003
351,2.9130000000000003
352,2.9280500000000003
353,2.9334000000000002
354,2.9399
355,2.9518
356,2.9593000000000003
357,2.968
358,2.9787000000000003
359,2.98395
360,2.98835
361,2.9937500000000004
362,3.0035000000000003
363,3.01635
364,3.0207
365,3.02935
366,3.03575
367,3.04435
368,3.0585
369,3.0648500000000003
370,3.07255
371,3.0831500000000003
372,3.08855
373,3.09715
374,3.10475
375,3.11225
376,3.1176000000000004
377,3.1252
378,3.13605
379,3.1477500000000003
380,3.15315
381,3.1617
382,3.1682
383,3.1736
384,3.1856
385,3.1919500000000003
386,3.2081
387,3.21455
388,3.21895
389,3.2264500000000003
390,3.23395
391,3.24575
392,3.2522
393,3.26195
394,3.2674000000000003
395,3.27495
396,3.28565
397,3.29325
398,3.3019000000000003
399,3.30825
400,3.3190500000000003
401,3.3266
402,3.3374
403,3.3448
404,3.3513
405,3.3589
406,3.3729500000000003
407,3.3804000000000003
408,3.3879
409,3.3987000000000003
410,3.4064
411,3.4116500000000003
412,3.41825
413,3.4236
414,3.43745
415,3.4439
416,3.45465
417,3.4634
418,3.4676500000000003
419,3.4817500000000003
420,3.487
421,3.4968500000000002
422,3.5033000000000003
423,3.5118500000000004
424,3.5183500000000003
425,3.5259
426,3.53445
427,3.5410000000000004
428,3.5486
429,3.56035
430,3.5679000000000003
431,3.5764500000000004
432,3.5808
433,3.5915500000000002
434,3.6055
435,3.61085
436,3.61845
437,3.6281000000000003
438,3.6357500000000003
439,3.6454
440,3.6517500000000003
441,3.6572500000000003
442,3.66685
443,3.6723000000000003
444,3.6853000000000002
445,3.69285
446,3.7036000000000002
447,3.7079
448,3.7176500000000003
449,3.7229
450,3.7294500000000004
451,3.73915
452,3.75095
453,3.7607000000000004
454,3.7670500000000002
455,3.7768
456,3.7822500000000003
457,3.7941000000000003
458,3.80045
459,3.8059000000000003
460,3.8209500000000003
461,3.8243
462,3.8349
463,3.8425000000000002
464,3.8522000000000003
465,3.8618
466,3.87055
467,3.878
468,3.88445
469,3.8920500000000002
470,3.906
471,3.91135
472,3.92015
473,3.9287
474,3.9361
475,3.9469000000000003
476,3.9523
477,3.9619500000000003
478,3.97065
479,3.975
480,3.9846500000000002
481,3.99445
482,4.0020500000000006
483,4.01265
484,4.0235
485,4.0289
486,4.03745
487,4.04505
488,4.0525
489,4.06005
490,4.06545
491,4.0784
492,4.0859000000000005
493,4.09345
494,4.1031
495,4.1097
496,4.11505
497,4.12255
498,4.1344
499,4.143
500,4.1505
501,4.1602500000000004
502,4.16775
503,4.1763
504,4.18505
505,4.18935
506,4.2034
507,4.2109000000000005
508,4.22265
509,4.23015
510,4.2356
511,4.2431
512,4.25175
513,4.2593000000000005
514,4.2722500000000005
515,4.2776000000000005
516,4.2862
517,4.2926
518,4.29915
519,4.3121
520,4.3175
521,4.33045
522,4.3348
523,4.3402
524,4.3542000000000005
525,4.35855
526,4.36815
527,4.37675
528,4.3811
529,4.38975
530,4.4048
531,4.41005
532,4.4166
533,4.423
534,4.4327000000000005
535,4.4424
536,4.452
537,4.4576
538,4.46725
539,4.4779
540,4.4886
541,4.4931
542,4.50175
543,4.5124
544,4.5167
545,4.5254
546,4.53505
547,4.54145
548,4.55565
549,4.561850000000001
550,4.569500000000001
551,4.5759
552,4.58575
553,4.5911
554,4.60505
555,4.6125
556,4.62225
557,4.6298
558,4.6364
559,4.64175
560,4.6535
561,4.6578
562,4.6707
563,4.6741
564,4.68055
565,4.6944
566,4.6988
567,4.70625
568,4.7106
569,4.723450000000001
570,4.73425
571,4.7461
572,4.7516
573,4.76355
574,4.7687
575,4.77955
576,4.784
577,4.79035
578,4.8021
579,4.80635
580,4.8172500000000005
581,4.827
582,4.8335
583,4.8388
584,4.8507
585,4.85715
586,4.87005
587,4.8766
588,4.8884
589,4.8968
590,4.9034
591,4.909800000000001
592,4.9217
593,4.93025
594,4.93785
595,4.943350000000001
596,4.9518
597,4.9562
598,4.97135
599,4.98195
600,4.9852
601,4.9917
602,5.0003
603,5.00785
604,5.01335
605,5.02515
606,5.035950000000001
607,5.046600000000001
608,5.0531500000000005
609,5.05975
610,5.0672500000000005
611,5.0768
612,5.08645
613,5.093
614,5.102650000000001
615,5.11555
616,5.1221000000000005
617,5.1275
618,5.13725
619,5.1425
620,5.146850000000001
621,5.16085
622,5.1705000000000005
623,5.1823500000000005
624,5.18675
625,5.19315
626,5.21035
627,5.215800000000001
628,5.220000000000001
629,5.22435
630,5.2383500000000005
631,5.2426
632,5.25445
633,5.26205
634,5.276000000000001
635,5.28045
636,5.28795
637,5.2987
638,5.304
639,5.3126500000000005
640,5.31705
641,5.3267500000000005
642,5.3342
643,5.34175
644,5.35045
645,5.36005
646,5.3676
647,5.37835
648,5.38495
649,5.39565
650,5.4052500000000006
651,5.4139
652,5.4236
653,5.42905
654,5.43545
655,5.44205
656,5.450550000000001
657,5.464650000000001
658,5.4732
659,5.4775
660,5.4839
661,5.49585
662,5.50225
663,5.506600000000001
664,5.51945
665,5.5259
666,5.5356000000000005
667,5.54415
668,5.549650000000001
669,5.5625
670,5.5722000000000005
671,5.5786500000000006
672,5.5841
673,5.59705
674,5.6024
675,5.6110500000000005
676,5.617500000000001
677,5.6261
678,5.636900000000001
679,5.64445
680,5.6530000000000005
681,5.6681
682,5.67245
683,5.6799
684,5.68755
685,5.69505
686,5.703600000000001
687,5.71115
688,5.7166500000000005
689,5.72205
690,5.7317
691,5.743600000000001
692,5.75225
693,5.7576
694,5.76935
695,5.7758
696,5.7812
697,5.79415
698,5.806
699,5.81135
700,5.81995
701,5.826350000000001
702,5.83615
703,5.8447000000000005
704,5.85775
705,5.8621
706,5.86735
707,5.8813
708,5.88985
709,5.8954
710,5.9085
711,5.9169
712,5.9213000000000005
713,5.9266000000000005
714,5.9352
715,5.94165
716,5.95145
717,5.9632000000000005
718,5.9687
719,5.977250000000001
720,5.984850000000001
721,5.9966
0,0.006050000000000001
1,0.01455
2,0.02215
3,0.02755
4,0.03395
5,0.0458
6,0.053450000000000004
7,0.0599
8,0.0674
9,0.08045000000000001
10,0.0869
11,0.09855
12,0.10625000000000001
13,0.1115
14,0.12555
15,0.133
16,0.13735
17,0.1471
18,0.15345
19,0.16435
20,0.1719
21,0.18365
22,0.18910000000000002
23,0.19360000000000002
24,0.20095000000000002
25,0.2106
26,0.2182
27,0.231
28,0.23765
29,0.24515
30,0.25270000000000004
31,0.2645
32,0.27095
33,0.27635000000000004
34,0.28815
35,0.29465
36,0.30015000000000003
37,0.3108
38,0.3184
39,0.3247
40,0.3325
41,0.3377
42,0.3453
43,0.3593
44,0.36460000000000004
45,0.3734
46,0.38075000000000003
47,0.38735
48,0.4012
49,0.4077
50,0.4174
51,0.42400000000000004
52,0.43145
53,0.4379
54,0.44755
55,0.4541
56,0.4626
57,0.47565
58,0.4842
59,0.4918
60,0.49820000000000003
61,0.50895
62,0.5167
63,0.52195
64,0.5316000000000001
65,0.5392
66,0.5466
67,0.55525
68,0.5671
69,0.57355
70,0.5779500000000001
71,0.58985
72,0.5983
73,0.60705
74,0.6135
75,0.6242500000000001
76,0.6296
77,0.6404000000000001
78,0.6543
79,0.6599
80,0.6663
81,0.67695
82,0.68235
83,0.6920000000000001
84,0.7007
85,0.7060500000000001
86,0.71355
87,0.7223
88,0.7320500000000001
89,0.7395
90,0.74375
91,0.761
92,0.7674500000000001
93,0.77385
94,0.7804
95,0.788
96,0.7956500000000001
97,0.8041
98,0.8128500000000001
99,0.81925
100,0.8309500000000001
101,0.84065
102,0.8450500000000001
103,0.85575
104,0.86545
105,0.86975
106,0.8752000000000001
107,0.8902
108,0.8957
109,0.90315
110,0.9118
111,0.9215500000000001
112,0.927
113,0.93555
114,0.94625
115,0.9559000000000001
116,0.96345
117,0.9721000000000001
118,0.9798
119,0.9873000000000001
120,0.9927
121,1.0044
122,1.0098
123,1.0164
124,1.02705
125,1.03455
126,1.0453000000000001
127,1.0529
128,1.0583
129,1.06695
130,1.0757
131,1.08195
132,1.09705
133,1.10575
134,1.1111
135,1.1165
136,1.1273
137,1.1348
138,1.1392
139,1.14775
140,1.15425
141,1.1692
142,1.17575
143,1.1876
144,1.1929
145,1.1994500000000001
146,1.20585
147,1.2176500000000001
148,1.22525
149,1.2307000000000001
150,1.2414
151,1.25125
152,1.2575
153,1.27145
154,1.28115
155,1.2855
156,1.2898
157,1.2963500000000001
158,1.306
159,1.3168
160,1.32325
161,1.3308
162,1.33715
163,1.3459
164,1.3568
165,1.36315
166,1.37175
167,1.37925
168,1.38785
169,1.4008
170,1.4083
171,1.4172
172,1.4234
173,1.4309500000000002
174,1.4375
175,1.4460000000000002
176,1.4525000000000001
177,1.4632
178,1.47085
179,1.4815
180,1.49025
181,1.4977
182,1.5095500000000002
183,1.516
184,1.5204
185,1.52675
186,1.53755
187,1.5452000000000001
188,1.5548000000000002
189,1.5635000000000001
190,1.56985
191,1.5774000000000001
192,1.58505
193,1.5979
194,1.6042500000000002
195,1.61395
196,1.62365
197,1.6302
198,1.64205
199,1.65175
200,1.65605
201,1.6646
202,1.6734
203,1.67975
204,1.6851
205,1.697
206,1.7046000000000001
207,1.71205
208,1.7196500000000001
209,1.72815
210,1.73895
211,1.7433500000000002
212,1.752
213,1.7627000000000002
214,1.7734
215,1.77885
216,1.7875
217,1.796
218,1.80265
219,1.8123
220,1.81865
221,1.8274000000000001
222,1.8349000000000002
223,1.8445
224,1.851
225,1.86385
226,1.8692000000000002
227,1.87575
228,1.8822500000000002
229,1.8920000000000001
230,1.90165
231,1.9091500000000001
232,1.9221000000000001
233,1.92765
234,1.9371500000000001
235,1.9447500000000002
236,1.9512500000000002
237,1.9566000000000001
238,1.9695500000000001
239,1.9791500000000002
240,1.9846000000000001
241,1.9931500000000002

1 spikes
2 0 0.007 0.006050000000000001
3 1 0.0135 0.01455
4 2 0.0222 0.02215
5 3 0.0328 0.02755
6 4 0.037200000000000004 0.03395
7 5 0.04805 0.0458
8 6 0.0599 0.053450000000000004
9 7 0.0654 0.0599
10 8 0.07175000000000001 0.0674
11 9 0.08565 0.08045000000000001
12 10 0.0911 0.0869
13 11 0.09875 0.09855
14 12 0.10830000000000001 0.10625000000000001
15 13 0.1149 0.1115
16 14 0.1277 0.12555
17 15 0.13325 0.133
18 16 0.14485 0.13735
19 17 0.15145 0.1471
20 18 0.1612 0.15345
21 19 0.17285 0.16435
22 20 0.17715 0.1719
23 21 0.1847 0.18365
24 22 0.19440000000000002 0.18910000000000002
25 23 0.19990000000000002 0.19360000000000002
26 24 0.20850000000000002 0.20095000000000002
27 25 0.2139 0.2106
28 26 0.22565000000000002 0.2182
29 27 0.23320000000000002 0.231
30 28 0.24080000000000001 0.23765
31 29 0.24945 0.24515
32 30 0.2559 0.25270000000000004
33 31 0.26880000000000004 0.2645
34 32 0.27845000000000003 0.27095
35 33 0.2838 0.27635000000000004
36 34 0.29135 0.28815
37 35 0.29785 0.29465
38 36 0.30660000000000004 0.30015000000000003
39 37 0.31615000000000004 0.3108
40 38 0.32585000000000003 0.3184
41 39 0.33355 0.3247
42 40 0.34525 0.3325
43 41 0.34945000000000004 0.3377
44 42 0.35710000000000003 0.3453
45 43 0.36895 0.3593
46 44 0.3766 0.36460000000000004
47 45 0.38405 0.3734
48 46 0.38945 0.38075000000000003
49 47 0.40230000000000005 0.38735
50 48 0.41105 0.4012
51 49 0.4164 0.4077
52 50 0.4218 0.4174
53 51 0.42935 0.42400000000000004
54 52 0.44105 0.43145
55 53 0.44855 0.4379
56 54 0.45515 0.44755
57 55 0.4617 0.4541
58 56 0.4692 0.4626
59 57 0.47990000000000005 0.47565
60 58 0.49065000000000003 0.4842
61 59 0.49825 0.4918
62 60 0.5069 0.49820000000000003
63 61 0.5134000000000001 0.50895
64 62 0.5209 0.5167
65 63 0.5305500000000001 0.52195
66 64 0.53805 0.5316000000000001
67 65 0.55435 0.5392
68 66 0.5617 0.5466
69 67 0.56925 0.55525
70 68 0.57575 0.5671
71 69 0.5823 0.57355
72 70 0.5908 0.5779500000000001
73 71 0.59735 0.58985
74 72 0.6059 0.5983
75 73 0.6188 0.60705
76 74 0.6263500000000001 0.6135
77 75 0.6351 0.6242500000000001
78 76 0.6424500000000001 0.6296
79 77 0.6533 0.6404000000000001
80 78 0.6587000000000001 0.6543
81 79 0.6695 0.6599
82 80 0.67495 0.6663
83 81 0.6802 0.67695
84 82 0.6899500000000001 0.68235
85 83 0.69425 0.6920000000000001
86 84 0.7083 0.7007
87 85 0.71465 0.7060500000000001
88 86 0.7190000000000001 0.71355
89 87 0.73095 0.7223
90 88 0.7406 0.7320500000000001
91 89 0.74595 0.7395
92 90 0.7568 0.74375
93 91 0.76215 0.761
94 92 0.7761 0.7674500000000001
95 93 0.7848 0.77385
96 94 0.7912 0.7804
97 95 0.7987000000000001 0.788
98 96 0.80515 0.7956500000000001
99 97 0.8137000000000001 0.8041
100 98 0.82245 0.8128500000000001
101 99 0.8278000000000001 0.81925
102 100 0.83435 0.8309500000000001
103 101 0.85145 0.84065
104 102 0.8590500000000001 0.8450500000000001
105 103 0.8656 0.85575
106 104 0.872 0.86545
107 105 0.8815500000000001 0.86975
108 106 0.8881 0.8752000000000001
109 107 0.90005 0.8902
110 108 0.90535 0.8957
111 109 0.91605 0.90315
112 110 0.9246500000000001 0.9118
113 111 0.93015 0.9215500000000001
114 112 0.9365 0.927
115 113 0.94845 0.93555
116 114 0.9549000000000001 0.94625
117 115 0.96565 0.9559000000000001
118 116 0.9732500000000001 0.96345
119 117 0.9817 0.9721000000000001
120 118 0.9872000000000001 0.9798
121 119 0.998 0.9873000000000001
122 120 1.00345 0.9927
123 121 1.0098500000000001 1.0044
124 122 1.0152 1.0098
125 123 1.0313 1.0164
126 124 1.0358 1.02705
127 125 1.0455 1.03455
128 126 1.05945 1.0453000000000001
129 127 1.06475 1.0529
130 128 1.0712000000000002 1.0583
131 129 1.08105 1.06695
132 130 1.0863 1.0757
133 131 1.09285 1.08195
134 132 1.1067 1.09705
135 133 1.11325 1.10575
136 134 1.11965 1.1111
137 135 1.13045 1.1165
138 136 1.1413 1.1273
139 137 1.14995 1.1348
140 138 1.15965 1.1392
141 139 1.1649 1.14775
142 140 1.17345 1.15425
143 141 1.17785 1.1692
144 142 1.1853500000000001 1.17575
145 143 1.1994 1.1876
146 144 1.2058 1.1929
147 145 1.2123000000000002 1.1994500000000001
148 146 1.2188 1.20585
149 147 1.2275 1.2176500000000001
150 148 1.23925 1.22525
151 149 1.2489000000000001 1.2307000000000001
152 150 1.2544 1.2414
153 151 1.26295 1.25125
154 152 1.26945 1.2575
155 153 1.2779500000000001 1.27145
156 154 1.2856 1.28115
157 155 1.2963500000000001 1.2855
158 156 1.30495 1.2898
159 157 1.31575 1.2963500000000001
160 158 1.3201 1.306
161 159 1.3285500000000001 1.3168
162 160 1.3351 1.32325
163 161 1.34595 1.3308
164 162 1.3502 1.33715
165 163 1.35775 1.3459
166 164 1.3684500000000002 1.3568
167 165 1.3760000000000001 1.36315
168 166 1.3847500000000001 1.37175
169 167 1.39005 1.37925
170 168 1.40185 1.38785
171 169 1.4116 1.4008
172 170 1.4171500000000001 1.4083
173 171 1.42775 1.4172
174 172 1.4354 1.4234
175 173 1.4407 1.4309500000000002
176 174 1.4493500000000001 1.4375
177 175 1.45795 1.4460000000000002
178 176 1.4654 1.4525000000000001
179 177 1.47075 1.4632
180 178 1.4815500000000001 1.47085
181 179 1.49015 1.4815
182 180 1.4967000000000001 1.49025
183 181 1.5074 1.4977
184 182 1.51725 1.5095500000000002
185 183 1.52255 1.516
186 184 1.53645 1.5204
187 185 1.54515 1.52675
188 186 1.5559 1.53755
189 187 1.5613000000000001 1.5452000000000001
190 188 1.5678 1.5548000000000002
191 189 1.57325 1.5635000000000001
192 190 1.58505 1.56985
193 191 1.5904 1.5774000000000001
194 192 1.59685 1.58505
195 193 1.6075000000000002 1.5979
196 194 1.6205 1.6042500000000002
197 195 1.6269 1.61395
198 196 1.6356000000000002 1.62365
199 197 1.6421000000000001 1.6302
200 198 1.6528500000000002 1.64205
201 199 1.6594 1.65175
202 200 1.6668 1.65605
203 201 1.6733500000000001 1.6646
204 202 1.6808 1.6734
205 203 1.69055 1.67975
206 204 1.69595 1.6851
207 205 1.7067 1.697
208 206 1.7142000000000002 1.7046000000000001
209 207 1.71855 1.71205
210 208 1.73455 1.7196500000000001
211 209 1.7401 1.72815
212 210 1.74655 1.73895
213 211 1.75725 1.7433500000000002
214 212 1.7616500000000002 1.752
215 213 1.7757 1.7627000000000002
216 214 1.7886000000000002 1.7734
217 215 1.7938 1.77885
218 216 1.79925 1.7875
219 217 1.8057500000000002 1.796
220 218 1.81325 1.80265
221 219 1.8218500000000002 1.8123
222 220 1.8326500000000001 1.81865
223 221 1.84135 1.8274000000000001
224 222 1.8499 1.8349000000000002
225 223 1.8585 1.8445
226 224 1.8661 1.851
227 225 1.8768 1.86385
228 226 1.8823 1.8692000000000002
229 227 1.88985 1.87575
230 228 1.89945 1.8822500000000002
231 229 1.9069500000000001 1.8920000000000001
232 230 1.9156000000000002 1.90165
233 231 1.92415 1.9091500000000001
234 232 1.9297000000000002 1.9221000000000001
235 233 1.9351500000000001 1.92765
236 234 1.949 1.9371500000000001
237 235 1.9554500000000001 1.9447500000000002
238 236 1.9651500000000002 1.9512500000000002
239 237 1.9737500000000001 1.9566000000000001
240 238 1.9804000000000002 1.9695500000000001
241 239 1.9856500000000001 1.9791500000000002
242 240 1.99865 1.9846000000000001
243 241 2.00705 1.9931500000000002
242 2.01695
243 2.02215
244 2.03405
245 2.0439000000000003
246 2.0492
247 2.05775
248 2.0643000000000002
249 2.0783
250 2.0858000000000003
251 2.09005
252 2.0966
253 2.1052500000000003
254 2.116
255 2.12025
256 2.1310000000000002
257 2.1386000000000003
258 2.1460500000000002
259 2.15795
260 2.16445
261 2.1709
262 2.18275
263 2.18925
264 2.1957500000000003
265 2.2043500000000003
266 2.21815
267 2.22595
268 2.2313
269 2.2387
270 2.24535
271 2.2517
272 2.257
273 2.2668
274 2.28185
275 2.2884
276 2.297
277 2.3035
278 2.3087500000000003
279 2.31625
280 2.325
281 2.3356500000000002
282 2.34435
283 2.34965
284 2.36265
285 2.36905
286 2.37455
287 2.3853
288 2.3961
289 2.4014
290 2.4111000000000002
291 2.41865
292 2.4261500000000003
293 2.43475
294 2.44545
295 2.4584
296 2.4628
297 2.4703500000000003
298 2.4778000000000002
299 2.4843
300 2.4919000000000002
301 2.5036
302 2.5101500000000003
303 2.5220000000000002
304 2.5317000000000003
305 2.537
306 2.54245
307 2.5563000000000002
308 2.5619
309 2.56725
310 2.57805
311 2.5845000000000002
312 2.5953
313 2.6039000000000003
314 2.6094
315 2.6168
316 2.6254
317 2.63295
318 2.6437
319 2.65125
320 2.65985
321 2.6685000000000003
322 2.6782500000000002
323 2.68675
324 2.69755
325 2.70405
326 2.7116000000000002
327 2.72135
328 2.7309
329 2.7374
330 2.7438000000000002
331 2.7503
332 2.75895
333 2.774
334 2.7794000000000003
335 2.78805
336 2.7946500000000003
337 2.80205
338 2.8085500000000003
339 2.81725
340 2.8236000000000003
341 2.8312
342 2.8408
343 2.8504
344 2.85805
345 2.8677
346 2.8764000000000003
347 2.8839
348 2.8915
349 2.89995
350 2.9065000000000003
351 2.9130000000000003
352 2.9280500000000003
353 2.9334000000000002
354 2.9399
355 2.9518
356 2.9593000000000003
357 2.968
358 2.9787000000000003
359 2.98395
360 2.98835
361 2.9937500000000004
362 3.0035000000000003
363 3.01635
364 3.0207
365 3.02935
366 3.03575
367 3.04435
368 3.0585
369 3.0648500000000003
370 3.07255
371 3.0831500000000003
372 3.08855
373 3.09715
374 3.10475
375 3.11225
376 3.1176000000000004
377 3.1252
378 3.13605
379 3.1477500000000003
380 3.15315
381 3.1617
382 3.1682
383 3.1736
384 3.1856
385 3.1919500000000003
386 3.2081
387 3.21455
388 3.21895
389 3.2264500000000003
390 3.23395
391 3.24575
392 3.2522
393 3.26195
394 3.2674000000000003
395 3.27495
396 3.28565
397 3.29325
398 3.3019000000000003
399 3.30825
400 3.3190500000000003
401 3.3266
402 3.3374
403 3.3448
404 3.3513
405 3.3589
406 3.3729500000000003
407 3.3804000000000003
408 3.3879
409 3.3987000000000003
410 3.4064
411 3.4116500000000003
412 3.41825
413 3.4236
414 3.43745
415 3.4439
416 3.45465
417 3.4634
418 3.4676500000000003
419 3.4817500000000003
420 3.487
421 3.4968500000000002
422 3.5033000000000003
423 3.5118500000000004
424 3.5183500000000003
425 3.5259
426 3.53445
427 3.5410000000000004
428 3.5486
429 3.56035
430 3.5679000000000003
431 3.5764500000000004
432 3.5808
433 3.5915500000000002
434 3.6055
435 3.61085
436 3.61845
437 3.6281000000000003
438 3.6357500000000003
439 3.6454
440 3.6517500000000003
441 3.6572500000000003
442 3.66685
443 3.6723000000000003
444 3.6853000000000002
445 3.69285
446 3.7036000000000002
447 3.7079
448 3.7176500000000003
449 3.7229
450 3.7294500000000004
451 3.73915
452 3.75095
453 3.7607000000000004
454 3.7670500000000002
455 3.7768
456 3.7822500000000003
457 3.7941000000000003
458 3.80045
459 3.8059000000000003
460 3.8209500000000003
461 3.8243
462 3.8349
463 3.8425000000000002
464 3.8522000000000003
465 3.8618
466 3.87055
467 3.878
468 3.88445
469 3.8920500000000002
470 3.906
471 3.91135
472 3.92015
473 3.9287
474 3.9361
475 3.9469000000000003
476 3.9523
477 3.9619500000000003
478 3.97065
479 3.975
480 3.9846500000000002
481 3.99445
482 4.0020500000000006
483 4.01265
484 4.0235
485 4.0289
486 4.03745
487 4.04505
488 4.0525
489 4.06005
490 4.06545
491 4.0784
492 4.0859000000000005
493 4.09345
494 4.1031
495 4.1097
496 4.11505
497 4.12255
498 4.1344
499 4.143
500 4.1505
501 4.1602500000000004
502 4.16775
503 4.1763
504 4.18505
505 4.18935
506 4.2034
507 4.2109000000000005
508 4.22265
509 4.23015
510 4.2356
511 4.2431
512 4.25175
513 4.2593000000000005
514 4.2722500000000005
515 4.2776000000000005
516 4.2862
517 4.2926
518 4.29915
519 4.3121
520 4.3175
521 4.33045
522 4.3348
523 4.3402
524 4.3542000000000005
525 4.35855
526 4.36815
527 4.37675
528 4.3811
529 4.38975
530 4.4048
531 4.41005
532 4.4166
533 4.423
534 4.4327000000000005
535 4.4424
536 4.452
537 4.4576
538 4.46725
539 4.4779
540 4.4886
541 4.4931
542 4.50175
543 4.5124
544 4.5167
545 4.5254
546 4.53505
547 4.54145
548 4.55565
549 4.561850000000001
550 4.569500000000001
551 4.5759
552 4.58575
553 4.5911
554 4.60505
555 4.6125
556 4.62225
557 4.6298
558 4.6364
559 4.64175
560 4.6535
561 4.6578
562 4.6707
563 4.6741
564 4.68055
565 4.6944
566 4.6988
567 4.70625
568 4.7106
569 4.723450000000001
570 4.73425
571 4.7461
572 4.7516
573 4.76355
574 4.7687
575 4.77955
576 4.784
577 4.79035
578 4.8021
579 4.80635
580 4.8172500000000005
581 4.827
582 4.8335
583 4.8388
584 4.8507
585 4.85715
586 4.87005
587 4.8766
588 4.8884
589 4.8968
590 4.9034
591 4.909800000000001
592 4.9217
593 4.93025
594 4.93785
595 4.943350000000001
596 4.9518
597 4.9562
598 4.97135
599 4.98195
600 4.9852
601 4.9917
602 5.0003
603 5.00785
604 5.01335
605 5.02515
606 5.035950000000001
607 5.046600000000001
608 5.0531500000000005
609 5.05975
610 5.0672500000000005
611 5.0768
612 5.08645
613 5.093
614 5.102650000000001
615 5.11555
616 5.1221000000000005
617 5.1275
618 5.13725
619 5.1425
620 5.146850000000001
621 5.16085
622 5.1705000000000005
623 5.1823500000000005
624 5.18675
625 5.19315
626 5.21035
627 5.215800000000001
628 5.220000000000001
629 5.22435
630 5.2383500000000005
631 5.2426
632 5.25445
633 5.26205
634 5.276000000000001
635 5.28045
636 5.28795
637 5.2987
638 5.304
639 5.3126500000000005
640 5.31705
641 5.3267500000000005
642 5.3342
643 5.34175
644 5.35045
645 5.36005
646 5.3676
647 5.37835
648 5.38495
649 5.39565
650 5.4052500000000006
651 5.4139
652 5.4236
653 5.42905
654 5.43545
655 5.44205
656 5.450550000000001
657 5.464650000000001
658 5.4732
659 5.4775
660 5.4839
661 5.49585
662 5.50225
663 5.506600000000001
664 5.51945
665 5.5259
666 5.5356000000000005
667 5.54415
668 5.549650000000001
669 5.5625
670 5.5722000000000005
671 5.5786500000000006
672 5.5841
673 5.59705
674 5.6024
675 5.6110500000000005
676 5.617500000000001
677 5.6261
678 5.636900000000001
679 5.64445
680 5.6530000000000005
681 5.6681
682 5.67245
683 5.6799
684 5.68755
685 5.69505
686 5.703600000000001
687 5.71115
688 5.7166500000000005
689 5.72205
690 5.7317
691 5.743600000000001
692 5.75225
693 5.7576
694 5.76935
695 5.7758
696 5.7812
697 5.79415
698 5.806
699 5.81135
700 5.81995
701 5.826350000000001
702 5.83615
703 5.8447000000000005
704 5.85775
705 5.8621
706 5.86735
707 5.8813
708 5.88985
709 5.8954
710 5.9085
711 5.9169
712 5.9213000000000005
713 5.9266000000000005
714 5.9352
715 5.94165
716 5.95145
717 5.9632000000000005
718 5.9687
719 5.977250000000001
720 5.984850000000001
721 5.9966

View File

@ -0,0 +1,254 @@
,spikes
0,0.00595
1,0.01025
2,0.0155
3,0.0177
4,0.025400000000000002
5,0.029500000000000002
6,0.054400000000000004
7,0.063
8,0.0684
9,0.0727
10,0.076
11,0.0985
12,0.10185000000000001
13,0.1072
14,0.11355000000000001
15,0.11570000000000001
16,0.11910000000000001
17,0.14165
18,0.15560000000000002
19,0.1588
20,0.16425
21,0.17400000000000002
22,0.18155000000000002
23,0.1869
24,0.20195000000000002
25,0.2083
26,0.21835000000000002
27,0.22145
28,0.2245
29,0.2291
30,0.23865
31,0.2461
32,0.2495
33,0.2569
34,0.26130000000000003
35,0.27305
36,0.27755
37,0.28805000000000003
38,0.29350000000000004
39,0.2989
40,0.30855
41,0.32365
42,0.3356
43,0.34295000000000003
44,0.34515
45,0.35805000000000003
46,0.36460000000000004
47,0.38595
48,0.38820000000000005
49,0.3927
50,0.40335000000000004
51,0.4108
52,0.41285
53,0.4163
54,0.4218
55,0.42500000000000004
56,0.44770000000000004
57,0.45180000000000003
58,0.46245
59,0.468
60,0.47865
61,0.48735
62,0.49595
63,0.49920000000000003
64,0.5145000000000001
65,0.52285
66,0.5283
67,0.5359
68,0.5433
69,0.5467500000000001
70,0.55
71,0.55855
72,0.5616
73,0.56625
74,0.5683
75,0.59185
76,0.6015
77,0.6047
78,0.6081
79,0.6103000000000001
80,0.61785
81,0.6253500000000001
82,0.6286
83,0.6446000000000001
84,0.65005
85,0.6522
86,0.6577000000000001
87,0.6844
88,0.6859000000000001
89,0.6889000000000001
90,0.70515
91,0.7168
92,0.7199500000000001
93,0.72545
94,0.7299
95,0.7384000000000001
96,0.74705
97,0.761
98,0.7642
99,0.7675500000000001
100,0.7793
101,0.7835500000000001
102,0.8018500000000001
103,0.80615
104,0.8182
105,0.8256
106,0.8417
107,0.8484
108,0.85155
109,0.86
110,0.8632000000000001
111,0.8763500000000001
112,0.8891
113,0.8958
114,0.9011
115,0.91185
116,0.91595
117,0.93205
118,0.9334
119,0.94725
120,0.9688500000000001
121,0.9753000000000001
122,0.9786
123,0.98285
124,0.9969
125,0.99875
126,1.00445
127,1.0098500000000001
128,1.01505
129,1.0172
130,1.0258500000000002
131,1.0291000000000001
132,1.0549
133,1.06255
134,1.0689
135,1.07325
136,1.0765
137,1.09805
138,1.1023
139,1.10775
140,1.1131
141,1.11525
142,1.1186500000000001
143,1.13805
144,1.14335
145,1.15615
146,1.15945
147,1.1649500000000002
148,1.18195
149,1.18645
150,1.20165
151,1.2079
152,1.2102000000000002
153,1.21885
154,1.22295
155,1.22625
156,1.2381
157,1.2457500000000001
158,1.2498500000000001
159,1.25665
160,1.26095
161,1.27355
162,1.2781500000000001
163,1.28765
164,1.294
165,1.30705
166,1.32305
167,1.3265500000000001
168,1.3361
169,1.3426
170,1.34485
171,1.3577000000000001
172,1.36095
173,1.36625
174,1.3857000000000002
175,1.3888
176,1.39335
177,1.40385
178,1.4114
179,1.41355
180,1.4169
181,1.4233500000000001
182,1.4450500000000002
183,1.4514
184,1.45465
185,1.46205
186,1.47825
187,1.4869
188,1.4956500000000001
189,1.4987000000000001
190,1.50095
191,1.5225
192,1.5278500000000002
193,1.53635
194,1.5430000000000001
195,1.5463
196,1.54945
197,1.5516
198,1.5591000000000002
199,1.5623500000000001
200,1.5667
201,1.56885
202,1.5924
203,1.60205
204,1.60535
205,1.6086
206,1.6183
207,1.6248
208,1.629
209,1.6442
210,1.6485
211,1.6516000000000002
212,1.65615
213,1.6841000000000002
214,1.68595
215,1.69795
216,1.7055500000000001
217,1.7165000000000001
218,1.7196500000000001
219,1.725
220,1.7303000000000002
221,1.7388000000000001
222,1.7466000000000002
223,1.7562
224,1.7617500000000001
225,1.7649000000000001
226,1.7713
227,1.7798500000000002
228,1.7841500000000001
229,1.80245
230,1.8069000000000002
231,1.82505
232,1.8349000000000002
233,1.8422
234,1.8488
235,1.85955
236,1.8627
237,1.8767
238,1.8886
239,1.89615
240,1.90165
241,1.91225
242,1.9155000000000002
243,1.93165
244,1.9330500000000002
245,1.9372
246,1.94785
247,1.97475
248,1.97815
249,1.9814
250,1.98455
251,1.9973500000000002
252,1.9988000000000001
1 spikes
2 0 0.00595
3 1 0.01025
4 2 0.0155
5 3 0.0177
6 4 0.025400000000000002
7 5 0.029500000000000002
8 6 0.054400000000000004
9 7 0.063
10 8 0.0684
11 9 0.0727
12 10 0.076
13 11 0.0985
14 12 0.10185000000000001
15 13 0.1072
16 14 0.11355000000000001
17 15 0.11570000000000001
18 16 0.11910000000000001
19 17 0.14165
20 18 0.15560000000000002
21 19 0.1588
22 20 0.16425
23 21 0.17400000000000002
24 22 0.18155000000000002
25 23 0.1869
26 24 0.20195000000000002
27 25 0.2083
28 26 0.21835000000000002
29 27 0.22145
30 28 0.2245
31 29 0.2291
32 30 0.23865
33 31 0.2461
34 32 0.2495
35 33 0.2569
36 34 0.26130000000000003
37 35 0.27305
38 36 0.27755
39 37 0.28805000000000003
40 38 0.29350000000000004
41 39 0.2989
42 40 0.30855
43 41 0.32365
44 42 0.3356
45 43 0.34295000000000003
46 44 0.34515
47 45 0.35805000000000003
48 46 0.36460000000000004
49 47 0.38595
50 48 0.38820000000000005
51 49 0.3927
52 50 0.40335000000000004
53 51 0.4108
54 52 0.41285
55 53 0.4163
56 54 0.4218
57 55 0.42500000000000004
58 56 0.44770000000000004
59 57 0.45180000000000003
60 58 0.46245
61 59 0.468
62 60 0.47865
63 61 0.48735
64 62 0.49595
65 63 0.49920000000000003
66 64 0.5145000000000001
67 65 0.52285
68 66 0.5283
69 67 0.5359
70 68 0.5433
71 69 0.5467500000000001
72 70 0.55
73 71 0.55855
74 72 0.5616
75 73 0.56625
76 74 0.5683
77 75 0.59185
78 76 0.6015
79 77 0.6047
80 78 0.6081
81 79 0.6103000000000001
82 80 0.61785
83 81 0.6253500000000001
84 82 0.6286
85 83 0.6446000000000001
86 84 0.65005
87 85 0.6522
88 86 0.6577000000000001
89 87 0.6844
90 88 0.6859000000000001
91 89 0.6889000000000001
92 90 0.70515
93 91 0.7168
94 92 0.7199500000000001
95 93 0.72545
96 94 0.7299
97 95 0.7384000000000001
98 96 0.74705
99 97 0.761
100 98 0.7642
101 99 0.7675500000000001
102 100 0.7793
103 101 0.7835500000000001
104 102 0.8018500000000001
105 103 0.80615
106 104 0.8182
107 105 0.8256
108 106 0.8417
109 107 0.8484
110 108 0.85155
111 109 0.86
112 110 0.8632000000000001
113 111 0.8763500000000001
114 112 0.8891
115 113 0.8958
116 114 0.9011
117 115 0.91185
118 116 0.91595
119 117 0.93205
120 118 0.9334
121 119 0.94725
122 120 0.9688500000000001
123 121 0.9753000000000001
124 122 0.9786
125 123 0.98285
126 124 0.9969
127 125 0.99875
128 126 1.00445
129 127 1.0098500000000001
130 128 1.01505
131 129 1.0172
132 130 1.0258500000000002
133 131 1.0291000000000001
134 132 1.0549
135 133 1.06255
136 134 1.0689
137 135 1.07325
138 136 1.0765
139 137 1.09805
140 138 1.1023
141 139 1.10775
142 140 1.1131
143 141 1.11525
144 142 1.1186500000000001
145 143 1.13805
146 144 1.14335
147 145 1.15615
148 146 1.15945
149 147 1.1649500000000002
150 148 1.18195
151 149 1.18645
152 150 1.20165
153 151 1.2079
154 152 1.2102000000000002
155 153 1.21885
156 154 1.22295
157 155 1.22625
158 156 1.2381
159 157 1.2457500000000001
160 158 1.2498500000000001
161 159 1.25665
162 160 1.26095
163 161 1.27355
164 162 1.2781500000000001
165 163 1.28765
166 164 1.294
167 165 1.30705
168 166 1.32305
169 167 1.3265500000000001
170 168 1.3361
171 169 1.3426
172 170 1.34485
173 171 1.3577000000000001
174 172 1.36095
175 173 1.36625
176 174 1.3857000000000002
177 175 1.3888
178 176 1.39335
179 177 1.40385
180 178 1.4114
181 179 1.41355
182 180 1.4169
183 181 1.4233500000000001
184 182 1.4450500000000002
185 183 1.4514
186 184 1.45465
187 185 1.46205
188 186 1.47825
189 187 1.4869
190 188 1.4956500000000001
191 189 1.4987000000000001
192 190 1.50095
193 191 1.5225
194 192 1.5278500000000002
195 193 1.53635
196 194 1.5430000000000001
197 195 1.5463
198 196 1.54945
199 197 1.5516
200 198 1.5591000000000002
201 199 1.5623500000000001
202 200 1.5667
203 201 1.56885
204 202 1.5924
205 203 1.60205
206 204 1.60535
207 205 1.6086
208 206 1.6183
209 207 1.6248
210 208 1.629
211 209 1.6442
212 210 1.6485
213 211 1.6516000000000002
214 212 1.65615
215 213 1.6841000000000002
216 214 1.68595
217 215 1.69795
218 216 1.7055500000000001
219 217 1.7165000000000001
220 218 1.7196500000000001
221 219 1.725
222 220 1.7303000000000002
223 221 1.7388000000000001
224 222 1.7466000000000002
225 223 1.7562
226 224 1.7617500000000001
227 225 1.7649000000000001
228 226 1.7713
229 227 1.7798500000000002
230 228 1.7841500000000001
231 229 1.80245
232 230 1.8069000000000002
233 231 1.82505
234 232 1.8349000000000002
235 233 1.8422
236 234 1.8488
237 235 1.85955
238 236 1.8627
239 237 1.8767
240 238 1.8886
241 239 1.89615
242 240 1.90165
243 241 1.91225
244 242 1.9155000000000002
245 243 1.93165
246 244 1.9330500000000002
247 245 1.9372
248 246 1.94785
249 247 1.97475
250 248 1.97815
251 249 1.9814
252 250 1.98455
253 251 1.9973500000000002
254 252 1.9988000000000001

View File

@ -0,0 +1,273 @@
,spikes
0,0.0015500000000000002
1,0.0029000000000000002
2,0.0166
3,0.02315
4,0.025650000000000003
5,0.026600000000000002
6,0.033850000000000005
7,0.035250000000000004
8,0.0402
9,0.0478
10,0.0599
11,0.07815
12,0.08800000000000001
13,0.0942
14,0.1038
15,0.10500000000000001
16,0.11040000000000001
17,0.11165
18,0.1159
19,0.1321
20,0.1383
21,0.14065
22,0.1449
23,0.15455000000000002
24,0.17275000000000001
25,0.17400000000000002
26,0.1955
27,0.1967
28,0.20525000000000002
29,0.22655
30,0.2277
31,0.22890000000000002
32,0.23520000000000002
33,0.24065
34,0.24275000000000002
35,0.2441
36,0.2559
37,0.26575
38,0.2676
39,0.2772
40,0.2862
41,0.29655000000000004
42,0.2988
43,0.31085
44,0.33215
45,0.33430000000000004
46,0.33665
47,0.34085000000000004
48,0.3432
49,0.3462
50,0.35055000000000003
51,0.38175000000000003
52,0.38495
53,0.3992
54,0.401
55,0.40225
56,0.41715
57,0.42705000000000004
58,0.43245
59,0.44095
60,0.4425
61,0.4454
62,0.46580000000000005
63,0.47650000000000003
64,0.47990000000000005
65,0.49260000000000004
66,0.4939
67,0.497
68,0.5166000000000001
69,0.52715
70,0.52935
71,0.5336500000000001
72,0.5358
73,0.5403
74,0.54255
75,0.5499
76,0.5650000000000001
77,0.5746
78,0.5759000000000001
79,0.57775
80,0.5920500000000001
81,0.5939
82,0.60385
83,0.6145
84,0.6306
85,0.64015
86,0.6444000000000001
87,0.6595000000000001
88,0.6716500000000001
89,0.6899500000000001
90,0.6919500000000001
91,0.7016
92,0.7071000000000001
93,0.7083
94,0.7123
95,0.7136
96,0.71775
97,0.7190000000000001
98,0.74695
99,0.74915
100,0.75215
101,0.7533500000000001
102,0.75985
103,0.76625
104,0.7694500000000001
105,0.77285
106,0.79435
107,0.7996000000000001
108,0.8116500000000001
109,0.8268000000000001
110,0.8287
111,0.8330000000000001
112,0.8534
113,0.85675
114,0.85885
115,0.8718
116,0.8738
117,0.8753000000000001
118,0.8794500000000001
119,0.8815500000000001
120,0.8837
121,0.8934000000000001
122,0.9052
123,0.9235000000000001
124,0.9247000000000001
125,0.93315
126,0.9440500000000001
127,0.95255
128,0.9570500000000001
129,0.9591500000000001
130,0.9611500000000001
131,0.96435
132,0.9710000000000001
133,0.9762500000000001
134,0.97845
135,0.9957
136,1.00215
137,1.01645
138,1.0249000000000001
139,1.0267
140,1.0280500000000001
141,1.0343
142,1.0398
143,1.04115
144,1.04755
145,1.0604
146,1.0785500000000001
147,1.0884
148,1.0948
149,1.10365
150,1.1048
151,1.1109
152,1.1121
153,1.1163
154,1.1378000000000001
155,1.1401000000000001
156,1.14435
157,1.1541000000000001
158,1.1692
159,1.17255
160,1.17435
161,1.1959
162,1.1972500000000001
163,1.20565
164,1.2262
165,1.2274
166,1.2286000000000001
167,1.23495
168,1.24125
169,1.2426000000000001
170,1.24895
171,1.2564
172,1.2660500000000001
173,1.2681
174,1.27685
175,1.28655
176,1.2962500000000001
177,1.2983
178,1.31135
179,1.33185
180,1.3339
181,1.33605
182,1.33935
183,1.3426
184,1.3458
185,1.3503500000000002
186,1.38155
187,1.3845500000000002
188,1.39955
189,1.4008500000000002
190,1.4020000000000001
191,1.4168500000000002
192,1.4267
193,1.4329
194,1.44065
195,1.44195
196,1.4449
197,1.4663000000000002
198,1.4761
199,1.48025
200,1.4923000000000002
201,1.4936500000000001
202,1.4955500000000002
203,1.5169000000000001
204,1.5268000000000002
205,1.5290000000000001
206,1.5321500000000001
207,1.5352000000000001
208,1.54075
209,1.5430000000000001
210,1.54955
211,1.5537
212,1.5656
213,1.5751000000000002
214,1.5763500000000001
215,1.5923500000000002
216,1.5938
217,1.6042500000000002
218,1.61405
219,1.6303
220,1.63985
221,1.6441000000000001
222,1.6591
223,1.6732
224,1.67975
225,1.6906
226,1.6926
227,1.7012500000000002
228,1.7076
229,1.7111500000000002
230,1.713
231,1.7144000000000001
232,1.71825
233,1.7474
234,1.7496500000000001
235,1.7518500000000001
236,1.7530000000000001
237,1.75415
238,1.76055
239,1.7680500000000001
240,1.7713
241,1.79475
242,1.7993000000000001
243,1.812
244,1.8271000000000002
245,1.82935
246,1.8326500000000001
247,1.85305
248,1.8564
249,1.8583
250,1.87145
251,1.87335
252,1.8747500000000001
253,1.8769500000000001
254,1.8801
255,1.8822
256,1.8876000000000002
257,1.89385
258,1.905
259,1.9233
260,1.9249500000000002
261,1.9331500000000001
262,1.9446
263,1.9522000000000002
264,1.9575
265,1.9597
266,1.9617
267,1.9643000000000002
268,1.9715
269,1.97605
270,1.9780000000000002
271,1.9962000000000002
1 spikes
2 0 0.0015500000000000002
3 1 0.0029000000000000002
4 2 0.0166
5 3 0.02315
6 4 0.025650000000000003
7 5 0.026600000000000002
8 6 0.033850000000000005
9 7 0.035250000000000004
10 8 0.0402
11 9 0.0478
12 10 0.0599
13 11 0.07815
14 12 0.08800000000000001
15 13 0.0942
16 14 0.1038
17 15 0.10500000000000001
18 16 0.11040000000000001
19 17 0.11165
20 18 0.1159
21 19 0.1321
22 20 0.1383
23 21 0.14065
24 22 0.1449
25 23 0.15455000000000002
26 24 0.17275000000000001
27 25 0.17400000000000002
28 26 0.1955
29 27 0.1967
30 28 0.20525000000000002
31 29 0.22655
32 30 0.2277
33 31 0.22890000000000002
34 32 0.23520000000000002
35 33 0.24065
36 34 0.24275000000000002
37 35 0.2441
38 36 0.2559
39 37 0.26575
40 38 0.2676
41 39 0.2772
42 40 0.2862
43 41 0.29655000000000004
44 42 0.2988
45 43 0.31085
46 44 0.33215
47 45 0.33430000000000004
48 46 0.33665
49 47 0.34085000000000004
50 48 0.3432
51 49 0.3462
52 50 0.35055000000000003
53 51 0.38175000000000003
54 52 0.38495
55 53 0.3992
56 54 0.401
57 55 0.40225
58 56 0.41715
59 57 0.42705000000000004
60 58 0.43245
61 59 0.44095
62 60 0.4425
63 61 0.4454
64 62 0.46580000000000005
65 63 0.47650000000000003
66 64 0.47990000000000005
67 65 0.49260000000000004
68 66 0.4939
69 67 0.497
70 68 0.5166000000000001
71 69 0.52715
72 70 0.52935
73 71 0.5336500000000001
74 72 0.5358
75 73 0.5403
76 74 0.54255
77 75 0.5499
78 76 0.5650000000000001
79 77 0.5746
80 78 0.5759000000000001
81 79 0.57775
82 80 0.5920500000000001
83 81 0.5939
84 82 0.60385
85 83 0.6145
86 84 0.6306
87 85 0.64015
88 86 0.6444000000000001
89 87 0.6595000000000001
90 88 0.6716500000000001
91 89 0.6899500000000001
92 90 0.6919500000000001
93 91 0.7016
94 92 0.7071000000000001
95 93 0.7083
96 94 0.7123
97 95 0.7136
98 96 0.71775
99 97 0.7190000000000001
100 98 0.74695
101 99 0.74915
102 100 0.75215
103 101 0.7533500000000001
104 102 0.75985
105 103 0.76625
106 104 0.7694500000000001
107 105 0.77285
108 106 0.79435
109 107 0.7996000000000001
110 108 0.8116500000000001
111 109 0.8268000000000001
112 110 0.8287
113 111 0.8330000000000001
114 112 0.8534
115 113 0.85675
116 114 0.85885
117 115 0.8718
118 116 0.8738
119 117 0.8753000000000001
120 118 0.8794500000000001
121 119 0.8815500000000001
122 120 0.8837
123 121 0.8934000000000001
124 122 0.9052
125 123 0.9235000000000001
126 124 0.9247000000000001
127 125 0.93315
128 126 0.9440500000000001
129 127 0.95255
130 128 0.9570500000000001
131 129 0.9591500000000001
132 130 0.9611500000000001
133 131 0.96435
134 132 0.9710000000000001
135 133 0.9762500000000001
136 134 0.97845
137 135 0.9957
138 136 1.00215
139 137 1.01645
140 138 1.0249000000000001
141 139 1.0267
142 140 1.0280500000000001
143 141 1.0343
144 142 1.0398
145 143 1.04115
146 144 1.04755
147 145 1.0604
148 146 1.0785500000000001
149 147 1.0884
150 148 1.0948
151 149 1.10365
152 150 1.1048
153 151 1.1109
154 152 1.1121
155 153 1.1163
156 154 1.1378000000000001
157 155 1.1401000000000001
158 156 1.14435
159 157 1.1541000000000001
160 158 1.1692
161 159 1.17255
162 160 1.17435
163 161 1.1959
164 162 1.1972500000000001
165 163 1.20565
166 164 1.2262
167 165 1.2274
168 166 1.2286000000000001
169 167 1.23495
170 168 1.24125
171 169 1.2426000000000001
172 170 1.24895
173 171 1.2564
174 172 1.2660500000000001
175 173 1.2681
176 174 1.27685
177 175 1.28655
178 176 1.2962500000000001
179 177 1.2983
180 178 1.31135
181 179 1.33185
182 180 1.3339
183 181 1.33605
184 182 1.33935
185 183 1.3426
186 184 1.3458
187 185 1.3503500000000002
188 186 1.38155
189 187 1.3845500000000002
190 188 1.39955
191 189 1.4008500000000002
192 190 1.4020000000000001
193 191 1.4168500000000002
194 192 1.4267
195 193 1.4329
196 194 1.44065
197 195 1.44195
198 196 1.4449
199 197 1.4663000000000002
200 198 1.4761
201 199 1.48025
202 200 1.4923000000000002
203 201 1.4936500000000001
204 202 1.4955500000000002
205 203 1.5169000000000001
206 204 1.5268000000000002
207 205 1.5290000000000001
208 206 1.5321500000000001
209 207 1.5352000000000001
210 208 1.54075
211 209 1.5430000000000001
212 210 1.54955
213 211 1.5537
214 212 1.5656
215 213 1.5751000000000002
216 214 1.5763500000000001
217 215 1.5923500000000002
218 216 1.5938
219 217 1.6042500000000002
220 218 1.61405
221 219 1.6303
222 220 1.63985
223 221 1.6441000000000001
224 222 1.6591
225 223 1.6732
226 224 1.67975
227 225 1.6906
228 226 1.6926
229 227 1.7012500000000002
230 228 1.7076
231 229 1.7111500000000002
232 230 1.713
233 231 1.7144000000000001
234 232 1.71825
235 233 1.7474
236 234 1.7496500000000001
237 235 1.7518500000000001
238 236 1.7530000000000001
239 237 1.75415
240 238 1.76055
241 239 1.7680500000000001
242 240 1.7713
243 241 1.79475
244 242 1.7993000000000001
245 243 1.812
246 244 1.8271000000000002
247 245 1.82935
248 246 1.8326500000000001
249 247 1.85305
250 248 1.8564
251 249 1.8583
252 250 1.87145
253 251 1.87335
254 252 1.8747500000000001
255 253 1.8769500000000001
256 254 1.8801
257 255 1.8822
258 256 1.8876000000000002
259 257 1.89385
260 258 1.905
261 259 1.9233
262 260 1.9249500000000002
263 261 1.9331500000000001
264 262 1.9446
265 263 1.9522000000000002
266 264 1.9575
267 265 1.9597
268 266 1.9617
269 267 1.9643000000000002
270 268 1.9715
271 269 1.97605
272 270 1.9780000000000002
273 271 1.9962000000000002

View File

@ -1,723 +1,241 @@
,spikes
0,0.00395
1,0.013600000000000001
2,0.0211
3,0.0287
4,0.03725
5,0.0448
6,0.054400000000000004
7,0.061950000000000005
8,0.06845
9,0.07815
10,0.08785
11,0.09435
12,0.1029
13,0.11265
14,0.11915
15,0.12765
16,0.1374
17,0.14495
18,0.1514
19,0.16110000000000002
20,0.1708
21,0.1804
22,0.18905
23,0.1945
24,0.20535
25,0.21380000000000002
26,0.22030000000000002
27,0.2268
28,0.23745000000000002
29,0.24615
30,0.25165
31,0.26235
32,0.26985000000000003
33,0.27965
34,0.2862
35,0.29465
36,0.30345
37,0.313
38,0.31835
39,0.327
40,0.3367
41,0.34205
42,0.3539
43,0.35945
44,0.36805000000000004
45,0.37875000000000003
46,0.38725000000000004
47,0.39705
48,0.40230000000000005
49,0.41095000000000004
50,0.4207
51,0.42610000000000003
52,0.43360000000000004
53,0.44435
54,0.45195
55,0.46055
56,0.46805
57,0.4766
58,0.48425
59,0.4939
60,0.5014000000000001
61,0.51005
62,0.51875
63,0.5273
64,0.53705
65,0.54355
66,0.5511
67,0.5607
68,0.56815
69,0.5758
70,0.58435
71,0.5940000000000001
72,0.59955
73,0.60805
74,0.6157
75,0.6243500000000001
76,0.63395
77,0.64375
78,0.65005
79,0.6588
80,0.6674
81,0.6748500000000001
82,0.6845
83,0.69315
84,0.7028
85,0.7084
86,0.7180500000000001
87,0.72565
88,0.7362000000000001
89,0.7427
90,0.7492000000000001
91,0.75675
92,0.7654000000000001
93,0.77395
94,0.7848
95,0.7934
96,0.7987500000000001
97,0.8095
98,0.8169500000000001
99,0.8226
100,0.83745
101,0.8428
102,0.85155
103,0.8590500000000001
104,0.86765
105,0.8741
106,0.88175
107,0.8923500000000001
108,0.8989
109,0.9107000000000001
110,0.9172
111,0.9247000000000001
112,0.9324
113,0.9420000000000001
114,0.94845
115,0.96025
116,0.9690000000000001
117,0.97645
118,0.9839500000000001
119,0.9936
120,1.00015
121,1.0088000000000001
122,1.0141
123,1.0228000000000002
124,1.0314
125,1.04
126,1.0487
127,1.0573000000000001
128,1.06685
129,1.07545
130,1.08305
131,1.09165
132,1.09915
133,1.1079
134,1.11745
135,1.1261
136,1.1327
137,1.14125
138,1.1499000000000001
139,1.15955
140,1.16815
141,1.17475
142,1.1833
143,1.1908
144,1.1995
145,1.21115
146,1.2167000000000001
147,1.2274
148,1.2338
149,1.2404000000000002
150,1.2468000000000001
151,1.2564
152,1.2662
153,1.2781
154,1.28345
155,1.2930000000000001
156,1.29955
157,1.3082
158,1.31695
159,1.3264
160,1.33395
161,1.3404500000000001
162,1.34905
163,1.3578000000000001
164,1.36755
165,1.37715
166,1.38355
167,1.3943
168,1.4007500000000002
169,1.4073
170,1.4149
171,1.4266
172,1.4331500000000001
173,1.44275
174,1.4503000000000001
175,1.4568
176,1.4655
177,1.47515
178,1.48265
179,1.4956500000000001
180,1.5021
181,1.5075500000000002
182,1.51925
183,1.5246000000000002
184,1.53335
185,1.54295
186,1.54935
187,1.55915
188,1.5677
189,1.5753000000000001
190,1.5861500000000002
191,1.59155
192,1.60115
193,1.6087
194,1.6152
195,1.6238000000000001
196,1.6302
197,1.6421000000000001
198,1.6507
199,1.6593
200,1.6669500000000002
201,1.67645
202,1.68405
203,1.69065
204,1.697
205,1.70675
206,1.71645
207,1.72495
208,1.7357500000000001
209,1.7412
210,1.74865
211,1.75835
212,1.76485
213,1.77245
214,1.7821500000000001
215,1.7896
216,1.79715
217,1.808
218,1.8155000000000001
219,1.82305
220,1.8328
221,1.83905
222,1.8468
223,1.8541500000000002
224,1.8629
225,1.87145
226,1.8801
227,1.8898000000000001
228,1.8974000000000002
229,1.9082000000000001
230,1.91565
231,1.92205
232,1.9339000000000002
233,1.9413500000000001
234,1.9501000000000002
235,1.95985
236,1.9673500000000002
237,1.9738
238,1.9813500000000002
239,1.9879
240,1.9976
241,2.0051
242,2.0179
243,2.0243
244,2.03085
245,2.0395000000000003
246,2.04595
247,2.0556
248,2.06635
249,2.07505
250,2.0837
251,2.0901
252,2.0976
253,2.1031500000000003
254,2.11485
255,2.12365
256,2.13105
257,2.1418500000000003
258,2.1494500000000003
259,2.15585
260,2.1655
261,2.1742
262,2.1806
263,2.19135
264,2.20005
265,2.2075
266,2.21505
267,2.22165
268,2.23115
269,2.2377000000000002
270,2.25055
271,2.25595
272,2.2646
273,2.27435
274,2.28175
275,2.28825
276,2.299
277,2.3066
278,2.3153
279,2.32375
280,2.3335
281,2.34215
282,2.3507000000000002
283,2.3594
284,2.3648000000000002
285,2.37015
286,2.3819500000000002
287,2.3895500000000003
288,2.39915
289,2.4089
290,2.4177
291,2.424
292,2.4314500000000003
293,2.4402
294,2.44875
295,2.4542
296,2.4638500000000003
297,2.47255
298,2.479
299,2.4907
300,2.49735
301,2.5048
302,2.5124500000000003
303,2.5232
304,2.5296000000000003
305,2.5404
306,2.54785
307,2.5576000000000003
308,2.563
309,2.5715500000000002
310,2.5823
311,2.591
312,2.5974500000000003
313,2.605
314,2.6157500000000002
315,2.6233
316,2.6297
317,2.63945
318,2.64915
319,2.65455
320,2.6621
321,2.6717500000000003
322,2.6792000000000002
323,2.6858500000000003
324,2.69645
325,2.7041
326,2.7137000000000002
327,2.72345
328,2.7299
329,2.7396000000000003
330,2.7471
331,2.7558000000000002
332,2.7655000000000003
333,2.773
334,2.7805500000000003
335,2.787
336,2.79875
337,2.8053000000000003
338,2.8129
339,2.8204000000000002
340,2.83225
341,2.8388
342,2.8473
343,2.85585
344,2.8634500000000003
345,2.8699500000000002
346,2.8797
347,2.8871
348,2.8979
349,2.9045
350,2.9108
351,2.9216
352,2.9302
353,2.9367
354,2.9454000000000002
355,2.955
356,2.9647
357,2.9723
358,2.97865
359,2.9895
360,2.9981
361,3.00555
362,3.0132000000000003
363,3.0207
364,3.0282500000000003
365,3.03905
366,3.04545
367,3.0551500000000003
368,3.06375
369,3.0756
370,3.08205
371,3.08855
372,3.0972
373,3.1046500000000004
374,3.1133
375,3.121
376,3.1296500000000003
377,3.1370500000000003
378,3.14245
379,3.1542000000000003
380,3.1629500000000004
381,3.17145
382,3.1802
383,3.18765
384,3.1963500000000002
385,3.20695
386,3.21355
387,3.22095
388,3.22865
389,3.23725
390,3.2470000000000003
391,3.25435
392,3.2619000000000002
393,3.27265
394,3.27925
395,3.2888
396,3.29545
397,3.3028500000000003
398,3.3105
399,3.3191
400,3.3287500000000003
401,3.3384
402,3.34605
403,3.3577500000000002
404,3.3622
405,3.37075
406,3.37845
407,3.3868500000000004
408,3.3956
409,3.40315
410,3.4148500000000004
411,3.4213
412,3.42775
413,3.4365
414,3.44395
415,3.4526000000000003
416,3.4612000000000003
417,3.4678
418,3.47955
419,3.48705
420,3.4945500000000003
421,3.5021500000000003
422,3.5097500000000004
423,3.5173
424,3.5281000000000002
425,3.5366
426,3.5473000000000003
427,3.55375
428,3.5614000000000003
429,3.5701
430,3.5764500000000004
431,3.5863
432,3.59585
433,3.60325
434,3.6109
435,3.6206500000000004
436,3.6271500000000003
437,3.6368
438,3.6443000000000003
439,3.6509
440,3.6627
441,3.6691000000000003
442,3.6766
443,3.6863
444,3.69495
445,3.7014500000000004
446,3.71105
447,3.7207500000000002
448,3.7273500000000004
449,3.738
450,3.7445500000000003
451,3.7510000000000003
452,3.7607000000000004
453,3.7671
454,3.7790000000000004
455,3.7865
456,3.793
457,3.80155
458,3.81015
459,3.8199500000000004
460,3.8264500000000004
461,3.8360000000000003
462,3.8425000000000002
463,3.85
464,3.8607500000000003
465,3.8704500000000004
466,3.8781000000000003
467,3.8855500000000003
468,3.8920000000000003
469,3.8986
470,3.9115
471,3.91785
472,3.9255500000000003
473,3.9352
474,3.9427000000000003
475,3.95135
476,3.9579
477,3.96735
478,3.97505
479,3.9848500000000002
480,3.99345
481,4.0020500000000006
482,4.0084
483,4.017
484,4.0245500000000005
485,4.03535
486,4.042800000000001
487,4.0515
488,4.06005
489,4.0676000000000005
490,4.076350000000001
491,4.0828500000000005
492,4.0902
493,4.0988
494,4.10855
495,4.1171
496,4.1269
497,4.1355
498,4.1419500000000005
499,4.1484000000000005
500,4.1571
501,4.1668
502,4.17535
503,4.183
504,4.19255
505,4.2012
506,4.2086500000000004
507,4.2153
508,4.2249
509,4.23345
510,4.24105
511,4.2507
512,4.261550000000001
513,4.2658000000000005
514,4.274500000000001
515,4.28195
516,4.28945
517,4.2970500000000005
518,4.3078
519,4.31425
520,4.325
521,4.3326
522,4.3401000000000005
523,4.347700000000001
524,4.3563
525,4.364850000000001
526,4.3745
527,4.38005
528,4.3896500000000005
529,4.3994
530,4.4058
531,4.41445
532,4.4262500000000005
533,4.433800000000001
534,4.44245
535,4.4498500000000005
536,4.4555
537,4.46405
538,4.471550000000001
539,4.4801
540,4.48865
541,4.4963500000000005
542,4.50595
543,4.5156
544,4.5233
545,4.53185
546,4.5394000000000005
547,4.548
548,4.556500000000001
549,4.56205
550,4.5717
551,4.5814
552,4.588900000000001
553,4.599600000000001
554,4.6061000000000005
555,4.615950000000001
556,4.62235
557,4.6309000000000005
558,4.6407
559,4.647
560,4.657900000000001
561,4.66535
562,4.6729
563,4.6805
564,4.6901
565,4.69775
566,4.7053
567,4.71495
568,4.7214
569,4.7333
570,4.73865
571,4.75045
572,4.75795
573,4.76455
574,4.7731
575,4.7796
576,4.7914
577,4.79785
578,4.8044
579,4.81525
580,4.823650000000001
581,4.8322
582,4.8420000000000005
583,4.84745
584,4.85705
585,4.8657
586,4.874350000000001
587,4.882000000000001
588,4.8915500000000005
589,4.90015
590,4.9057
591,4.9131
592,4.92495
593,4.93045
594,4.9358
595,4.94765
596,4.955
597,4.96375
598,4.9723500000000005
599,4.98195
600,4.98845
601,4.99815
602,5.005850000000001
603,5.0142500000000005
604,5.0198
605,5.029450000000001
606,5.041300000000001
607,5.04885
608,5.0563
609,5.0629
610,5.072550000000001
611,5.0801
612,5.08975
613,5.0994
614,5.10485
615,5.11345
616,5.1221000000000005
617,5.1296
618,5.1392500000000005
619,5.15
620,5.1575500000000005
621,5.16395
622,5.17265
623,5.18025
624,5.18885
625,5.1963
626,5.208200000000001
627,5.2137
628,5.22435
629,5.232950000000001
630,5.2405
631,5.24805
632,5.25675
633,5.26435
634,5.27175
635,5.282500000000001
636,5.289000000000001
637,5.29565
638,5.30305
639,5.3127
640,5.32035
641,5.331
642,5.33865
643,5.34825
644,5.355700000000001
645,5.363300000000001
646,5.3751500000000005
647,5.3805000000000005
648,5.38815
649,5.3978
650,5.4064000000000005
651,5.41185
652,5.4247000000000005
653,5.43105
654,5.43755
655,5.4441500000000005
656,5.4528
657,5.4603
658,5.4731000000000005
659,5.47865
660,5.4893
661,5.498950000000001
662,5.5055000000000005
663,5.5131000000000006
664,5.52165
665,5.52925
666,5.5368
667,5.54645
668,5.55395
669,5.562600000000001
670,5.57225
671,5.580900000000001
672,5.586250000000001
673,5.59485
674,5.6036
675,5.612150000000001
676,5.6208
677,5.6293500000000005
678,5.638050000000001
679,5.6444
680,5.6541500000000005
681,5.6639
682,5.67025
683,5.6799
684,5.6886
685,5.69725
686,5.708
687,5.716550000000001
688,5.72205
689,5.7306
690,5.7392
691,5.7467500000000005
692,5.754300000000001
693,5.7629
694,5.771450000000001
695,5.78015
696,5.7876
697,5.7964
698,5.80395
699,5.810350000000001
700,5.8210500000000005
701,5.8297
702,5.8415
703,5.85015
704,5.8577
705,5.86625
706,5.871700000000001
707,5.88035
708,5.889950000000001
709,5.8955
710,5.9051
711,5.9136500000000005
712,5.9234
713,5.93095
714,5.939500000000001
715,5.947150000000001
716,5.9536500000000006
717,5.9643500000000005
718,5.97085
719,5.9794
720,5.9881
721,5.9977
1,0.0146
2,0.024200000000000003
3,0.0307
4,0.0426
5,0.05015
6,0.058800000000000005
7,0.06520000000000001
8,0.07385
9,0.08355
10,0.09115000000000001
11,0.0965
12,0.1073
13,0.11585000000000001
14,0.12340000000000001
15,0.13090000000000002
16,0.1395
17,0.1492
18,0.15565
19,0.16540000000000002
20,0.1729
21,0.18155000000000002
22,0.1892
23,0.19890000000000002
24,0.20625000000000002
25,0.21285
26,0.2247
27,0.2343
28,0.24195
29,0.25155
30,0.25705
31,0.26555
32,0.2742
33,0.28285
34,0.29150000000000004
35,0.29785
36,0.30645
37,0.3173
38,0.32375000000000004
39,0.33340000000000003
40,0.34205
41,0.34955
42,0.3592
43,0.3668
44,0.37325
45,0.3819
46,0.3916
47,0.397
48,0.40775
49,0.41415
50,0.42410000000000003
51,0.4304
52,0.439
53,0.4455
54,0.4541
55,0.46595000000000003
56,0.4766
57,0.48310000000000003
58,0.48865000000000003
59,0.49605000000000005
60,0.50785
61,0.51335
62,0.52085
63,0.52735
64,0.54015
65,0.5466500000000001
66,0.55535
67,0.5650000000000001
68,0.5715
69,0.5790000000000001
70,0.58865
71,0.5982500000000001
72,0.6049
73,0.61245
74,0.61885
75,0.63065
76,0.6403
77,0.64685
78,0.6565000000000001
79,0.6641
80,0.67055
81,0.6792
82,0.68665
83,0.69755
84,0.7039500000000001
85,0.7105
86,0.7201000000000001
87,0.72985
88,0.7374
89,0.7472000000000001
90,0.75455
91,0.7621
92,0.7728
93,0.7794000000000001
94,0.78805
95,0.7987000000000001
96,0.80615
97,0.8138500000000001
98,0.8224
99,0.8289500000000001
100,0.8398
101,0.8461000000000001
102,0.8526
103,0.8611500000000001
104,0.8732000000000001
105,0.88055
106,0.88805
107,0.89675
108,0.9064000000000001
109,0.9119
110,0.9205000000000001
111,0.9322
112,0.9376500000000001
113,0.9453
114,0.9538000000000001
115,0.9635
116,0.9731500000000001
117,0.98085
118,0.9892500000000001
119,0.9969
120,1.00335
121,1.01515
122,1.02165
123,1.03025
124,1.03675
125,1.0455
126,1.0561
127,1.06365
128,1.07335
129,1.0799
130,1.08735
131,1.09605
132,1.1046500000000001
133,1.1132
134,1.1241
135,1.1294
136,1.1359000000000001
137,1.1487500000000002
138,1.1563
139,1.1648500000000002
140,1.1724
141,1.1811
142,1.18855
143,1.1961000000000002
144,1.20485
145,1.2134
146,1.21985
147,1.2317
148,1.23825
149,1.24685
150,1.25425
151,1.2640500000000001
152,1.2705
153,1.27705
154,1.2866
155,1.29535
156,1.3039500000000002
157,1.31355
158,1.3221
159,1.3309
160,1.3404500000000001
161,1.35115
162,1.35565
163,1.361
164,1.3728
165,1.3793
166,1.3869
167,1.39755
168,1.4051500000000001
169,1.4137000000000002
170,1.42015
171,1.4299000000000002
172,1.4374
173,1.4460000000000002
174,1.45675
175,1.4654
176,1.47185
177,1.4794
178,1.488
179,1.4955
180,1.5031
181,1.51495
182,1.52265
183,1.5301
184,1.5397500000000002
185,1.5462
186,1.55495
187,1.56345
188,1.5710000000000002
189,1.5785500000000001
190,1.586
191,1.5946500000000001
192,1.6044
193,1.6108500000000001
194,1.6184
195,1.62905
196,1.6387500000000002
197,1.64735
198,1.6561000000000001
199,1.6646500000000002
200,1.6701000000000001
201,1.6809
202,1.6863000000000001
203,1.6949
204,1.7035500000000001
205,1.71205
206,1.7217500000000001
207,1.72825
208,1.73685
209,1.7454500000000002
210,1.7561
211,1.7637500000000002
212,1.7723
213,1.7788000000000002
214,1.78745
215,1.7961
216,1.80695
217,1.8123500000000001
218,1.8199500000000002
219,1.8263
220,1.8348
221,1.8466500000000001
222,1.8564
223,1.8639000000000001
224,1.8704
225,1.8791
226,1.8856000000000002
227,1.8963
228,1.9037000000000002
229,1.9124
230,1.9200000000000002
231,1.92855
232,1.9372
233,1.94575
234,1.9534500000000001
235,1.9619000000000002
236,1.9717
237,1.98025
238,1.9888000000000001
239,1.9965000000000002

1 spikes
2 0 0.00395
3 1 0.013600000000000001 0.0146
4 2 0.0211 0.024200000000000003
5 3 0.0287 0.0307
6 4 0.03725 0.0426
7 5 0.0448 0.05015
8 6 0.054400000000000004 0.058800000000000005
9 7 0.061950000000000005 0.06520000000000001
10 8 0.06845 0.07385
11 9 0.07815 0.08355
12 10 0.08785 0.09115000000000001
13 11 0.09435 0.0965
14 12 0.1029 0.1073
15 13 0.11265 0.11585000000000001
16 14 0.11915 0.12340000000000001
17 15 0.12765 0.13090000000000002
18 16 0.1374 0.1395
19 17 0.14495 0.1492
20 18 0.1514 0.15565
21 19 0.16110000000000002 0.16540000000000002
22 20 0.1708 0.1729
23 21 0.1804 0.18155000000000002
24 22 0.18905 0.1892
25 23 0.1945 0.19890000000000002
26 24 0.20535 0.20625000000000002
27 25 0.21380000000000002 0.21285
28 26 0.22030000000000002 0.2247
29 27 0.2268 0.2343
30 28 0.23745000000000002 0.24195
31 29 0.24615 0.25155
32 30 0.25165 0.25705
33 31 0.26235 0.26555
34 32 0.26985000000000003 0.2742
35 33 0.27965 0.28285
36 34 0.2862 0.29150000000000004
37 35 0.29465 0.29785
38 36 0.30345 0.30645
39 37 0.313 0.3173
40 38 0.31835 0.32375000000000004
41 39 0.327 0.33340000000000003
42 40 0.3367 0.34205
43 41 0.34205 0.34955
44 42 0.3539 0.3592
45 43 0.35945 0.3668
46 44 0.36805000000000004 0.37325
47 45 0.37875000000000003 0.3819
48 46 0.38725000000000004 0.3916
49 47 0.39705 0.397
50 48 0.40230000000000005 0.40775
51 49 0.41095000000000004 0.41415
52 50 0.4207 0.42410000000000003
53 51 0.42610000000000003 0.4304
54 52 0.43360000000000004 0.439
55 53 0.44435 0.4455
56 54 0.45195 0.4541
57 55 0.46055 0.46595000000000003
58 56 0.46805 0.4766
59 57 0.4766 0.48310000000000003
60 58 0.48425 0.48865000000000003
61 59 0.4939 0.49605000000000005
62 60 0.5014000000000001 0.50785
63 61 0.51005 0.51335
64 62 0.51875 0.52085
65 63 0.5273 0.52735
66 64 0.53705 0.54015
67 65 0.54355 0.5466500000000001
68 66 0.5511 0.55535
69 67 0.5607 0.5650000000000001
70 68 0.56815 0.5715
71 69 0.5758 0.5790000000000001
72 70 0.58435 0.58865
73 71 0.5940000000000001 0.5982500000000001
74 72 0.59955 0.6049
75 73 0.60805 0.61245
76 74 0.6157 0.61885
77 75 0.6243500000000001 0.63065
78 76 0.63395 0.6403
79 77 0.64375 0.64685
80 78 0.65005 0.6565000000000001
81 79 0.6588 0.6641
82 80 0.6674 0.67055
83 81 0.6748500000000001 0.6792
84 82 0.6845 0.68665
85 83 0.69315 0.69755
86 84 0.7028 0.7039500000000001
87 85 0.7084 0.7105
88 86 0.7180500000000001 0.7201000000000001
89 87 0.72565 0.72985
90 88 0.7362000000000001 0.7374
91 89 0.7427 0.7472000000000001
92 90 0.7492000000000001 0.75455
93 91 0.75675 0.7621
94 92 0.7654000000000001 0.7728
95 93 0.77395 0.7794000000000001
96 94 0.7848 0.78805
97 95 0.7934 0.7987000000000001
98 96 0.7987500000000001 0.80615
99 97 0.8095 0.8138500000000001
100 98 0.8169500000000001 0.8224
101 99 0.8226 0.8289500000000001
102 100 0.83745 0.8398
103 101 0.8428 0.8461000000000001
104 102 0.85155 0.8526
105 103 0.8590500000000001 0.8611500000000001
106 104 0.86765 0.8732000000000001
107 105 0.8741 0.88055
108 106 0.88175 0.88805
109 107 0.8923500000000001 0.89675
110 108 0.8989 0.9064000000000001
111 109 0.9107000000000001 0.9119
112 110 0.9172 0.9205000000000001
113 111 0.9247000000000001 0.9322
114 112 0.9324 0.9376500000000001
115 113 0.9420000000000001 0.9453
116 114 0.94845 0.9538000000000001
117 115 0.96025 0.9635
118 116 0.9690000000000001 0.9731500000000001
119 117 0.97645 0.98085
120 118 0.9839500000000001 0.9892500000000001
121 119 0.9936 0.9969
122 120 1.00015 1.00335
123 121 1.0088000000000001 1.01515
124 122 1.0141 1.02165
125 123 1.0228000000000002 1.03025
126 124 1.0314 1.03675
127 125 1.04 1.0455
128 126 1.0487 1.0561
129 127 1.0573000000000001 1.06365
130 128 1.06685 1.07335
131 129 1.07545 1.0799
132 130 1.08305 1.08735
133 131 1.09165 1.09605
134 132 1.09915 1.1046500000000001
135 133 1.1079 1.1132
136 134 1.11745 1.1241
137 135 1.1261 1.1294
138 136 1.1327 1.1359000000000001
139 137 1.14125 1.1487500000000002
140 138 1.1499000000000001 1.1563
141 139 1.15955 1.1648500000000002
142 140 1.16815 1.1724
143 141 1.17475 1.1811
144 142 1.1833 1.18855
145 143 1.1908 1.1961000000000002
146 144 1.1995 1.20485
147 145 1.21115 1.2134
148 146 1.2167000000000001 1.21985
149 147 1.2274 1.2317
150 148 1.2338 1.23825
151 149 1.2404000000000002 1.24685
152 150 1.2468000000000001 1.25425
153 151 1.2564 1.2640500000000001
154 152 1.2662 1.2705
155 153 1.2781 1.27705
156 154 1.28345 1.2866
157 155 1.2930000000000001 1.29535
158 156 1.29955 1.3039500000000002
159 157 1.3082 1.31355
160 158 1.31695 1.3221
161 159 1.3264 1.3309
162 160 1.33395 1.3404500000000001
163 161 1.3404500000000001 1.35115
164 162 1.34905 1.35565
165 163 1.3578000000000001 1.361
166 164 1.36755 1.3728
167 165 1.37715 1.3793
168 166 1.38355 1.3869
169 167 1.3943 1.39755
170 168 1.4007500000000002 1.4051500000000001
171 169 1.4073 1.4137000000000002
172 170 1.4149 1.42015
173 171 1.4266 1.4299000000000002
174 172 1.4331500000000001 1.4374
175 173 1.44275 1.4460000000000002
176 174 1.4503000000000001 1.45675
177 175 1.4568 1.4654
178 176 1.4655 1.47185
179 177 1.47515 1.4794
180 178 1.48265 1.488
181 179 1.4956500000000001 1.4955
182 180 1.5021 1.5031
183 181 1.5075500000000002 1.51495
184 182 1.51925 1.52265
185 183 1.5246000000000002 1.5301
186 184 1.53335 1.5397500000000002
187 185 1.54295 1.5462
188 186 1.54935 1.55495
189 187 1.55915 1.56345
190 188 1.5677 1.5710000000000002
191 189 1.5753000000000001 1.5785500000000001
192 190 1.5861500000000002 1.586
193 191 1.59155 1.5946500000000001
194 192 1.60115 1.6044
195 193 1.6087 1.6108500000000001
196 194 1.6152 1.6184
197 195 1.6238000000000001 1.62905
198 196 1.6302 1.6387500000000002
199 197 1.6421000000000001 1.64735
200 198 1.6507 1.6561000000000001
201 199 1.6593 1.6646500000000002
202 200 1.6669500000000002 1.6701000000000001
203 201 1.67645 1.6809
204 202 1.68405 1.6863000000000001
205 203 1.69065 1.6949
206 204 1.697 1.7035500000000001
207 205 1.70675 1.71205
208 206 1.71645 1.7217500000000001
209 207 1.72495 1.72825
210 208 1.7357500000000001 1.73685
211 209 1.7412 1.7454500000000002
212 210 1.74865 1.7561
213 211 1.75835 1.7637500000000002
214 212 1.76485 1.7723
215 213 1.77245 1.7788000000000002
216 214 1.7821500000000001 1.78745
217 215 1.7896 1.7961
218 216 1.79715 1.80695
219 217 1.808 1.8123500000000001
220 218 1.8155000000000001 1.8199500000000002
221 219 1.82305 1.8263
222 220 1.8328 1.8348
223 221 1.83905 1.8466500000000001
224 222 1.8468 1.8564
225 223 1.8541500000000002 1.8639000000000001
226 224 1.8629 1.8704
227 225 1.87145 1.8791
228 226 1.8801 1.8856000000000002
229 227 1.8898000000000001 1.8963
230 228 1.8974000000000002 1.9037000000000002
231 229 1.9082000000000001 1.9124
232 230 1.91565 1.9200000000000002
233 231 1.92205 1.92855
234 232 1.9339000000000002 1.9372
235 233 1.9413500000000001 1.94575
236 234 1.9501000000000002 1.9534500000000001
237 235 1.95985 1.9619000000000002
238 236 1.9673500000000002 1.9717
239 237 1.9738 1.98025
240 238 1.9813500000000002 1.9888000000000001
241 239 1.9879 1.9965000000000002
240 1.9976
241 2.0051
242 2.0179
243 2.0243
244 2.03085
245 2.0395000000000003
246 2.04595
247 2.0556
248 2.06635
249 2.07505
250 2.0837
251 2.0901
252 2.0976
253 2.1031500000000003
254 2.11485
255 2.12365
256 2.13105
257 2.1418500000000003
258 2.1494500000000003
259 2.15585
260 2.1655
261 2.1742
262 2.1806
263 2.19135
264 2.20005
265 2.2075
266 2.21505
267 2.22165
268 2.23115
269 2.2377000000000002
270 2.25055
271 2.25595
272 2.2646
273 2.27435
274 2.28175
275 2.28825
276 2.299
277 2.3066
278 2.3153
279 2.32375
280 2.3335
281 2.34215
282 2.3507000000000002
283 2.3594
284 2.3648000000000002
285 2.37015
286 2.3819500000000002
287 2.3895500000000003
288 2.39915
289 2.4089
290 2.4177
291 2.424
292 2.4314500000000003
293 2.4402
294 2.44875
295 2.4542
296 2.4638500000000003
297 2.47255
298 2.479
299 2.4907
300 2.49735
301 2.5048
302 2.5124500000000003
303 2.5232
304 2.5296000000000003
305 2.5404
306 2.54785
307 2.5576000000000003
308 2.563
309 2.5715500000000002
310 2.5823
311 2.591
312 2.5974500000000003
313 2.605
314 2.6157500000000002
315 2.6233
316 2.6297
317 2.63945
318 2.64915
319 2.65455
320 2.6621
321 2.6717500000000003
322 2.6792000000000002
323 2.6858500000000003
324 2.69645
325 2.7041
326 2.7137000000000002
327 2.72345
328 2.7299
329 2.7396000000000003
330 2.7471
331 2.7558000000000002
332 2.7655000000000003
333 2.773
334 2.7805500000000003
335 2.787
336 2.79875
337 2.8053000000000003
338 2.8129
339 2.8204000000000002
340 2.83225
341 2.8388
342 2.8473
343 2.85585
344 2.8634500000000003
345 2.8699500000000002
346 2.8797
347 2.8871
348 2.8979
349 2.9045
350 2.9108
351 2.9216
352 2.9302
353 2.9367
354 2.9454000000000002
355 2.955
356 2.9647
357 2.9723
358 2.97865
359 2.9895
360 2.9981
361 3.00555
362 3.0132000000000003
363 3.0207
364 3.0282500000000003
365 3.03905
366 3.04545
367 3.0551500000000003
368 3.06375
369 3.0756
370 3.08205
371 3.08855
372 3.0972
373 3.1046500000000004
374 3.1133
375 3.121
376 3.1296500000000003
377 3.1370500000000003
378 3.14245
379 3.1542000000000003
380 3.1629500000000004
381 3.17145
382 3.1802
383 3.18765
384 3.1963500000000002
385 3.20695
386 3.21355
387 3.22095
388 3.22865
389 3.23725
390 3.2470000000000003
391 3.25435
392 3.2619000000000002
393 3.27265
394 3.27925
395 3.2888
396 3.29545
397 3.3028500000000003
398 3.3105
399 3.3191
400 3.3287500000000003
401 3.3384
402 3.34605
403 3.3577500000000002
404 3.3622
405 3.37075
406 3.37845
407 3.3868500000000004
408 3.3956
409 3.40315
410 3.4148500000000004
411 3.4213
412 3.42775
413 3.4365
414 3.44395
415 3.4526000000000003
416 3.4612000000000003
417 3.4678
418 3.47955
419 3.48705
420 3.4945500000000003
421 3.5021500000000003
422 3.5097500000000004
423 3.5173
424 3.5281000000000002
425 3.5366
426 3.5473000000000003
427 3.55375
428 3.5614000000000003
429 3.5701
430 3.5764500000000004
431 3.5863
432 3.59585
433 3.60325
434 3.6109
435 3.6206500000000004
436 3.6271500000000003
437 3.6368
438 3.6443000000000003
439 3.6509
440 3.6627
441 3.6691000000000003
442 3.6766
443 3.6863
444 3.69495
445 3.7014500000000004
446 3.71105
447 3.7207500000000002
448 3.7273500000000004
449 3.738
450 3.7445500000000003
451 3.7510000000000003
452 3.7607000000000004
453 3.7671
454 3.7790000000000004
455 3.7865
456 3.793
457 3.80155
458 3.81015
459 3.8199500000000004
460 3.8264500000000004
461 3.8360000000000003
462 3.8425000000000002
463 3.85
464 3.8607500000000003
465 3.8704500000000004
466 3.8781000000000003
467 3.8855500000000003
468 3.8920000000000003
469 3.8986
470 3.9115
471 3.91785
472 3.9255500000000003
473 3.9352
474 3.9427000000000003
475 3.95135
476 3.9579
477 3.96735
478 3.97505
479 3.9848500000000002
480 3.99345
481 4.0020500000000006
482 4.0084
483 4.017
484 4.0245500000000005
485 4.03535
486 4.042800000000001
487 4.0515
488 4.06005
489 4.0676000000000005
490 4.076350000000001
491 4.0828500000000005
492 4.0902
493 4.0988
494 4.10855
495 4.1171
496 4.1269
497 4.1355
498 4.1419500000000005
499 4.1484000000000005
500 4.1571
501 4.1668
502 4.17535
503 4.183
504 4.19255
505 4.2012
506 4.2086500000000004
507 4.2153
508 4.2249
509 4.23345
510 4.24105
511 4.2507
512 4.261550000000001
513 4.2658000000000005
514 4.274500000000001
515 4.28195
516 4.28945
517 4.2970500000000005
518 4.3078
519 4.31425
520 4.325
521 4.3326
522 4.3401000000000005
523 4.347700000000001
524 4.3563
525 4.364850000000001
526 4.3745
527 4.38005
528 4.3896500000000005
529 4.3994
530 4.4058
531 4.41445
532 4.4262500000000005
533 4.433800000000001
534 4.44245
535 4.4498500000000005
536 4.4555
537 4.46405
538 4.471550000000001
539 4.4801
540 4.48865
541 4.4963500000000005
542 4.50595
543 4.5156
544 4.5233
545 4.53185
546 4.5394000000000005
547 4.548
548 4.556500000000001
549 4.56205
550 4.5717
551 4.5814
552 4.588900000000001
553 4.599600000000001
554 4.6061000000000005
555 4.615950000000001
556 4.62235
557 4.6309000000000005
558 4.6407
559 4.647
560 4.657900000000001
561 4.66535
562 4.6729
563 4.6805
564 4.6901
565 4.69775
566 4.7053
567 4.71495
568 4.7214
569 4.7333
570 4.73865
571 4.75045
572 4.75795
573 4.76455
574 4.7731
575 4.7796
576 4.7914
577 4.79785
578 4.8044
579 4.81525
580 4.823650000000001
581 4.8322
582 4.8420000000000005
583 4.84745
584 4.85705
585 4.8657
586 4.874350000000001
587 4.882000000000001
588 4.8915500000000005
589 4.90015
590 4.9057
591 4.9131
592 4.92495
593 4.93045
594 4.9358
595 4.94765
596 4.955
597 4.96375
598 4.9723500000000005
599 4.98195
600 4.98845
601 4.99815
602 5.005850000000001
603 5.0142500000000005
604 5.0198
605 5.029450000000001
606 5.041300000000001
607 5.04885
608 5.0563
609 5.0629
610 5.072550000000001
611 5.0801
612 5.08975
613 5.0994
614 5.10485
615 5.11345
616 5.1221000000000005
617 5.1296
618 5.1392500000000005
619 5.15
620 5.1575500000000005
621 5.16395
622 5.17265
623 5.18025
624 5.18885
625 5.1963
626 5.208200000000001
627 5.2137
628 5.22435
629 5.232950000000001
630 5.2405
631 5.24805
632 5.25675
633 5.26435
634 5.27175
635 5.282500000000001
636 5.289000000000001
637 5.29565
638 5.30305
639 5.3127
640 5.32035
641 5.331
642 5.33865
643 5.34825
644 5.355700000000001
645 5.363300000000001
646 5.3751500000000005
647 5.3805000000000005
648 5.38815
649 5.3978
650 5.4064000000000005
651 5.41185
652 5.4247000000000005
653 5.43105
654 5.43755
655 5.4441500000000005
656 5.4528
657 5.4603
658 5.4731000000000005
659 5.47865
660 5.4893
661 5.498950000000001
662 5.5055000000000005
663 5.5131000000000006
664 5.52165
665 5.52925
666 5.5368
667 5.54645
668 5.55395
669 5.562600000000001
670 5.57225
671 5.580900000000001
672 5.586250000000001
673 5.59485
674 5.6036
675 5.612150000000001
676 5.6208
677 5.6293500000000005
678 5.638050000000001
679 5.6444
680 5.6541500000000005
681 5.6639
682 5.67025
683 5.6799
684 5.6886
685 5.69725
686 5.708
687 5.716550000000001
688 5.72205
689 5.7306
690 5.7392
691 5.7467500000000005
692 5.754300000000001
693 5.7629
694 5.771450000000001
695 5.78015
696 5.7876
697 5.7964
698 5.80395
699 5.810350000000001
700 5.8210500000000005
701 5.8297
702 5.8415
703 5.85015
704 5.8577
705 5.86625
706 5.871700000000001
707 5.88035
708 5.889950000000001
709 5.8955
710 5.9051
711 5.9136500000000005
712 5.9234
713 5.93095
714 5.939500000000001
715 5.947150000000001
716 5.9536500000000006
717 5.9643500000000005
718 5.97085
719 5.9794
720 5.9881
721 5.9977

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,723 @@
,spikes
0,0.0027
1,0.01135
2,0.015600000000000001
3,0.0275
4,0.03715
5,0.04705
6,0.051300000000000005
7,0.058800000000000005
8,0.06635
9,0.08255
10,0.0889
11,0.0921
12,0.09965
13,0.10940000000000001
14,0.11795
15,0.12665
16,0.1321
17,0.14055
18,0.15130000000000002
19,0.16535
20,0.1719
21,0.17945
22,0.18380000000000002
23,0.1923
24,0.20205
25,0.21065
26,0.21495
27,0.2247
28,0.23105
29,0.24195
30,0.25485
31,0.259
32,0.26555
33,0.27640000000000003
34,0.2828
35,0.2904
36,0.3064
37,0.31070000000000003
38,0.31515000000000004
39,0.32595
40,0.3345
41,0.33985000000000004
42,0.34950000000000003
43,0.35600000000000004
44,0.36575
45,0.37655
46,0.38830000000000003
47,0.3937
48,0.3991
49,0.40990000000000004
50,0.42075
51,0.43045
52,0.43670000000000003
53,0.4476
54,0.45085000000000003
55,0.45835000000000004
56,0.46590000000000004
57,0.4701
58,0.48210000000000003
59,0.48965000000000003
60,0.49920000000000003
61,0.51005
62,0.5165500000000001
63,0.53045
64,0.53385
65,0.5478000000000001
66,0.5542
67,0.55745
68,0.5639000000000001
69,0.5790000000000001
70,0.59185
71,0.5983
72,0.60375
73,0.60905
74,0.6157
75,0.62
76,0.63295
77,0.6446500000000001
78,0.6565500000000001
79,0.6607500000000001
80,0.66835
81,0.6749
82,0.6813
83,0.6921
84,0.69965
85,0.7104
86,0.71465
87,0.7341000000000001
88,0.7384000000000001
89,0.74495
90,0.7524500000000001
91,0.7568
92,0.7728
93,0.78035
94,0.7868
95,0.7911
96,0.802
97,0.8148000000000001
98,0.82125
99,0.8289500000000001
100,0.83425
101,0.83855
102,0.85475
103,0.8698
104,0.8752000000000001
105,0.8805000000000001
106,0.88485
107,0.8892
108,0.90315
109,0.9118
110,0.9203
111,0.9257500000000001
112,0.9397000000000001
113,0.9441
114,0.95055
115,0.96245
116,0.9678500000000001
117,0.9764
118,0.9872500000000001
119,0.99255
120,1.00235
121,1.0119
122,1.0162
123,1.02705
124,1.03675
125,1.0475
126,1.05185
127,1.05935
128,1.0669
129,1.08305
130,1.0894000000000001
131,1.09275
132,1.0992
133,1.11
134,1.11755
135,1.1262
136,1.13255
137,1.14015
138,1.14455
139,1.1531
140,1.16605
141,1.1757
142,1.1831500000000001
143,1.19085
144,1.2005000000000001
145,1.2102000000000002
146,1.21445
147,1.2199
148,1.2295500000000001
149,1.2424
150,1.25115
151,1.2575
152,1.26505
153,1.27485
154,1.2823
155,1.29085
156,1.3028
157,1.3081500000000001
158,1.3136
159,1.3264
160,1.334
161,1.33935
162,1.3491
163,1.35555
164,1.3652
165,1.3739000000000001
166,1.3847
167,1.3932
168,1.3986
169,1.41045
170,1.4211500000000001
171,1.42995
172,1.43625
173,1.4471500000000002
174,1.45035
175,1.45785
176,1.4655
177,1.4696500000000001
178,1.4752
179,1.4881
180,1.4988000000000001
181,1.5095500000000002
182,1.5161
183,1.5300500000000001
184,1.53335
185,1.5482500000000001
186,1.55375
187,1.55705
188,1.5634000000000001
189,1.5785500000000001
190,1.5914000000000001
191,1.5969
192,1.6023
193,1.6086
194,1.6162
195,1.6206
196,1.6334000000000002
197,1.6442
198,1.6570500000000001
199,1.6604
200,1.6689
201,1.6744
202,1.67985
203,1.6926
204,1.70025
205,1.70995
206,1.71415
207,1.73465
208,1.739
209,1.7454500000000002
210,1.7541
211,1.76055
212,1.77245
213,1.7799
214,1.7864
215,1.7907000000000002
216,1.80255
217,1.8144
218,1.82095
219,1.82945
220,1.8348
221,1.8392000000000002
222,1.85105
223,1.86935
224,1.8747
225,1.88105
226,1.88535
227,1.8888
228,1.9027
229,1.91135
230,1.91985
231,1.9253500000000001
232,1.9393
233,1.9436
234,1.9511
235,1.9629500000000002
236,1.9684000000000001
237,1.97595
238,1.98675
239,1.99215
240,2.00395
241,2.0157000000000003
242,2.0191
243,2.02975
244,2.0374
245,2.0471
246,2.0545
247,2.06205
248,2.0728500000000003
249,2.07835
250,2.0837
251,2.0911500000000003
252,2.1074
253,2.1127000000000002
254,2.11925
255,2.12895
256,2.1343
257,2.145
258,2.15265
259,2.1612
260,2.1655
261,2.1719500000000003
262,2.18385
263,2.19245
264,2.2011000000000003
265,2.2096
266,2.2182500000000003
267,2.22375
268,2.23985
269,2.2441
270,2.2538
271,2.2614
272,2.2689
273,2.2744
274,2.28295
275,2.2904
276,2.2990500000000003
277,2.31415
278,2.3228
279,2.32715
280,2.3388500000000003
281,2.3465000000000003
282,2.35605
283,2.3625000000000003
284,2.369
285,2.37555
286,2.3809
287,2.39275
288,2.3992
289,2.4036500000000003
290,2.4219500000000003
291,2.4273000000000002
292,2.4337
293,2.4423
294,2.4477
295,2.46055
296,2.4659500000000003
297,2.47345
298,2.4865500000000003
299,2.4907500000000002
300,2.5004
301,2.50685
302,2.5198
303,2.5284
304,2.53275
305,2.5391500000000002
306,2.5543
307,2.5587500000000003
308,2.5672
309,2.5779
310,2.5867500000000003
311,2.5930500000000003
312,2.6017
313,2.6071500000000003
314,2.62215
315,2.63085
316,2.6352
317,2.6405000000000003
318,2.65235
319,2.6621
320,2.6673500000000003
321,2.6803500000000002
322,2.68465
323,2.69535
324,2.705
325,2.70945
326,2.71375
327,2.7277500000000003
328,2.7331000000000003
329,2.74275
330,2.74825
331,2.7590500000000002
332,2.76865
333,2.78155
334,2.7858
335,2.7923
336,2.79995
337,2.8054
338,2.8160000000000003
339,2.8247500000000003
340,2.8375500000000002
341,2.84505
342,2.8494
343,2.8538
344,2.8676500000000003
345,2.87955
346,2.8904
347,2.8946
348,2.9033
349,2.9076
350,2.91725
351,2.9292000000000002
352,2.93875
353,2.94965
354,2.9571
355,2.96355
356,2.9691
357,2.9798
358,2.9916
359,2.99695
360,3.00665
361,3.01315
362,3.0208
363,3.0303
364,3.0368500000000003
365,3.0509
366,3.05635
367,3.0649
368,3.0713000000000004
369,3.0788
370,3.0875000000000004
371,3.09605
372,3.1014500000000003
373,3.1197500000000002
374,3.12405
375,3.12955
376,3.13485
377,3.1435500000000003
378,3.1510000000000002
379,3.15965
380,3.1661
381,3.1769000000000003
382,3.1823
383,3.194
384,3.20805
385,3.21245
386,3.2199
387,3.2340500000000003
388,3.2373000000000003
389,3.2415000000000003
390,3.25545
391,3.2609500000000002
392,3.26945
393,3.27815
394,3.2900500000000004
395,3.2942500000000003
396,3.30505
397,3.31805
398,3.32545
399,3.32985
400,3.3373500000000003
401,3.34815
402,3.3524000000000003
403,3.35995
404,3.36645
405,3.374
406,3.3826
407,3.38905
408,3.3998500000000003
409,3.4084000000000003
410,3.4159
411,3.4310500000000004
412,3.43855
413,3.44505
414,3.44835
415,3.4600500000000003
416,3.4709000000000003
417,3.4763
418,3.4838
419,3.4892000000000003
420,3.4978000000000002
421,3.5054000000000003
422,3.5161000000000002
423,3.5268
424,3.5313000000000003
425,3.5367
426,3.5484500000000003
427,3.56245
428,3.5667500000000003
429,3.5786000000000002
430,3.58285
431,3.5873500000000003
432,3.59905
433,3.6077000000000004
434,3.6142000000000003
435,3.6217
436,3.63245
437,3.64005
438,3.6519000000000004
439,3.6572500000000003
440,3.6669500000000004
441,3.6724
442,3.6830000000000003
443,3.6906000000000003
444,3.69605
445,3.70785
446,3.7111
447,3.7262
448,3.7336500000000004
449,3.7392000000000003
450,3.7477500000000004
451,3.7531000000000003
452,3.7618
453,3.7681500000000003
454,3.7758000000000003
455,3.7864500000000003
456,3.79935
457,3.80695
458,3.81775
459,3.8231
460,3.8283500000000004
461,3.8360000000000003
462,3.8414
463,3.8523
464,3.86195
465,3.87265
466,3.8833
467,3.8887500000000004
468,3.89855
469,3.9028
470,3.9104
471,3.9189000000000003
472,3.9351000000000003
473,3.94165
474,3.9459500000000003
475,3.9523
476,3.9652000000000003
477,3.9706
478,3.9771
479,3.98475
480,3.9997000000000003
481,4.00415
482,4.018050000000001
483,4.02775
484,4.0363
485,4.03955
486,4.04495
487,4.0504
488,4.06335
489,4.0698
490,4.07515
491,4.08375
492,4.0881
493,4.1041
494,4.1129
495,4.12035
496,4.1321
497,4.14185
498,4.1463
499,4.153700000000001
500,4.15815
501,4.17105
502,4.1764
503,4.184950000000001
504,4.20115
505,4.2054
506,4.2097500000000005
507,4.22055
508,4.226
509,4.2324
510,4.24435
511,4.25075
512,4.2582
513,4.269
514,4.2776000000000005
515,4.2819
516,4.302350000000001
517,4.30775
518,4.3143
519,4.32075
520,4.3325000000000005
521,4.340050000000001
522,4.34335
523,4.3563
524,4.36175
525,4.37235
526,4.376650000000001
527,4.38105
528,4.3897
529,4.402550000000001
530,4.40575
531,4.4199
532,4.42515
533,4.43485
534,4.4445500000000004
535,4.45525
536,4.46185
537,4.4704500000000005
538,4.4779
539,4.48125
540,4.4877
541,4.5006
542,4.5082
543,4.519950000000001
544,4.53185
545,4.53615
546,4.5405500000000005
547,4.54905
548,4.5565500000000005
549,4.56845
550,4.5813500000000005
551,4.58565
552,4.59
553,4.5996500000000005
554,4.60935
555,4.6211
556,4.6276
557,4.633100000000001
558,4.64585
559,4.64925
560,4.65665
561,4.664350000000001
562,4.6729
563,4.681500000000001
564,4.686850000000001
565,4.702
566,4.7063500000000005
567,4.716
568,4.72775
569,4.7331
570,4.7407
571,4.7526
572,4.7569
573,4.7655
574,4.7730500000000005
575,4.78165
576,4.7861
577,4.7979
578,4.805400000000001
579,4.8108
580,4.81825
581,4.8302000000000005
582,4.8398
583,4.84955
584,4.8591500000000005
585,4.8646
586,4.8765
587,4.88075
588,4.8947
589,4.899150000000001
590,4.9035
591,4.91195
592,4.9185
593,4.9314
594,4.9412
595,4.9444
596,4.9540500000000005
597,4.96255
598,4.9691
599,4.97445
600,4.98845
601,4.997050000000001
602,5.00465
603,5.00905
604,5.01755
605,5.0294
606,5.041250000000001
607,5.04885
608,5.05855
609,5.0639
610,5.072550000000001
611,5.079000000000001
612,5.0832500000000005
613,5.0929
614,5.1080000000000005
615,5.11875
616,5.1231
617,5.1285
618,5.1371
619,5.141500000000001
620,5.14895
621,5.15965
622,5.16955
623,5.1812000000000005
624,5.192
625,5.1952
626,5.2092
627,5.2136000000000005
628,5.22445
629,5.2318500000000006
630,5.2361
631,5.246
632,5.25555
633,5.26315
634,5.2685
635,5.2804
636,5.29005
637,5.29985
638,5.308400000000001
639,5.3137
640,5.324450000000001
641,5.3386000000000005
642,5.34395
643,5.35255
644,5.35675
645,5.3622000000000005
646,5.3783
647,5.3827
648,5.38795
649,5.3977
650,5.4032
651,5.414000000000001
652,5.420450000000001
653,5.4345
654,5.43985
655,5.4462
656,5.45915
657,5.4699
658,5.4743
659,5.4806
660,5.48505
661,5.494750000000001
662,5.5055000000000005
663,5.513
664,5.52385
665,5.53235
666,5.53995
667,5.54975
668,5.555000000000001
669,5.561450000000001
670,5.569
671,5.5777
672,5.5852
673,5.59055
674,5.60995
675,5.6152500000000005
676,5.622850000000001
677,5.62715
678,5.6368
679,5.64665
680,5.65845
681,5.66495
682,5.67455
683,5.6821
684,5.69075
685,5.69935
686,5.70585
687,5.716600000000001
688,5.724200000000001
689,5.7317
690,5.74035
691,5.74775
692,5.7586
693,5.76395
694,5.77155
695,5.78005
696,5.7909500000000005
697,5.795100000000001
698,5.804950000000001
699,5.8145500000000006
700,5.82435
701,5.8340000000000005
702,5.8393500000000005
703,5.8491
704,5.854500000000001
705,5.8609
706,5.8717500000000005
707,5.8825
708,5.88785
709,5.8943
710,5.90285
711,5.9094500000000005
712,5.91805
713,5.931900000000001
714,5.9363
715,5.94275
716,5.95455
717,5.96115
718,5.974
719,5.9783
720,5.98475
721,5.9977
1 spikes
2 0 0.0027
3 1 0.01135
4 2 0.015600000000000001
5 3 0.0275
6 4 0.03715
7 5 0.04705
8 6 0.051300000000000005
9 7 0.058800000000000005
10 8 0.06635
11 9 0.08255
12 10 0.0889
13 11 0.0921
14 12 0.09965
15 13 0.10940000000000001
16 14 0.11795
17 15 0.12665
18 16 0.1321
19 17 0.14055
20 18 0.15130000000000002
21 19 0.16535
22 20 0.1719
23 21 0.17945
24 22 0.18380000000000002
25 23 0.1923
26 24 0.20205
27 25 0.21065
28 26 0.21495
29 27 0.2247
30 28 0.23105
31 29 0.24195
32 30 0.25485
33 31 0.259
34 32 0.26555
35 33 0.27640000000000003
36 34 0.2828
37 35 0.2904
38 36 0.3064
39 37 0.31070000000000003
40 38 0.31515000000000004
41 39 0.32595
42 40 0.3345
43 41 0.33985000000000004
44 42 0.34950000000000003
45 43 0.35600000000000004
46 44 0.36575
47 45 0.37655
48 46 0.38830000000000003
49 47 0.3937
50 48 0.3991
51 49 0.40990000000000004
52 50 0.42075
53 51 0.43045
54 52 0.43670000000000003
55 53 0.4476
56 54 0.45085000000000003
57 55 0.45835000000000004
58 56 0.46590000000000004
59 57 0.4701
60 58 0.48210000000000003
61 59 0.48965000000000003
62 60 0.49920000000000003
63 61 0.51005
64 62 0.5165500000000001
65 63 0.53045
66 64 0.53385
67 65 0.5478000000000001
68 66 0.5542
69 67 0.55745
70 68 0.5639000000000001
71 69 0.5790000000000001
72 70 0.59185
73 71 0.5983
74 72 0.60375
75 73 0.60905
76 74 0.6157
77 75 0.62
78 76 0.63295
79 77 0.6446500000000001
80 78 0.6565500000000001
81 79 0.6607500000000001
82 80 0.66835
83 81 0.6749
84 82 0.6813
85 83 0.6921
86 84 0.69965
87 85 0.7104
88 86 0.71465
89 87 0.7341000000000001
90 88 0.7384000000000001
91 89 0.74495
92 90 0.7524500000000001
93 91 0.7568
94 92 0.7728
95 93 0.78035
96 94 0.7868
97 95 0.7911
98 96 0.802
99 97 0.8148000000000001
100 98 0.82125
101 99 0.8289500000000001
102 100 0.83425
103 101 0.83855
104 102 0.85475
105 103 0.8698
106 104 0.8752000000000001
107 105 0.8805000000000001
108 106 0.88485
109 107 0.8892
110 108 0.90315
111 109 0.9118
112 110 0.9203
113 111 0.9257500000000001
114 112 0.9397000000000001
115 113 0.9441
116 114 0.95055
117 115 0.96245
118 116 0.9678500000000001
119 117 0.9764
120 118 0.9872500000000001
121 119 0.99255
122 120 1.00235
123 121 1.0119
124 122 1.0162
125 123 1.02705
126 124 1.03675
127 125 1.0475
128 126 1.05185
129 127 1.05935
130 128 1.0669
131 129 1.08305
132 130 1.0894000000000001
133 131 1.09275
134 132 1.0992
135 133 1.11
136 134 1.11755
137 135 1.1262
138 136 1.13255
139 137 1.14015
140 138 1.14455
141 139 1.1531
142 140 1.16605
143 141 1.1757
144 142 1.1831500000000001
145 143 1.19085
146 144 1.2005000000000001
147 145 1.2102000000000002
148 146 1.21445
149 147 1.2199
150 148 1.2295500000000001
151 149 1.2424
152 150 1.25115
153 151 1.2575
154 152 1.26505
155 153 1.27485
156 154 1.2823
157 155 1.29085
158 156 1.3028
159 157 1.3081500000000001
160 158 1.3136
161 159 1.3264
162 160 1.334
163 161 1.33935
164 162 1.3491
165 163 1.35555
166 164 1.3652
167 165 1.3739000000000001
168 166 1.3847
169 167 1.3932
170 168 1.3986
171 169 1.41045
172 170 1.4211500000000001
173 171 1.42995
174 172 1.43625
175 173 1.4471500000000002
176 174 1.45035
177 175 1.45785
178 176 1.4655
179 177 1.4696500000000001
180 178 1.4752
181 179 1.4881
182 180 1.4988000000000001
183 181 1.5095500000000002
184 182 1.5161
185 183 1.5300500000000001
186 184 1.53335
187 185 1.5482500000000001
188 186 1.55375
189 187 1.55705
190 188 1.5634000000000001
191 189 1.5785500000000001
192 190 1.5914000000000001
193 191 1.5969
194 192 1.6023
195 193 1.6086
196 194 1.6162
197 195 1.6206
198 196 1.6334000000000002
199 197 1.6442
200 198 1.6570500000000001
201 199 1.6604
202 200 1.6689
203 201 1.6744
204 202 1.67985
205 203 1.6926
206 204 1.70025
207 205 1.70995
208 206 1.71415
209 207 1.73465
210 208 1.739
211 209 1.7454500000000002
212 210 1.7541
213 211 1.76055
214 212 1.77245
215 213 1.7799
216 214 1.7864
217 215 1.7907000000000002
218 216 1.80255
219 217 1.8144
220 218 1.82095
221 219 1.82945
222 220 1.8348
223 221 1.8392000000000002
224 222 1.85105
225 223 1.86935
226 224 1.8747
227 225 1.88105
228 226 1.88535
229 227 1.8888
230 228 1.9027
231 229 1.91135
232 230 1.91985
233 231 1.9253500000000001
234 232 1.9393
235 233 1.9436
236 234 1.9511
237 235 1.9629500000000002
238 236 1.9684000000000001
239 237 1.97595
240 238 1.98675
241 239 1.99215
242 240 2.00395
243 241 2.0157000000000003
244 242 2.0191
245 243 2.02975
246 244 2.0374
247 245 2.0471
248 246 2.0545
249 247 2.06205
250 248 2.0728500000000003
251 249 2.07835
252 250 2.0837
253 251 2.0911500000000003
254 252 2.1074
255 253 2.1127000000000002
256 254 2.11925
257 255 2.12895
258 256 2.1343
259 257 2.145
260 258 2.15265
261 259 2.1612
262 260 2.1655
263 261 2.1719500000000003
264 262 2.18385
265 263 2.19245
266 264 2.2011000000000003
267 265 2.2096
268 266 2.2182500000000003
269 267 2.22375
270 268 2.23985
271 269 2.2441
272 270 2.2538
273 271 2.2614
274 272 2.2689
275 273 2.2744
276 274 2.28295
277 275 2.2904
278 276 2.2990500000000003
279 277 2.31415
280 278 2.3228
281 279 2.32715
282 280 2.3388500000000003
283 281 2.3465000000000003
284 282 2.35605
285 283 2.3625000000000003
286 284 2.369
287 285 2.37555
288 286 2.3809
289 287 2.39275
290 288 2.3992
291 289 2.4036500000000003
292 290 2.4219500000000003
293 291 2.4273000000000002
294 292 2.4337
295 293 2.4423
296 294 2.4477
297 295 2.46055
298 296 2.4659500000000003
299 297 2.47345
300 298 2.4865500000000003
301 299 2.4907500000000002
302 300 2.5004
303 301 2.50685
304 302 2.5198
305 303 2.5284
306 304 2.53275
307 305 2.5391500000000002
308 306 2.5543
309 307 2.5587500000000003
310 308 2.5672
311 309 2.5779
312 310 2.5867500000000003
313 311 2.5930500000000003
314 312 2.6017
315 313 2.6071500000000003
316 314 2.62215
317 315 2.63085
318 316 2.6352
319 317 2.6405000000000003
320 318 2.65235
321 319 2.6621
322 320 2.6673500000000003
323 321 2.6803500000000002
324 322 2.68465
325 323 2.69535
326 324 2.705
327 325 2.70945
328 326 2.71375
329 327 2.7277500000000003
330 328 2.7331000000000003
331 329 2.74275
332 330 2.74825
333 331 2.7590500000000002
334 332 2.76865
335 333 2.78155
336 334 2.7858
337 335 2.7923
338 336 2.79995
339 337 2.8054
340 338 2.8160000000000003
341 339 2.8247500000000003
342 340 2.8375500000000002
343 341 2.84505
344 342 2.8494
345 343 2.8538
346 344 2.8676500000000003
347 345 2.87955
348 346 2.8904
349 347 2.8946
350 348 2.9033
351 349 2.9076
352 350 2.91725
353 351 2.9292000000000002
354 352 2.93875
355 353 2.94965
356 354 2.9571
357 355 2.96355
358 356 2.9691
359 357 2.9798
360 358 2.9916
361 359 2.99695
362 360 3.00665
363 361 3.01315
364 362 3.0208
365 363 3.0303
366 364 3.0368500000000003
367 365 3.0509
368 366 3.05635
369 367 3.0649
370 368 3.0713000000000004
371 369 3.0788
372 370 3.0875000000000004
373 371 3.09605
374 372 3.1014500000000003
375 373 3.1197500000000002
376 374 3.12405
377 375 3.12955
378 376 3.13485
379 377 3.1435500000000003
380 378 3.1510000000000002
381 379 3.15965
382 380 3.1661
383 381 3.1769000000000003
384 382 3.1823
385 383 3.194
386 384 3.20805
387 385 3.21245
388 386 3.2199
389 387 3.2340500000000003
390 388 3.2373000000000003
391 389 3.2415000000000003
392 390 3.25545
393 391 3.2609500000000002
394 392 3.26945
395 393 3.27815
396 394 3.2900500000000004
397 395 3.2942500000000003
398 396 3.30505
399 397 3.31805
400 398 3.32545
401 399 3.32985
402 400 3.3373500000000003
403 401 3.34815
404 402 3.3524000000000003
405 403 3.35995
406 404 3.36645
407 405 3.374
408 406 3.3826
409 407 3.38905
410 408 3.3998500000000003
411 409 3.4084000000000003
412 410 3.4159
413 411 3.4310500000000004
414 412 3.43855
415 413 3.44505
416 414 3.44835
417 415 3.4600500000000003
418 416 3.4709000000000003
419 417 3.4763
420 418 3.4838
421 419 3.4892000000000003
422 420 3.4978000000000002
423 421 3.5054000000000003
424 422 3.5161000000000002
425 423 3.5268
426 424 3.5313000000000003
427 425 3.5367
428 426 3.5484500000000003
429 427 3.56245
430 428 3.5667500000000003
431 429 3.5786000000000002
432 430 3.58285
433 431 3.5873500000000003
434 432 3.59905
435 433 3.6077000000000004
436 434 3.6142000000000003
437 435 3.6217
438 436 3.63245
439 437 3.64005
440 438 3.6519000000000004
441 439 3.6572500000000003
442 440 3.6669500000000004
443 441 3.6724
444 442 3.6830000000000003
445 443 3.6906000000000003
446 444 3.69605
447 445 3.70785
448 446 3.7111
449 447 3.7262
450 448 3.7336500000000004
451 449 3.7392000000000003
452 450 3.7477500000000004
453 451 3.7531000000000003
454 452 3.7618
455 453 3.7681500000000003
456 454 3.7758000000000003
457 455 3.7864500000000003
458 456 3.79935
459 457 3.80695
460 458 3.81775
461 459 3.8231
462 460 3.8283500000000004
463 461 3.8360000000000003
464 462 3.8414
465 463 3.8523
466 464 3.86195
467 465 3.87265
468 466 3.8833
469 467 3.8887500000000004
470 468 3.89855
471 469 3.9028
472 470 3.9104
473 471 3.9189000000000003
474 472 3.9351000000000003
475 473 3.94165
476 474 3.9459500000000003
477 475 3.9523
478 476 3.9652000000000003
479 477 3.9706
480 478 3.9771
481 479 3.98475
482 480 3.9997000000000003
483 481 4.00415
484 482 4.018050000000001
485 483 4.02775
486 484 4.0363
487 485 4.03955
488 486 4.04495
489 487 4.0504
490 488 4.06335
491 489 4.0698
492 490 4.07515
493 491 4.08375
494 492 4.0881
495 493 4.1041
496 494 4.1129
497 495 4.12035
498 496 4.1321
499 497 4.14185
500 498 4.1463
501 499 4.153700000000001
502 500 4.15815
503 501 4.17105
504 502 4.1764
505 503 4.184950000000001
506 504 4.20115
507 505 4.2054
508 506 4.2097500000000005
509 507 4.22055
510 508 4.226
511 509 4.2324
512 510 4.24435
513 511 4.25075
514 512 4.2582
515 513 4.269
516 514 4.2776000000000005
517 515 4.2819
518 516 4.302350000000001
519 517 4.30775
520 518 4.3143
521 519 4.32075
522 520 4.3325000000000005
523 521 4.340050000000001
524 522 4.34335
525 523 4.3563
526 524 4.36175
527 525 4.37235
528 526 4.376650000000001
529 527 4.38105
530 528 4.3897
531 529 4.402550000000001
532 530 4.40575
533 531 4.4199
534 532 4.42515
535 533 4.43485
536 534 4.4445500000000004
537 535 4.45525
538 536 4.46185
539 537 4.4704500000000005
540 538 4.4779
541 539 4.48125
542 540 4.4877
543 541 4.5006
544 542 4.5082
545 543 4.519950000000001
546 544 4.53185
547 545 4.53615
548 546 4.5405500000000005
549 547 4.54905
550 548 4.5565500000000005
551 549 4.56845
552 550 4.5813500000000005
553 551 4.58565
554 552 4.59
555 553 4.5996500000000005
556 554 4.60935
557 555 4.6211
558 556 4.6276
559 557 4.633100000000001
560 558 4.64585
561 559 4.64925
562 560 4.65665
563 561 4.664350000000001
564 562 4.6729
565 563 4.681500000000001
566 564 4.686850000000001
567 565 4.702
568 566 4.7063500000000005
569 567 4.716
570 568 4.72775
571 569 4.7331
572 570 4.7407
573 571 4.7526
574 572 4.7569
575 573 4.7655
576 574 4.7730500000000005
577 575 4.78165
578 576 4.7861
579 577 4.7979
580 578 4.805400000000001
581 579 4.8108
582 580 4.81825
583 581 4.8302000000000005
584 582 4.8398
585 583 4.84955
586 584 4.8591500000000005
587 585 4.8646
588 586 4.8765
589 587 4.88075
590 588 4.8947
591 589 4.899150000000001
592 590 4.9035
593 591 4.91195
594 592 4.9185
595 593 4.9314
596 594 4.9412
597 595 4.9444
598 596 4.9540500000000005
599 597 4.96255
600 598 4.9691
601 599 4.97445
602 600 4.98845
603 601 4.997050000000001
604 602 5.00465
605 603 5.00905
606 604 5.01755
607 605 5.0294
608 606 5.041250000000001
609 607 5.04885
610 608 5.05855
611 609 5.0639
612 610 5.072550000000001
613 611 5.079000000000001
614 612 5.0832500000000005
615 613 5.0929
616 614 5.1080000000000005
617 615 5.11875
618 616 5.1231
619 617 5.1285
620 618 5.1371
621 619 5.141500000000001
622 620 5.14895
623 621 5.15965
624 622 5.16955
625 623 5.1812000000000005
626 624 5.192
627 625 5.1952
628 626 5.2092
629 627 5.2136000000000005
630 628 5.22445
631 629 5.2318500000000006
632 630 5.2361
633 631 5.246
634 632 5.25555
635 633 5.26315
636 634 5.2685
637 635 5.2804
638 636 5.29005
639 637 5.29985
640 638 5.308400000000001
641 639 5.3137
642 640 5.324450000000001
643 641 5.3386000000000005
644 642 5.34395
645 643 5.35255
646 644 5.35675
647 645 5.3622000000000005
648 646 5.3783
649 647 5.3827
650 648 5.38795
651 649 5.3977
652 650 5.4032
653 651 5.414000000000001
654 652 5.420450000000001
655 653 5.4345
656 654 5.43985
657 655 5.4462
658 656 5.45915
659 657 5.4699
660 658 5.4743
661 659 5.4806
662 660 5.48505
663 661 5.494750000000001
664 662 5.5055000000000005
665 663 5.513
666 664 5.52385
667 665 5.53235
668 666 5.53995
669 667 5.54975
670 668 5.555000000000001
671 669 5.561450000000001
672 670 5.569
673 671 5.5777
674 672 5.5852
675 673 5.59055
676 674 5.60995
677 675 5.6152500000000005
678 676 5.622850000000001
679 677 5.62715
680 678 5.6368
681 679 5.64665
682 680 5.65845
683 681 5.66495
684 682 5.67455
685 683 5.6821
686 684 5.69075
687 685 5.69935
688 686 5.70585
689 687 5.716600000000001
690 688 5.724200000000001
691 689 5.7317
692 690 5.74035
693 691 5.74775
694 692 5.7586
695 693 5.76395
696 694 5.77155
697 695 5.78005
698 696 5.7909500000000005
699 697 5.795100000000001
700 698 5.804950000000001
701 699 5.8145500000000006
702 700 5.82435
703 701 5.8340000000000005
704 702 5.8393500000000005
705 703 5.8491
706 704 5.854500000000001
707 705 5.8609
708 706 5.8717500000000005
709 707 5.8825
710 708 5.88785
711 709 5.8943
712 710 5.90285
713 711 5.9094500000000005
714 712 5.91805
715 713 5.931900000000001
716 714 5.9363
717 715 5.94275
718 716 5.95455
719 717 5.96115
720 718 5.974
721 719 5.9783
722 720 5.98475
723 721 5.9977

View File

@ -0,0 +1,831 @@
,spikes
0,0.00165
1,0.00285
2,0.0189
3,0.0222
4,0.033
5,0.0351
6,0.05535
7,0.0599
8,0.06955
9,0.0727
10,0.07495
11,0.0845
12,0.09015000000000001
13,0.0918
14,0.1061
15,0.1126
16,0.1222
17,0.12345
18,0.13185
19,0.1353
20,0.13845000000000002
21,0.14505
22,0.1524
23,0.15430000000000002
24,0.15995
25,0.16190000000000002
26,0.16640000000000002
27,0.1729
28,0.19360000000000002
29,0.19540000000000002
30,0.19770000000000001
31,0.21910000000000002
32,0.22045
33,0.2235
34,0.23450000000000001
35,0.24065
36,0.24205000000000002
37,0.25795
38,0.26025000000000004
39,0.26875
40,0.28595000000000004
41,0.30515000000000003
42,0.30955
43,0.31815
44,0.32145
45,0.32275000000000004
46,0.33430000000000004
47,0.3433
48,0.3443
49,0.34535
50,0.3526
51,0.37325
52,0.38415
53,0.38845
54,0.3896
55,0.3915
56,0.4152
57,0.42375
58,0.42800000000000005
59,0.4314
60,0.43775000000000003
61,0.44415000000000004
62,0.44870000000000004
63,0.45055
64,0.4635
65,0.46475
66,0.47550000000000003
67,0.47775
68,0.5098
69,0.5132
70,0.5165000000000001
71,0.5186000000000001
72,0.5228
73,0.5296000000000001
74,0.5423
75,0.5517500000000001
76,0.553
77,0.56065
78,0.5639500000000001
79,0.5799500000000001
80,0.58325
81,0.58965
82,0.59175
83,0.5950500000000001
84,0.60475
85,0.60695
86,0.6253500000000001
87,0.6273500000000001
88,0.6478
89,0.65
90,0.65315
91,0.65445
92,0.6803
93,0.6887500000000001
94,0.6907
95,0.6919500000000001
96,0.6940500000000001
97,0.69955
98,0.71035
99,0.7361500000000001
100,0.7373000000000001
101,0.7385
102,0.74245
103,0.7437
104,0.74565
105,0.76095
106,0.7673
107,0.7737
108,0.77925
109,0.7974
110,0.80195
111,0.8073
112,0.8085
113,0.83945
114,0.8469500000000001
115,0.8480000000000001
116,0.8547
117,0.85785
118,0.8664000000000001
119,0.8687
120,0.87085
121,0.874
122,0.8827
123,0.8911
124,0.9073
125,0.9095000000000001
126,0.9106000000000001
127,0.91915
128,0.9376000000000001
129,0.9442
130,0.94735
131,0.9515
132,0.9559000000000001
133,0.9592
134,0.9774
135,0.98485
136,0.9956
137,0.99685
138,0.9981500000000001
139,1.00215
140,1.02155
141,1.03335
142,1.0357
143,1.0550000000000002
144,1.0602500000000001
145,1.06995
146,1.07325
147,1.0765
148,1.0843
149,1.0904
150,1.09165
151,1.1065500000000001
152,1.1131
153,1.1219000000000001
154,1.1237000000000001
155,1.13155
156,1.13365
157,1.1369
158,1.14545
159,1.1528500000000002
160,1.1541000000000001
161,1.1563
162,1.1605
163,1.16605
164,1.1724
165,1.19385
166,1.19595
167,1.19825
168,1.21885
169,1.22065
170,1.224
171,1.2318
172,1.24025
173,1.2422
174,1.2511
175,1.25845
176,1.26825
177,1.2747000000000002
178,1.2962500000000001
179,1.3049000000000002
180,1.3092000000000001
181,1.31795
182,1.3219
183,1.3339
184,1.33605
185,1.34355
186,1.3447
187,1.3469
188,1.3523
189,1.3845
190,1.3887500000000002
191,1.3899000000000001
192,1.4148500000000002
193,1.4169500000000002
194,1.4233500000000001
195,1.42765
196,1.4318
197,1.4374500000000001
198,1.43955
199,1.44405
200,1.4491500000000002
201,1.4511500000000002
202,1.4632500000000002
203,1.46455
204,1.476
205,1.5095
206,1.5118
207,1.5161
208,1.5181
209,1.5224
210,1.52445
211,1.53
212,1.54285
213,1.5515
214,1.5527
215,1.5611000000000002
216,1.5644500000000001
217,1.5805
218,1.58375
219,1.5901
220,1.5945500000000001
221,1.6044
222,1.6064
223,1.6257000000000001
224,1.6440000000000001
225,1.64825
226,1.6518000000000002
227,1.65365
228,1.67975
229,1.68825
230,1.69025
231,1.6915
232,1.69275
233,1.6948500000000002
234,1.70995
235,1.73595
236,1.73705
237,1.7382000000000002
238,1.74205
239,1.7433
240,1.7452
241,1.7465000000000002
242,1.7614500000000002
243,1.76695
244,1.7734
245,1.7797
246,1.7971000000000001
247,1.8023500000000001
248,1.80765
249,1.8090000000000002
250,1.8391000000000002
251,1.8467
252,1.8477000000000001
253,1.84885
254,1.85525
255,1.8584500000000002
256,1.867
257,1.8693000000000002
258,1.8725
259,1.8831
260,1.8907500000000002
261,1.9069500000000001
262,1.9091
263,1.9102000000000001
264,1.9188
265,1.9371500000000001
266,1.9447
267,1.94775
268,1.9511
269,1.95635
270,1.95975
271,1.9771500000000002
272,1.98445
273,1.9952500000000002
274,1.99665
275,1.9983000000000002
276,2.00195
277,2.00395
278,2.02525
279,2.0264
280,2.0296000000000003
281,2.03085
282,2.03505
283,2.05655
284,2.0588
285,2.06005
286,2.08015
287,2.08685
288,2.0954
289,2.10395
290,2.1233500000000003
291,2.1298500000000002
292,2.13835
293,2.1396
294,2.1418
295,2.1461
296,2.1534500000000003
297,2.1598
298,2.16105
299,2.1719500000000003
300,2.17315
301,2.17525
302,2.2139
303,2.2152000000000003
304,2.2205500000000002
305,2.2310000000000003
306,2.23955
307,2.24295
308,2.24945
309,2.2708500000000003
310,2.2731
311,2.27525
312,2.27745
313,2.2807
314,2.2914000000000003
315,2.30345
316,2.30645
317,2.30765
318,2.31395
319,2.31515
320,2.34315
321,2.34435
322,2.3549
323,2.36585
324,2.3676500000000003
325,2.3689
326,2.37
327,2.3797
328,2.3927
329,2.39595
330,2.3982
331,2.40025
332,2.4068
333,2.40885
334,2.4251
335,2.44335
336,2.4465500000000002
337,2.44865
338,2.45085
339,2.45635
340,2.4583500000000003
341,2.4693
342,2.4734000000000003
343,2.47565
344,2.49175
345,2.5067
346,2.5081
347,2.52625
348,2.53815
349,2.5447
350,2.55425
351,2.5695
352,2.5713500000000002
353,2.58115
354,2.59085
355,2.59405
356,2.5995500000000002
357,2.6069500000000003
358,2.60825
359,2.61145
360,2.6135
361,2.61885
362,2.62425
363,2.6427
364,2.6446
365,2.6479
366,2.65755
367,2.66315
368,2.66505
369,2.6698
370,2.67605
371,2.6771000000000003
372,2.68665
373,2.6921500000000003
374,2.6975000000000002
375,2.6996
376,2.7062
377,2.7138
378,2.7253000000000003
379,2.7473
380,2.74825
381,2.7502
382,2.76755
383,2.7739000000000003
384,2.7815000000000003
385,2.78365
386,2.79005
387,2.79775
388,2.8000000000000003
389,2.80125
390,2.8148500000000003
391,2.8226
392,2.83215
393,2.83415
394,2.83975
395,2.85385
396,2.8654
397,2.8720000000000003
398,2.8761
399,2.8796
400,2.8827000000000003
401,2.8976
402,2.9066
403,2.9204000000000003
404,2.9343000000000004
405,2.93895
406,2.94065
407,2.9432
408,2.9498
409,2.9517
410,2.9539
411,2.9558500000000003
412,2.972
413,2.9764
414,2.9797000000000002
415,3.0002500000000003
416,3.02075
417,3.02365
418,3.0269500000000003
419,3.0313000000000003
420,3.03445
421,3.0367
422,3.04435
423,3.0549
424,3.05605
425,3.0572000000000004
426,3.0628
427,3.08015
428,3.08175
429,3.1132500000000003
430,3.1153
431,3.1219
432,3.1229
433,3.124
434,3.1271
435,3.1348000000000003
436,3.1499
437,3.1679500000000003
438,3.16935
439,3.1778500000000003
440,3.1831500000000004
441,3.1855
442,3.18665
443,3.1879
444,3.1952000000000003
445,3.1962
446,3.20025
447,3.2016500000000003
448,3.21545
449,3.2424500000000003
450,3.2438000000000002
451,3.2458500000000003
452,3.2477500000000004
453,3.27155
454,3.27895
455,3.2812
456,3.2877
457,3.3158000000000003
458,3.3264500000000004
459,3.3297000000000003
460,3.33095
461,3.3394500000000003
462,3.3415000000000004
463,3.3598000000000003
464,3.36215
465,3.3633
466,3.36435
467,3.3655500000000003
468,3.3674
469,3.3858
470,3.3943000000000003
471,3.4064
472,3.41265
473,3.42335
474,3.4267000000000003
475,3.43865
476,3.4438500000000003
477,3.446
478,3.45465
479,3.4697
480,3.4721
481,3.47935
482,3.4848000000000003
483,3.487
484,3.5053
485,3.5267000000000004
486,3.5288500000000003
487,3.5311500000000002
488,3.54075
489,3.5547
490,3.5568500000000003
491,3.5581500000000004
492,3.5633500000000002
493,3.5688500000000003
494,3.57085
495,3.57995
496,3.5815
497,3.5958
498,3.6011
499,3.6194
500,3.6216000000000004
501,3.64215
502,3.6443000000000003
503,3.6462000000000003
504,3.6538500000000003
505,3.65815
506,3.6595
507,3.6637500000000003
508,3.6669500000000004
509,3.66895
510,3.6818
511,3.69075
512,3.7111
513,3.722
514,3.7358000000000002
515,3.73685
516,3.74
517,3.74235
518,3.74425
519,3.7520000000000002
520,3.7734
521,3.77565
522,3.7811500000000002
523,3.79165
524,3.7929500000000003
525,3.7975000000000003
526,3.80255
527,3.8058500000000004
528,3.8079500000000004
529,3.8283500000000004
530,3.83155
531,3.8392500000000003
532,3.8575000000000004
533,3.86715
534,3.8693000000000004
535,3.87155
536,3.8789000000000002
537,3.88435
538,3.8898
539,3.8921
540,3.90185
541,3.9047500000000004
542,3.91025
543,3.9361
544,3.9373
545,3.9415
546,3.9490000000000003
547,3.9531500000000004
548,3.9543000000000004
549,3.9554500000000004
550,3.9663000000000004
551,3.9832500000000004
552,3.9843
553,3.99095
554,3.9923
555,4.01035
556,4.0156
557,4.01795
558,4.02005
559,4.03515
560,4.04495
561,4.0633
562,4.0688
563,4.08465
564,4.09435
565,4.11595
566,4.118250000000001
567,4.1282000000000005
568,4.1321
569,4.1354500000000005
570,4.1373500000000005
571,4.1429
572,4.1572000000000005
573,4.1655500000000005
574,4.16775
575,4.1772
576,4.18285
577,4.1871
578,4.19475
579,4.21075
580,4.226
581,4.2279
582,4.22925
583,4.23055
584,4.233350000000001
585,4.26035
586,4.2657
587,4.2700000000000005
588,4.28395
589,4.285200000000001
590,4.2926
591,4.29575
592,4.2991
593,4.3131
594,4.314150000000001
595,4.3162
596,4.318350000000001
597,4.3237000000000005
598,4.32815
599,4.3487
600,4.3596
601,4.36785
602,4.38415
603,4.3897
604,4.3915500000000005
605,4.4013
606,4.40785
607,4.4121500000000005
608,4.42
609,4.4231
610,4.43515
611,4.4372
612,4.4415000000000004
613,4.4575000000000005
614,4.4609000000000005
615,4.4724
616,4.47475
617,4.49395
618,4.5027
619,4.50465
620,4.5103
621,4.5123500000000005
622,4.5209
623,4.5252
624,4.52725
625,4.5295000000000005
626,4.531750000000001
627,4.5404
628,4.5542
629,4.55645
630,4.56095
631,4.5661000000000005
632,4.58655
633,4.59225
634,4.596550000000001
635,4.598450000000001
636,4.6006
637,4.60815
638,4.61365
639,4.6546
640,4.660950000000001
641,4.6632
642,4.664350000000001
643,4.66545
644,4.67605
645,4.67825
646,4.6869000000000005
647,4.69855
648,4.7094000000000005
649,4.7233
650,4.7277000000000005
651,4.729
652,4.731
653,4.73555
654,4.761
655,4.7622
656,4.7761000000000005
657,4.7839
658,4.79575
659,4.797750000000001
660,4.8043000000000005
661,4.8075
662,4.8235
663,4.82795
664,4.8302000000000005
665,4.8453
666,4.8539
667,4.856
668,4.8580000000000005
669,4.86475
670,4.872050000000001
671,4.87535
672,4.8796
673,4.88485
674,4.90005
675,4.90235
676,4.9099
677,4.912100000000001
678,4.933450000000001
679,4.9378
680,4.939900000000001
681,4.94205
682,4.9594000000000005
683,4.963550000000001
684,4.964700000000001
685,4.9842
686,4.995950000000001
687,5.0003
688,5.006600000000001
689,5.00875
690,5.0120000000000005
691,5.0197
692,5.0261000000000005
693,5.0274
694,5.0368
695,5.04
696,5.04425
697,5.05105
698,5.05305
699,5.055000000000001
700,5.0738
701,5.0754
702,5.09295
703,5.11015
704,5.1145000000000005
705,5.11765
706,5.1295
707,5.1552500000000006
708,5.1563
709,5.1573
710,5.15845
711,5.16295
712,5.1672
713,5.1801
714,5.1877
715,5.199450000000001
716,5.2124500000000005
717,5.2143500000000005
718,5.21565
719,5.22315
720,5.2265500000000005
721,5.2286
722,5.238300000000001
723,5.2479000000000005
724,5.25325
725,5.2599
726,5.2611
727,5.262300000000001
728,5.2932500000000005
729,5.2953
730,5.29645
731,5.3148
732,5.319
733,5.3277
734,5.32965
735,5.3309500000000005
736,5.3364
737,5.3386000000000005
738,5.34405
739,5.352650000000001
740,5.3751500000000005
741,5.38155
742,5.3827
743,5.386
744,5.391100000000001
745,5.4052500000000006
746,5.415900000000001
747,5.41715
748,5.42675
749,5.4473
750,5.4484
751,5.450550000000001
752,5.45265
753,5.4579
754,5.46985
755,5.471900000000001
756,5.482550000000001
757,5.48385
758,5.486000000000001
759,5.49045
760,5.4935
761,5.49985
762,5.517250000000001
763,5.5194
764,5.5215000000000005
765,5.530200000000001
766,5.5419
767,5.5582
768,5.5624
769,5.5646
770,5.56775
771,5.569
772,5.57435
773,5.5907
774,5.5924000000000005
775,5.5982
776,5.6003
777,5.6076500000000005
778,5.6110500000000005
779,5.6153
780,5.63055
781,5.6324000000000005
782,5.6356
783,5.63785
784,5.6464
785,5.65725
786,5.6595
787,5.66275
788,5.684200000000001
789,5.690650000000001
790,5.7058
791,5.70905
792,5.7155000000000005
793,5.724950000000001
794,5.73475
795,5.739
796,5.742500000000001
797,5.7533
798,5.75515
799,5.77575
800,5.7769
801,5.78235
802,5.7877
803,5.793
804,5.81255
805,5.81785
806,5.8209
807,5.82415
808,5.83275
809,5.84905
810,5.856450000000001
811,5.857600000000001
812,5.8588000000000005
813,5.877000000000001
814,5.8878
815,5.8899
816,5.90075
817,5.9039
818,5.9083000000000006
819,5.92645
820,5.9286
821,5.93065
822,5.9376500000000005
823,5.9393
824,5.95575
825,5.95765
826,5.95985
827,5.96415
828,5.9771
829,5.9975000000000005
1 spikes
2 0 0.00165
3 1 0.00285
4 2 0.0189
5 3 0.0222
6 4 0.033
7 5 0.0351
8 6 0.05535
9 7 0.0599
10 8 0.06955
11 9 0.0727
12 10 0.07495
13 11 0.0845
14 12 0.09015000000000001
15 13 0.0918
16 14 0.1061
17 15 0.1126
18 16 0.1222
19 17 0.12345
20 18 0.13185
21 19 0.1353
22 20 0.13845000000000002
23 21 0.14505
24 22 0.1524
25 23 0.15430000000000002
26 24 0.15995
27 25 0.16190000000000002
28 26 0.16640000000000002
29 27 0.1729
30 28 0.19360000000000002
31 29 0.19540000000000002
32 30 0.19770000000000001
33 31 0.21910000000000002
34 32 0.22045
35 33 0.2235
36 34 0.23450000000000001
37 35 0.24065
38 36 0.24205000000000002
39 37 0.25795
40 38 0.26025000000000004
41 39 0.26875
42 40 0.28595000000000004
43 41 0.30515000000000003
44 42 0.30955
45 43 0.31815
46 44 0.32145
47 45 0.32275000000000004
48 46 0.33430000000000004
49 47 0.3433
50 48 0.3443
51 49 0.34535
52 50 0.3526
53 51 0.37325
54 52 0.38415
55 53 0.38845
56 54 0.3896
57 55 0.3915
58 56 0.4152
59 57 0.42375
60 58 0.42800000000000005
61 59 0.4314
62 60 0.43775000000000003
63 61 0.44415000000000004
64 62 0.44870000000000004
65 63 0.45055
66 64 0.4635
67 65 0.46475
68 66 0.47550000000000003
69 67 0.47775
70 68 0.5098
71 69 0.5132
72 70 0.5165000000000001
73 71 0.5186000000000001
74 72 0.5228
75 73 0.5296000000000001
76 74 0.5423
77 75 0.5517500000000001
78 76 0.553
79 77 0.56065
80 78 0.5639500000000001
81 79 0.5799500000000001
82 80 0.58325
83 81 0.58965
84 82 0.59175
85 83 0.5950500000000001
86 84 0.60475
87 85 0.60695
88 86 0.6253500000000001
89 87 0.6273500000000001
90 88 0.6478
91 89 0.65
92 90 0.65315
93 91 0.65445
94 92 0.6803
95 93 0.6887500000000001
96 94 0.6907
97 95 0.6919500000000001
98 96 0.6940500000000001
99 97 0.69955
100 98 0.71035
101 99 0.7361500000000001
102 100 0.7373000000000001
103 101 0.7385
104 102 0.74245
105 103 0.7437
106 104 0.74565
107 105 0.76095
108 106 0.7673
109 107 0.7737
110 108 0.77925
111 109 0.7974
112 110 0.80195
113 111 0.8073
114 112 0.8085
115 113 0.83945
116 114 0.8469500000000001
117 115 0.8480000000000001
118 116 0.8547
119 117 0.85785
120 118 0.8664000000000001
121 119 0.8687
122 120 0.87085
123 121 0.874
124 122 0.8827
125 123 0.8911
126 124 0.9073
127 125 0.9095000000000001
128 126 0.9106000000000001
129 127 0.91915
130 128 0.9376000000000001
131 129 0.9442
132 130 0.94735
133 131 0.9515
134 132 0.9559000000000001
135 133 0.9592
136 134 0.9774
137 135 0.98485
138 136 0.9956
139 137 0.99685
140 138 0.9981500000000001
141 139 1.00215
142 140 1.02155
143 141 1.03335
144 142 1.0357
145 143 1.0550000000000002
146 144 1.0602500000000001
147 145 1.06995
148 146 1.07325
149 147 1.0765
150 148 1.0843
151 149 1.0904
152 150 1.09165
153 151 1.1065500000000001
154 152 1.1131
155 153 1.1219000000000001
156 154 1.1237000000000001
157 155 1.13155
158 156 1.13365
159 157 1.1369
160 158 1.14545
161 159 1.1528500000000002
162 160 1.1541000000000001
163 161 1.1563
164 162 1.1605
165 163 1.16605
166 164 1.1724
167 165 1.19385
168 166 1.19595
169 167 1.19825
170 168 1.21885
171 169 1.22065
172 170 1.224
173 171 1.2318
174 172 1.24025
175 173 1.2422
176 174 1.2511
177 175 1.25845
178 176 1.26825
179 177 1.2747000000000002
180 178 1.2962500000000001
181 179 1.3049000000000002
182 180 1.3092000000000001
183 181 1.31795
184 182 1.3219
185 183 1.3339
186 184 1.33605
187 185 1.34355
188 186 1.3447
189 187 1.3469
190 188 1.3523
191 189 1.3845
192 190 1.3887500000000002
193 191 1.3899000000000001
194 192 1.4148500000000002
195 193 1.4169500000000002
196 194 1.4233500000000001
197 195 1.42765
198 196 1.4318
199 197 1.4374500000000001
200 198 1.43955
201 199 1.44405
202 200 1.4491500000000002
203 201 1.4511500000000002
204 202 1.4632500000000002
205 203 1.46455
206 204 1.476
207 205 1.5095
208 206 1.5118
209 207 1.5161
210 208 1.5181
211 209 1.5224
212 210 1.52445
213 211 1.53
214 212 1.54285
215 213 1.5515
216 214 1.5527
217 215 1.5611000000000002
218 216 1.5644500000000001
219 217 1.5805
220 218 1.58375
221 219 1.5901
222 220 1.5945500000000001
223 221 1.6044
224 222 1.6064
225 223 1.6257000000000001
226 224 1.6440000000000001
227 225 1.64825
228 226 1.6518000000000002
229 227 1.65365
230 228 1.67975
231 229 1.68825
232 230 1.69025
233 231 1.6915
234 232 1.69275
235 233 1.6948500000000002
236 234 1.70995
237 235 1.73595
238 236 1.73705
239 237 1.7382000000000002
240 238 1.74205
241 239 1.7433
242 240 1.7452
243 241 1.7465000000000002
244 242 1.7614500000000002
245 243 1.76695
246 244 1.7734
247 245 1.7797
248 246 1.7971000000000001
249 247 1.8023500000000001
250 248 1.80765
251 249 1.8090000000000002
252 250 1.8391000000000002
253 251 1.8467
254 252 1.8477000000000001
255 253 1.84885
256 254 1.85525
257 255 1.8584500000000002
258 256 1.867
259 257 1.8693000000000002
260 258 1.8725
261 259 1.8831
262 260 1.8907500000000002
263 261 1.9069500000000001
264 262 1.9091
265 263 1.9102000000000001
266 264 1.9188
267 265 1.9371500000000001
268 266 1.9447
269 267 1.94775
270 268 1.9511
271 269 1.95635
272 270 1.95975
273 271 1.9771500000000002
274 272 1.98445
275 273 1.9952500000000002
276 274 1.99665
277 275 1.9983000000000002
278 276 2.00195
279 277 2.00395
280 278 2.02525
281 279 2.0264
282 280 2.0296000000000003
283 281 2.03085
284 282 2.03505
285 283 2.05655
286 284 2.0588
287 285 2.06005
288 286 2.08015
289 287 2.08685
290 288 2.0954
291 289 2.10395
292 290 2.1233500000000003
293 291 2.1298500000000002
294 292 2.13835
295 293 2.1396
296 294 2.1418
297 295 2.1461
298 296 2.1534500000000003
299 297 2.1598
300 298 2.16105
301 299 2.1719500000000003
302 300 2.17315
303 301 2.17525
304 302 2.2139
305 303 2.2152000000000003
306 304 2.2205500000000002
307 305 2.2310000000000003
308 306 2.23955
309 307 2.24295
310 308 2.24945
311 309 2.2708500000000003
312 310 2.2731
313 311 2.27525
314 312 2.27745
315 313 2.2807
316 314 2.2914000000000003
317 315 2.30345
318 316 2.30645
319 317 2.30765
320 318 2.31395
321 319 2.31515
322 320 2.34315
323 321 2.34435
324 322 2.3549
325 323 2.36585
326 324 2.3676500000000003
327 325 2.3689
328 326 2.37
329 327 2.3797
330 328 2.3927
331 329 2.39595
332 330 2.3982
333 331 2.40025
334 332 2.4068
335 333 2.40885
336 334 2.4251
337 335 2.44335
338 336 2.4465500000000002
339 337 2.44865
340 338 2.45085
341 339 2.45635
342 340 2.4583500000000003
343 341 2.4693
344 342 2.4734000000000003
345 343 2.47565
346 344 2.49175
347 345 2.5067
348 346 2.5081
349 347 2.52625
350 348 2.53815
351 349 2.5447
352 350 2.55425
353 351 2.5695
354 352 2.5713500000000002
355 353 2.58115
356 354 2.59085
357 355 2.59405
358 356 2.5995500000000002
359 357 2.6069500000000003
360 358 2.60825
361 359 2.61145
362 360 2.6135
363 361 2.61885
364 362 2.62425
365 363 2.6427
366 364 2.6446
367 365 2.6479
368 366 2.65755
369 367 2.66315
370 368 2.66505
371 369 2.6698
372 370 2.67605
373 371 2.6771000000000003
374 372 2.68665
375 373 2.6921500000000003
376 374 2.6975000000000002
377 375 2.6996
378 376 2.7062
379 377 2.7138
380 378 2.7253000000000003
381 379 2.7473
382 380 2.74825
383 381 2.7502
384 382 2.76755
385 383 2.7739000000000003
386 384 2.7815000000000003
387 385 2.78365
388 386 2.79005
389 387 2.79775
390 388 2.8000000000000003
391 389 2.80125
392 390 2.8148500000000003
393 391 2.8226
394 392 2.83215
395 393 2.83415
396 394 2.83975
397 395 2.85385
398 396 2.8654
399 397 2.8720000000000003
400 398 2.8761
401 399 2.8796
402 400 2.8827000000000003
403 401 2.8976
404 402 2.9066
405 403 2.9204000000000003
406 404 2.9343000000000004
407 405 2.93895
408 406 2.94065
409 407 2.9432
410 408 2.9498
411 409 2.9517
412 410 2.9539
413 411 2.9558500000000003
414 412 2.972
415 413 2.9764
416 414 2.9797000000000002
417 415 3.0002500000000003
418 416 3.02075
419 417 3.02365
420 418 3.0269500000000003
421 419 3.0313000000000003
422 420 3.03445
423 421 3.0367
424 422 3.04435
425 423 3.0549
426 424 3.05605
427 425 3.0572000000000004
428 426 3.0628
429 427 3.08015
430 428 3.08175
431 429 3.1132500000000003
432 430 3.1153
433 431 3.1219
434 432 3.1229
435 433 3.124
436 434 3.1271
437 435 3.1348000000000003
438 436 3.1499
439 437 3.1679500000000003
440 438 3.16935
441 439 3.1778500000000003
442 440 3.1831500000000004
443 441 3.1855
444 442 3.18665
445 443 3.1879
446 444 3.1952000000000003
447 445 3.1962
448 446 3.20025
449 447 3.2016500000000003
450 448 3.21545
451 449 3.2424500000000003
452 450 3.2438000000000002
453 451 3.2458500000000003
454 452 3.2477500000000004
455 453 3.27155
456 454 3.27895
457 455 3.2812
458 456 3.2877
459 457 3.3158000000000003
460 458 3.3264500000000004
461 459 3.3297000000000003
462 460 3.33095
463 461 3.3394500000000003
464 462 3.3415000000000004
465 463 3.3598000000000003
466 464 3.36215
467 465 3.3633
468 466 3.36435
469 467 3.3655500000000003
470 468 3.3674
471 469 3.3858
472 470 3.3943000000000003
473 471 3.4064
474 472 3.41265
475 473 3.42335
476 474 3.4267000000000003
477 475 3.43865
478 476 3.4438500000000003
479 477 3.446
480 478 3.45465
481 479 3.4697
482 480 3.4721
483 481 3.47935
484 482 3.4848000000000003
485 483 3.487
486 484 3.5053
487 485 3.5267000000000004
488 486 3.5288500000000003
489 487 3.5311500000000002
490 488 3.54075
491 489 3.5547
492 490 3.5568500000000003
493 491 3.5581500000000004
494 492 3.5633500000000002
495 493 3.5688500000000003
496 494 3.57085
497 495 3.57995
498 496 3.5815
499 497 3.5958
500 498 3.6011
501 499 3.6194
502 500 3.6216000000000004
503 501 3.64215
504 502 3.6443000000000003
505 503 3.6462000000000003
506 504 3.6538500000000003
507 505 3.65815
508 506 3.6595
509 507 3.6637500000000003
510 508 3.6669500000000004
511 509 3.66895
512 510 3.6818
513 511 3.69075
514 512 3.7111
515 513 3.722
516 514 3.7358000000000002
517 515 3.73685
518 516 3.74
519 517 3.74235
520 518 3.74425
521 519 3.7520000000000002
522 520 3.7734
523 521 3.77565
524 522 3.7811500000000002
525 523 3.79165
526 524 3.7929500000000003
527 525 3.7975000000000003
528 526 3.80255
529 527 3.8058500000000004
530 528 3.8079500000000004
531 529 3.8283500000000004
532 530 3.83155
533 531 3.8392500000000003
534 532 3.8575000000000004
535 533 3.86715
536 534 3.8693000000000004
537 535 3.87155
538 536 3.8789000000000002
539 537 3.88435
540 538 3.8898
541 539 3.8921
542 540 3.90185
543 541 3.9047500000000004
544 542 3.91025
545 543 3.9361
546 544 3.9373
547 545 3.9415
548 546 3.9490000000000003
549 547 3.9531500000000004
550 548 3.9543000000000004
551 549 3.9554500000000004
552 550 3.9663000000000004
553 551 3.9832500000000004
554 552 3.9843
555 553 3.99095
556 554 3.9923
557 555 4.01035
558 556 4.0156
559 557 4.01795
560 558 4.02005
561 559 4.03515
562 560 4.04495
563 561 4.0633
564 562 4.0688
565 563 4.08465
566 564 4.09435
567 565 4.11595
568 566 4.118250000000001
569 567 4.1282000000000005
570 568 4.1321
571 569 4.1354500000000005
572 570 4.1373500000000005
573 571 4.1429
574 572 4.1572000000000005
575 573 4.1655500000000005
576 574 4.16775
577 575 4.1772
578 576 4.18285
579 577 4.1871
580 578 4.19475
581 579 4.21075
582 580 4.226
583 581 4.2279
584 582 4.22925
585 583 4.23055
586 584 4.233350000000001
587 585 4.26035
588 586 4.2657
589 587 4.2700000000000005
590 588 4.28395
591 589 4.285200000000001
592 590 4.2926
593 591 4.29575
594 592 4.2991
595 593 4.3131
596 594 4.314150000000001
597 595 4.3162
598 596 4.318350000000001
599 597 4.3237000000000005
600 598 4.32815
601 599 4.3487
602 600 4.3596
603 601 4.36785
604 602 4.38415
605 603 4.3897
606 604 4.3915500000000005
607 605 4.4013
608 606 4.40785
609 607 4.4121500000000005
610 608 4.42
611 609 4.4231
612 610 4.43515
613 611 4.4372
614 612 4.4415000000000004
615 613 4.4575000000000005
616 614 4.4609000000000005
617 615 4.4724
618 616 4.47475
619 617 4.49395
620 618 4.5027
621 619 4.50465
622 620 4.5103
623 621 4.5123500000000005
624 622 4.5209
625 623 4.5252
626 624 4.52725
627 625 4.5295000000000005
628 626 4.531750000000001
629 627 4.5404
630 628 4.5542
631 629 4.55645
632 630 4.56095
633 631 4.5661000000000005
634 632 4.58655
635 633 4.59225
636 634 4.596550000000001
637 635 4.598450000000001
638 636 4.6006
639 637 4.60815
640 638 4.61365
641 639 4.6546
642 640 4.660950000000001
643 641 4.6632
644 642 4.664350000000001
645 643 4.66545
646 644 4.67605
647 645 4.67825
648 646 4.6869000000000005
649 647 4.69855
650 648 4.7094000000000005
651 649 4.7233
652 650 4.7277000000000005
653 651 4.729
654 652 4.731
655 653 4.73555
656 654 4.761
657 655 4.7622
658 656 4.7761000000000005
659 657 4.7839
660 658 4.79575
661 659 4.797750000000001
662 660 4.8043000000000005
663 661 4.8075
664 662 4.8235
665 663 4.82795
666 664 4.8302000000000005
667 665 4.8453
668 666 4.8539
669 667 4.856
670 668 4.8580000000000005
671 669 4.86475
672 670 4.872050000000001
673 671 4.87535
674 672 4.8796
675 673 4.88485
676 674 4.90005
677 675 4.90235
678 676 4.9099
679 677 4.912100000000001
680 678 4.933450000000001
681 679 4.9378
682 680 4.939900000000001
683 681 4.94205
684 682 4.9594000000000005
685 683 4.963550000000001
686 684 4.964700000000001
687 685 4.9842
688 686 4.995950000000001
689 687 5.0003
690 688 5.006600000000001
691 689 5.00875
692 690 5.0120000000000005
693 691 5.0197
694 692 5.0261000000000005
695 693 5.0274
696 694 5.0368
697 695 5.04
698 696 5.04425
699 697 5.05105
700 698 5.05305
701 699 5.055000000000001
702 700 5.0738
703 701 5.0754
704 702 5.09295
705 703 5.11015
706 704 5.1145000000000005
707 705 5.11765
708 706 5.1295
709 707 5.1552500000000006
710 708 5.1563
711 709 5.1573
712 710 5.15845
713 711 5.16295
714 712 5.1672
715 713 5.1801
716 714 5.1877
717 715 5.199450000000001
718 716 5.2124500000000005
719 717 5.2143500000000005
720 718 5.21565
721 719 5.22315
722 720 5.2265500000000005
723 721 5.2286
724 722 5.238300000000001
725 723 5.2479000000000005
726 724 5.25325
727 725 5.2599
728 726 5.2611
729 727 5.262300000000001
730 728 5.2932500000000005
731 729 5.2953
732 730 5.29645
733 731 5.3148
734 732 5.319
735 733 5.3277
736 734 5.32965
737 735 5.3309500000000005
738 736 5.3364
739 737 5.3386000000000005
740 738 5.34405
741 739 5.352650000000001
742 740 5.3751500000000005
743 741 5.38155
744 742 5.3827
745 743 5.386
746 744 5.391100000000001
747 745 5.4052500000000006
748 746 5.415900000000001
749 747 5.41715
750 748 5.42675
751 749 5.4473
752 750 5.4484
753 751 5.450550000000001
754 752 5.45265
755 753 5.4579
756 754 5.46985
757 755 5.471900000000001
758 756 5.482550000000001
759 757 5.48385
760 758 5.486000000000001
761 759 5.49045
762 760 5.4935
763 761 5.49985
764 762 5.517250000000001
765 763 5.5194
766 764 5.5215000000000005
767 765 5.530200000000001
768 766 5.5419
769 767 5.5582
770 768 5.5624
771 769 5.5646
772 770 5.56775
773 771 5.569
774 772 5.57435
775 773 5.5907
776 774 5.5924000000000005
777 775 5.5982
778 776 5.6003
779 777 5.6076500000000005
780 778 5.6110500000000005
781 779 5.6153
782 780 5.63055
783 781 5.6324000000000005
784 782 5.6356
785 783 5.63785
786 784 5.6464
787 785 5.65725
788 786 5.6595
789 787 5.66275
790 788 5.684200000000001
791 789 5.690650000000001
792 790 5.7058
793 791 5.70905
794 792 5.7155000000000005
795 793 5.724950000000001
796 794 5.73475
797 795 5.739
798 796 5.742500000000001
799 797 5.7533
800 798 5.75515
801 799 5.77575
802 800 5.7769
803 801 5.78235
804 802 5.7877
805 803 5.793
806 804 5.81255
807 805 5.81785
808 806 5.8209
809 807 5.82415
810 808 5.83275
811 809 5.84905
812 810 5.856450000000001
813 811 5.857600000000001
814 812 5.8588000000000005
815 813 5.877000000000001
816 814 5.8878
817 815 5.8899
818 816 5.90075
819 817 5.9039
820 818 5.9083000000000006
821 819 5.92645
822 820 5.9286
823 821 5.93065
824 822 5.9376500000000005
825 823 5.9393
826 824 5.95575
827 825 5.95765
828 826 5.95985
829 827 5.96415
830 828 5.9771
831 829 5.9975000000000005

View File

@ -1,719 +1,240 @@
,spikes
0,0.0038
1,0.013600000000000001
2,0.02325
3,0.03185
4,0.0437
5,0.051250000000000004
6,0.0609
7,0.0663
8,0.0729
0,0.009250000000000001
1,0.01575
2,0.028550000000000002
3,0.034
4,0.041550000000000004
5,0.04915
6,0.05885
7,0.0674
8,0.07490000000000001
9,0.08145000000000001
10,0.09000000000000001
11,0.09755
12,0.1019
13,0.1169
14,0.12335
15,0.13415000000000002
16,0.1396
17,0.1524
18,0.1622
19,0.16745000000000002
20,0.17515
21,0.18045
22,0.19025
23,0.1998
24,0.2074
25,0.2225
26,0.22785000000000002
27,0.23315000000000002
28,0.23970000000000002
29,0.2526
30,0.26135
31,0.26985000000000003
32,0.2753
33,0.28500000000000003
34,0.2904
35,0.3054
36,0.30960000000000004
37,0.31625000000000003
38,0.328
39,0.33335000000000004
40,0.33885000000000004
41,0.34415
42,0.3572
43,0.36995
10,0.0932
11,0.10185000000000001
12,0.10940000000000001
13,0.1148
14,0.1245
15,0.1331
16,0.14075000000000001
17,0.15030000000000002
18,0.15785000000000002
19,0.16545
20,0.1761
21,0.1826
22,0.1902
23,0.19665000000000002
24,0.20850000000000002
25,0.21930000000000002
26,0.22460000000000002
27,0.23435
28,0.2419
29,0.25155
30,0.2581
31,0.26455
32,0.27205
33,0.28390000000000004
34,0.29465
35,0.3022
36,0.3108
37,0.31620000000000004
38,0.32380000000000003
39,0.33345
40,0.34095000000000003
41,0.34750000000000003
42,0.3561
43,0.3657
44,0.37755
45,0.38620000000000004
46,0.3917
47,0.40245000000000003
48,0.4121
49,0.41845000000000004
50,0.4228
51,0.4325
52,0.44110000000000005
53,0.44880000000000003
54,0.45945
55,0.46915
56,0.47340000000000004
57,0.48315
58,0.49175
59,0.49935
60,0.51325
61,0.52085
62,0.5305500000000001
63,0.53585
64,0.54245
65,0.5552
66,0.5586
67,0.5629000000000001
68,0.5779000000000001
69,0.58545
70,0.59185
46,0.3916
47,0.40345000000000003
48,0.41100000000000003
49,0.41745000000000004
50,0.4293
51,0.43470000000000003
52,0.4444
53,0.452
54,0.45835000000000004
55,0.46705
56,0.47565
57,0.4832
58,0.4907
59,0.5015000000000001
60,0.5112
61,0.5176000000000001
62,0.52515
63,0.5327000000000001
64,0.54135
65,0.5499
66,0.55965
67,0.5672
68,0.57465
69,0.58225
70,0.5919
71,0.6005
72,0.6091500000000001
73,0.6156
74,0.6297
75,0.63815
76,0.6468
77,0.65445
78,0.6598
79,0.66625
80,0.6769000000000001
81,0.68455
82,0.69205
83,0.7039000000000001
84,0.71145
85,0.72335
86,0.72875
87,0.74055
88,0.74815
89,0.7524000000000001
90,0.76315
91,0.7695500000000001
92,0.77715
72,0.6102000000000001
73,0.6168
74,0.6263500000000001
75,0.635
76,0.6437
77,0.6511
78,0.6609
79,0.66735
80,0.6738000000000001
81,0.6814
82,0.6931
83,0.69965
84,0.7094
85,0.7180000000000001
86,0.7255
87,0.733
88,0.7427
89,0.75455
90,0.76105
91,0.7675000000000001
92,0.77605
93,0.7847500000000001
94,0.7934
95,0.80195
96,0.8105
97,0.8180000000000001
98,0.8288500000000001
99,0.83635
100,0.8440000000000001
101,0.84935
102,0.8633000000000001
103,0.86985
104,0.8785000000000001
105,0.88915
106,0.90095
107,0.9054000000000001
108,0.914
109,0.9193
110,0.929
111,0.93655
112,0.9462
95,0.7999
96,0.80945
97,0.8202
98,0.8268000000000001
99,0.8375
100,0.8440500000000001
101,0.85045
102,0.8580500000000001
103,0.86765
104,0.8751500000000001
105,0.8849
106,0.8924500000000001
107,0.9
108,0.9096500000000001
109,0.91725
110,0.927
111,0.93335
112,0.94315
113,0.9527500000000001
114,0.9592
115,0.9689500000000001
116,0.9839
117,0.9882500000000001
118,0.9958
119,1.00225
120,1.0077
121,1.0152
122,1.0248000000000002
123,1.0368
124,1.04965
125,1.0539
126,1.0626
127,1.0679
128,1.0744500000000001
129,1.0863500000000001
130,1.0939
131,1.0992
132,1.10995
133,1.1218000000000001
134,1.1304
135,1.1369
136,1.1445
137,1.1531
138,1.16275
114,0.96035
115,0.9699500000000001
116,0.97535
117,0.9850500000000001
118,0.9926
119,0.9991000000000001
120,1.0098500000000001
121,1.01845
122,1.0281500000000001
123,1.03455
124,1.0432000000000001
125,1.04965
126,1.0583
127,1.0659
128,1.0745
129,1.08205
130,1.09385
131,1.10145
132,1.11105
133,1.11755
134,1.12615
135,1.13375
136,1.14125
137,1.14985
138,1.15845
139,1.1681000000000001
140,1.1778
141,1.1875
142,1.195
143,1.2005000000000001
144,1.2134
145,1.2252
146,1.23065
147,1.23825
148,1.2436500000000001
149,1.25325
150,1.264
151,1.2726
152,1.28025
153,1.2877500000000002
154,1.29845
155,1.30705
156,1.31135
157,1.3189
158,1.32865
159,1.3341
160,1.3426
161,1.3545
162,1.3609
163,1.3705500000000002
164,1.3781
165,1.38795
166,1.39325
167,1.40625
168,1.41375
169,1.4201000000000001
170,1.4309500000000002
171,1.4386
172,1.4472
173,1.4579
174,1.4665000000000001
175,1.47085
176,1.4793500000000002
177,1.49025
178,1.4977
179,1.5053
180,1.51715
181,1.5225
182,1.5322
183,1.54095
184,1.5547
185,1.5580500000000002
186,1.5623
187,1.5763500000000001
188,1.5817
189,1.5881500000000002
190,1.59365
191,1.6086
192,1.6151
193,1.6259000000000001
194,1.6313
195,1.63985
196,1.65385
197,1.6593
198,1.6647
199,1.6711500000000001
200,1.6776
201,1.6905000000000001
202,1.6981000000000002
203,1.70565
204,1.7131500000000002
205,1.72495
206,1.7314
207,1.74225
208,1.7488000000000001
209,1.7605000000000002
210,1.7649000000000001
211,1.7703
140,1.1767
141,1.1832500000000001
142,1.1919
143,1.1994500000000001
144,1.20915
145,1.21985
146,1.2253
147,1.2349
148,1.2425000000000002
149,1.2511
150,1.25865
151,1.26625
152,1.2737500000000002
153,1.28445
154,1.2953000000000001
155,1.30275
156,1.3103
157,1.3158
158,1.32755
159,1.334
160,1.34155
161,1.3491
162,1.36305
163,1.3718000000000001
164,1.37815
165,1.3858000000000001
166,1.3944
167,1.40405
168,1.4116
169,1.41805
170,1.42985
171,1.4353
172,1.4449500000000002
173,1.45255
174,1.4611
175,1.4686000000000001
176,1.4772
177,1.4838
178,1.4923000000000002
179,1.5031
180,1.5117500000000001
181,1.52255
182,1.52905
183,1.5354
184,1.54295
185,1.55055
186,1.5613000000000001
187,1.5688
188,1.5785500000000001
189,1.58505
190,1.59355
191,1.60115
192,1.6098000000000001
193,1.6173000000000002
194,1.6269500000000001
195,1.6367
196,1.6453
197,1.6507500000000002
198,1.6615
199,1.6679000000000002
200,1.67445
201,1.6829500000000002
202,1.6948500000000002
203,1.7024000000000001
204,1.7110500000000002
205,1.7185000000000001
206,1.7261000000000002
207,1.7336500000000001
208,1.7433
209,1.75515
210,1.7627000000000002
211,1.7681
212,1.7778
213,1.7917500000000002
214,1.7972000000000001
215,1.8036
216,1.8112000000000001
217,1.81765
218,1.8327
219,1.8392000000000002
220,1.84775
221,1.8564500000000002
222,1.864
223,1.8746500000000001
224,1.88115
225,1.88985
226,1.90155
227,1.9113
228,1.91555
229,1.921
230,1.9340000000000002
231,1.9393500000000001
232,1.9468500000000002
233,1.9544000000000001
234,1.96205
235,1.9759
236,1.98455
237,1.9889000000000001
238,1.9996500000000001
239,2.00605
240,2.01905
241,2.0287
242,2.0363
243,2.04055
244,2.0481000000000003
245,2.061
246,2.0675
247,2.0728
248,2.0782000000000003
249,2.09225
250,2.09985
251,2.1063
252,2.1138
253,2.1245000000000003
254,2.1353
255,2.14075
256,2.15255
257,2.16235
258,2.1710000000000003
259,2.17525
260,2.1859
261,2.1914000000000002
262,2.20105
263,2.20865
264,2.2150000000000003
265,2.22155
266,2.2302
267,2.2420500000000003
268,2.2506
269,2.2569500000000002
270,2.2645500000000003
271,2.2731500000000002
272,2.28295
273,2.2905
274,2.3011500000000003
275,2.30655
276,2.3131
277,2.327
278,2.3324000000000003
279,2.3411
280,2.35405
281,2.3594
282,2.3659
283,2.3744
284,2.3830500000000003
285,2.3928000000000003
286,2.40025
287,2.4078500000000003
288,2.4208000000000003
289,2.42725
290,2.43475
291,2.4455
292,2.45095
293,2.4585
294,2.4682
295,2.47785
296,2.48225
297,2.48755
298,2.50155
299,2.50575
300,2.51235
301,2.5273000000000003
302,2.53605
303,2.54365
304,2.5488500000000003
305,2.55545
306,2.5629500000000003
307,2.5726
308,2.5834
309,2.59205
310,2.5974
311,2.60935
312,2.6168
313,2.6222000000000003
314,2.6308000000000002
315,2.64055
316,2.6479500000000002
317,2.6631
318,2.66955
319,2.6771000000000003
320,2.6826000000000003
321,2.689
322,2.69865
323,2.70305
324,2.7147
325,2.71915
326,2.72995
327,2.73965
328,2.7449500000000002
329,2.75355
330,2.7655000000000003
331,2.7719
332,2.7848
333,2.7891500000000002
334,2.7935000000000003
335,2.80315
336,2.8085500000000003
337,2.8268500000000003
338,2.8311
339,2.8397
340,2.84835
341,2.8537000000000003
342,2.8612
343,2.87845
344,2.886
345,2.89025
346,2.8979
347,2.9087
348,2.91615
349,2.92055
350,2.9335
351,2.94095
352,2.9517
353,2.9604
354,2.96685
355,2.97655
356,2.98085
357,2.99275
358,3.00345
359,3.0121
360,3.0164
361,3.0303500000000003
362,3.0357000000000003
363,3.0444
364,3.0541
365,3.05845
366,3.07235
367,3.081
368,3.08955
369,3.0961000000000003
370,3.10575
371,3.1112
372,3.11775
373,3.12725
374,3.1349500000000003
375,3.1445000000000003
376,3.1542000000000003
377,3.1596
378,3.16725
379,3.17795
380,3.18865
381,3.19625
382,3.2028000000000003
383,3.2102
384,3.22315
385,3.23285
386,3.2403500000000003
387,3.2437
388,3.2512000000000003
389,3.2609500000000002
390,3.2738500000000004
391,3.2845
392,3.2911
393,3.2986
394,3.3072500000000002
395,3.3125500000000003
396,3.3276000000000003
397,3.3352
398,3.3406000000000002
399,3.34595
400,3.3546
401,3.361
402,3.3675
403,3.37935
404,3.39015
405,3.39765
406,3.40295
407,3.4160000000000004
408,3.4202500000000002
409,3.4278500000000003
410,3.44185
411,3.44715
412,3.45255
413,3.46455
414,3.47525
415,3.4806500000000002
416,3.4882
417,3.4956500000000004
418,3.50535
419,3.5108
420,3.5216000000000003
421,3.5291
422,3.53555
423,3.5453
424,3.55385
425,3.55925
426,3.569
427,3.5753500000000003
428,3.58405
429,3.5895
430,3.6023
431,3.6088500000000003
432,3.6216500000000003
433,3.6282
434,3.6336000000000004
435,3.6453
436,3.65185
437,3.6572500000000003
438,3.6713
439,3.6788000000000003
440,3.68745
441,3.7003000000000004
442,3.70895
443,3.7154000000000003
444,3.72085
445,3.7283000000000004
446,3.7401500000000003
447,3.74445
448,3.7563
449,3.7638000000000003
450,3.7746500000000003
451,3.7779000000000003
452,3.78865
453,3.7961500000000004
454,3.8026500000000003
455,3.8134
456,3.8199500000000004
457,3.8327
458,3.8392500000000003
459,3.85
460,3.8565
461,3.8673
462,3.8726000000000003
463,3.8845
464,3.8909000000000002
465,3.8985000000000003
466,3.90505
467,3.918
468,3.9254000000000002
469,3.93515
470,3.9404500000000002
471,3.9501500000000003
472,3.9544
473,3.9652000000000003
474,3.96965
475,3.98145
476,3.98795
477,4.00075
478,4.011550000000001
479,4.01685
480,4.02125
481,4.0299000000000005
482,4.0364
483,4.0428500000000005
484,4.0557
485,4.0686
486,4.0762
487,4.08925
488,4.0988500000000005
489,4.1031
490,4.10855
491,4.1139
492,4.12465
493,4.1302
494,4.141900000000001
495,4.1472500000000005
496,4.160200000000001
497,4.1656
498,4.16985
499,4.18175
500,4.1893
501,4.199050000000001
502,4.205550000000001
503,4.21835
504,4.2248
505,4.2302
506,4.2346
507,4.2475000000000005
508,4.2540000000000004
509,4.26795
510,4.27545
511,4.28305
512,4.2949
513,4.3002
514,4.3056
515,4.314150000000001
516,4.321750000000001
517,4.333600000000001
518,4.34
519,4.3519000000000005
520,4.36055
521,4.3660000000000005
522,4.372450000000001
523,4.381
524,4.39395
525,4.3993
526,4.4079500000000005
527,4.415500000000001
528,4.4274000000000004
529,4.4338500000000005
530,4.4446
531,4.45115
532,4.4565
533,4.46185
534,4.4758000000000004
535,4.4812
536,4.4941
537,4.50065
538,4.5123500000000005
539,4.5189
540,4.52635
541,4.535
542,4.54375
543,4.5512500000000005
544,4.5566
545,4.56625
546,4.5748500000000005
547,4.5803
548,4.5868
549,4.5997
550,4.60505
551,4.6159
552,4.62655
553,4.6342
554,4.6417
555,4.6471
556,4.65895
557,4.66645
558,4.67835
559,4.6826
560,4.68905
561,4.69875
562,4.70845
563,4.71705
564,4.72245
565,4.72785
566,4.7472
567,4.75255
568,4.759
569,4.76455
570,4.7730500000000005
571,4.77955
572,4.79145
573,4.79885
574,4.8097
575,4.8163
576,4.8269
577,4.83885
578,4.84625
579,4.85175
580,4.8603000000000005
581,4.87
582,4.87655
583,4.8839500000000005
584,4.89375
585,4.9024
586,4.9088
587,4.91525
588,4.9270000000000005
589,4.93355
590,4.93785
591,4.947500000000001
592,4.95725
593,4.961600000000001
594,4.978750000000001
595,4.9863
596,4.990600000000001
597,5.00035
598,5.01015
599,5.0197
600,5.0262
601,5.03155
602,5.04025
603,5.0478000000000005
604,5.0563
605,5.06715
606,5.072500000000001
607,5.07995
608,5.08975
609,5.1015500000000005
610,5.110250000000001
611,5.11775
612,5.1296
613,5.13715
614,5.14145
615,5.145700000000001
616,5.1523
617,5.163
618,5.1748
619,5.1845
620,5.19425
621,5.2017500000000005
622,5.21135
623,5.21575
624,5.22435
625,5.23085
626,5.2426
627,5.25235
628,5.25785
629,5.2652
630,5.27285
631,5.28355
632,5.2922
633,5.3029
634,5.30945
635,5.3148
636,5.33425
637,5.3375
638,5.3439000000000005
639,5.3482
640,5.3580000000000005
641,5.3645000000000005
642,5.3752
643,5.3849
644,5.39775
645,5.4053
646,5.4118
647,5.424650000000001
648,5.43015
649,5.4397
650,5.44405
651,5.45265
652,5.45805
653,5.4677500000000006
654,5.4732
655,5.485
656,5.4915
657,5.49905
658,5.5065
659,5.5206
660,5.526000000000001
661,5.53455
662,5.5486
663,5.55395
664,5.56465
665,5.56905
666,5.5745000000000005
667,5.58615
668,5.59375
669,5.6025
670,5.6089
671,5.62075
672,5.6272
673,5.63365
674,5.639
675,5.6488000000000005
676,5.660550000000001
677,5.667050000000001
678,5.6735500000000005
679,5.681100000000001
680,5.6973
681,5.704750000000001
682,5.7091
683,5.72095
684,5.7316
685,5.73705
686,5.74575
687,5.75105
688,5.765000000000001
689,5.76935
690,5.7747
691,5.785550000000001
692,5.79405
693,5.80595
694,5.8145500000000006
695,5.8188
696,5.82965
697,5.8340000000000005
698,5.840450000000001
699,5.854500000000001
700,5.85975
701,5.87385
702,5.8814
703,5.8867
704,5.89315
705,5.9018500000000005
706,5.9083000000000006
707,5.914750000000001
708,5.9222
709,5.9352
710,5.9439
711,5.951350000000001
712,5.96005
713,5.96865
714,5.97285
715,5.982600000000001
716,5.99015
717,5.995550000000001
213,1.78635
214,1.7939500000000002
215,1.8003500000000001
216,1.8101
217,1.8198500000000002
218,1.8285
219,1.8381500000000002
220,1.8445500000000001
221,1.8521500000000002
222,1.8618000000000001
223,1.8693000000000002
224,1.8758000000000001
225,1.8877000000000002
226,1.89415
227,1.9006
228,1.9103
229,1.9178000000000002
230,1.9286
231,1.9340000000000002
232,1.94365
233,1.9523000000000001
234,1.9609500000000002
235,1.9695
236,1.97595
237,1.9857
238,1.9931

1 spikes
2 0 0.0038 0.009250000000000001
3 1 0.013600000000000001 0.01575
4 2 0.02325 0.028550000000000002
5 3 0.03185 0.034
6 4 0.0437 0.041550000000000004
7 5 0.051250000000000004 0.04915
8 6 0.0609 0.05885
9 7 0.0663 0.0674
10 8 0.0729 0.07490000000000001
11 9 0.08145000000000001
12 10 0.09000000000000001 0.0932
13 11 0.09755 0.10185000000000001
14 12 0.1019 0.10940000000000001
15 13 0.1169 0.1148
16 14 0.12335 0.1245
17 15 0.13415000000000002 0.1331
18 16 0.1396 0.14075000000000001
19 17 0.1524 0.15030000000000002
20 18 0.1622 0.15785000000000002
21 19 0.16745000000000002 0.16545
22 20 0.17515 0.1761
23 21 0.18045 0.1826
24 22 0.19025 0.1902
25 23 0.1998 0.19665000000000002
26 24 0.2074 0.20850000000000002
27 25 0.2225 0.21930000000000002
28 26 0.22785000000000002 0.22460000000000002
29 27 0.23315000000000002 0.23435
30 28 0.23970000000000002 0.2419
31 29 0.2526 0.25155
32 30 0.26135 0.2581
33 31 0.26985000000000003 0.26455
34 32 0.2753 0.27205
35 33 0.28500000000000003 0.28390000000000004
36 34 0.2904 0.29465
37 35 0.3054 0.3022
38 36 0.30960000000000004 0.3108
39 37 0.31625000000000003 0.31620000000000004
40 38 0.328 0.32380000000000003
41 39 0.33335000000000004 0.33345
42 40 0.33885000000000004 0.34095000000000003
43 41 0.34415 0.34750000000000003
44 42 0.3572 0.3561
45 43 0.36995 0.3657
46 44 0.37755
47 45 0.38620000000000004
48 46 0.3917 0.3916
49 47 0.40245000000000003 0.40345000000000003
50 48 0.4121 0.41100000000000003
51 49 0.41845000000000004 0.41745000000000004
52 50 0.4228 0.4293
53 51 0.4325 0.43470000000000003
54 52 0.44110000000000005 0.4444
55 53 0.44880000000000003 0.452
56 54 0.45945 0.45835000000000004
57 55 0.46915 0.46705
58 56 0.47340000000000004 0.47565
59 57 0.48315 0.4832
60 58 0.49175 0.4907
61 59 0.49935 0.5015000000000001
62 60 0.51325 0.5112
63 61 0.52085 0.5176000000000001
64 62 0.5305500000000001 0.52515
65 63 0.53585 0.5327000000000001
66 64 0.54245 0.54135
67 65 0.5552 0.5499
68 66 0.5586 0.55965
69 67 0.5629000000000001 0.5672
70 68 0.5779000000000001 0.57465
71 69 0.58545 0.58225
72 70 0.59185 0.5919
73 71 0.6005
74 72 0.6091500000000001 0.6102000000000001
75 73 0.6156 0.6168
76 74 0.6297 0.6263500000000001
77 75 0.63815 0.635
78 76 0.6468 0.6437
79 77 0.65445 0.6511
80 78 0.6598 0.6609
81 79 0.66625 0.66735
82 80 0.6769000000000001 0.6738000000000001
83 81 0.68455 0.6814
84 82 0.69205 0.6931
85 83 0.7039000000000001 0.69965
86 84 0.71145 0.7094
87 85 0.72335 0.7180000000000001
88 86 0.72875 0.7255
89 87 0.74055 0.733
90 88 0.74815 0.7427
91 89 0.7524000000000001 0.75455
92 90 0.76315 0.76105
93 91 0.7695500000000001 0.7675000000000001
94 92 0.77715 0.77605
95 93 0.7847500000000001
96 94 0.7934
97 95 0.80195 0.7999
98 96 0.8105 0.80945
99 97 0.8180000000000001 0.8202
100 98 0.8288500000000001 0.8268000000000001
101 99 0.83635 0.8375
102 100 0.8440000000000001 0.8440500000000001
103 101 0.84935 0.85045
104 102 0.8633000000000001 0.8580500000000001
105 103 0.86985 0.86765
106 104 0.8785000000000001 0.8751500000000001
107 105 0.88915 0.8849
108 106 0.90095 0.8924500000000001
109 107 0.9054000000000001 0.9
110 108 0.914 0.9096500000000001
111 109 0.9193 0.91725
112 110 0.929 0.927
113 111 0.93655 0.93335
114 112 0.9462 0.94315
115 113 0.9527500000000001
116 114 0.9592 0.96035
117 115 0.9689500000000001 0.9699500000000001
118 116 0.9839 0.97535
119 117 0.9882500000000001 0.9850500000000001
120 118 0.9958 0.9926
121 119 1.00225 0.9991000000000001
122 120 1.0077 1.0098500000000001
123 121 1.0152 1.01845
124 122 1.0248000000000002 1.0281500000000001
125 123 1.0368 1.03455
126 124 1.04965 1.0432000000000001
127 125 1.0539 1.04965
128 126 1.0626 1.0583
129 127 1.0679 1.0659
130 128 1.0744500000000001 1.0745
131 129 1.0863500000000001 1.08205
132 130 1.0939 1.09385
133 131 1.0992 1.10145
134 132 1.10995 1.11105
135 133 1.1218000000000001 1.11755
136 134 1.1304 1.12615
137 135 1.1369 1.13375
138 136 1.1445 1.14125
139 137 1.1531 1.14985
140 138 1.16275 1.15845
141 139 1.1681000000000001
142 140 1.1778 1.1767
143 141 1.1875 1.1832500000000001
144 142 1.195 1.1919
145 143 1.2005000000000001 1.1994500000000001
146 144 1.2134 1.20915
147 145 1.2252 1.21985
148 146 1.23065 1.2253
149 147 1.23825 1.2349
150 148 1.2436500000000001 1.2425000000000002
151 149 1.25325 1.2511
152 150 1.264 1.25865
153 151 1.2726 1.26625
154 152 1.28025 1.2737500000000002
155 153 1.2877500000000002 1.28445
156 154 1.29845 1.2953000000000001
157 155 1.30705 1.30275
158 156 1.31135 1.3103
159 157 1.3189 1.3158
160 158 1.32865 1.32755
161 159 1.3341 1.334
162 160 1.3426 1.34155
163 161 1.3545 1.3491
164 162 1.3609 1.36305
165 163 1.3705500000000002 1.3718000000000001
166 164 1.3781 1.37815
167 165 1.38795 1.3858000000000001
168 166 1.39325 1.3944
169 167 1.40625 1.40405
170 168 1.41375 1.4116
171 169 1.4201000000000001 1.41805
172 170 1.4309500000000002 1.42985
173 171 1.4386 1.4353
174 172 1.4472 1.4449500000000002
175 173 1.4579 1.45255
176 174 1.4665000000000001 1.4611
177 175 1.47085 1.4686000000000001
178 176 1.4793500000000002 1.4772
179 177 1.49025 1.4838
180 178 1.4977 1.4923000000000002
181 179 1.5053 1.5031
182 180 1.51715 1.5117500000000001
183 181 1.5225 1.52255
184 182 1.5322 1.52905
185 183 1.54095 1.5354
186 184 1.5547 1.54295
187 185 1.5580500000000002 1.55055
188 186 1.5623 1.5613000000000001
189 187 1.5763500000000001 1.5688
190 188 1.5817 1.5785500000000001
191 189 1.5881500000000002 1.58505
192 190 1.59365 1.59355
193 191 1.6086 1.60115
194 192 1.6151 1.6098000000000001
195 193 1.6259000000000001 1.6173000000000002
196 194 1.6313 1.6269500000000001
197 195 1.63985 1.6367
198 196 1.65385 1.6453
199 197 1.6593 1.6507500000000002
200 198 1.6647 1.6615
201 199 1.6711500000000001 1.6679000000000002
202 200 1.6776 1.67445
203 201 1.6905000000000001 1.6829500000000002
204 202 1.6981000000000002 1.6948500000000002
205 203 1.70565 1.7024000000000001
206 204 1.7131500000000002 1.7110500000000002
207 205 1.72495 1.7185000000000001
208 206 1.7314 1.7261000000000002
209 207 1.74225 1.7336500000000001
210 208 1.7488000000000001 1.7433
211 209 1.7605000000000002 1.75515
212 210 1.7649000000000001 1.7627000000000002
213 211 1.7703 1.7681
214 212 1.7778
215 213 1.7917500000000002 1.78635
216 214 1.7972000000000001 1.7939500000000002
217 215 1.8036 1.8003500000000001
218 216 1.8112000000000001 1.8101
219 217 1.81765 1.8198500000000002
220 218 1.8327 1.8285
221 219 1.8392000000000002 1.8381500000000002
222 220 1.84775 1.8445500000000001
223 221 1.8564500000000002 1.8521500000000002
224 222 1.864 1.8618000000000001
225 223 1.8746500000000001 1.8693000000000002
226 224 1.88115 1.8758000000000001
227 225 1.88985 1.8877000000000002
228 226 1.90155 1.89415
229 227 1.9113 1.9006
230 228 1.91555 1.9103
231 229 1.921 1.9178000000000002
232 230 1.9340000000000002 1.9286
233 231 1.9393500000000001 1.9340000000000002
234 232 1.9468500000000002 1.94365
235 233 1.9544000000000001 1.9523000000000001
236 234 1.96205 1.9609500000000002
237 235 1.9759 1.9695
238 236 1.98455 1.97595
239 237 1.9889000000000001 1.9857
240 238 1.9996500000000001 1.9931
239 2.00605
240 2.01905
241 2.0287
242 2.0363
243 2.04055
244 2.0481000000000003
245 2.061
246 2.0675
247 2.0728
248 2.0782000000000003
249 2.09225
250 2.09985
251 2.1063
252 2.1138
253 2.1245000000000003
254 2.1353
255 2.14075
256 2.15255
257 2.16235
258 2.1710000000000003
259 2.17525
260 2.1859
261 2.1914000000000002
262 2.20105
263 2.20865
264 2.2150000000000003
265 2.22155
266 2.2302
267 2.2420500000000003
268 2.2506
269 2.2569500000000002
270 2.2645500000000003
271 2.2731500000000002
272 2.28295
273 2.2905
274 2.3011500000000003
275 2.30655
276 2.3131
277 2.327
278 2.3324000000000003
279 2.3411
280 2.35405
281 2.3594
282 2.3659
283 2.3744
284 2.3830500000000003
285 2.3928000000000003
286 2.40025
287 2.4078500000000003
288 2.4208000000000003
289 2.42725
290 2.43475
291 2.4455
292 2.45095
293 2.4585
294 2.4682
295 2.47785
296 2.48225
297 2.48755
298 2.50155
299 2.50575
300 2.51235
301 2.5273000000000003
302 2.53605
303 2.54365
304 2.5488500000000003
305 2.55545
306 2.5629500000000003
307 2.5726
308 2.5834
309 2.59205
310 2.5974
311 2.60935
312 2.6168
313 2.6222000000000003
314 2.6308000000000002
315 2.64055
316 2.6479500000000002
317 2.6631
318 2.66955
319 2.6771000000000003
320 2.6826000000000003
321 2.689
322 2.69865
323 2.70305
324 2.7147
325 2.71915
326 2.72995
327 2.73965
328 2.7449500000000002
329 2.75355
330 2.7655000000000003
331 2.7719
332 2.7848
333 2.7891500000000002
334 2.7935000000000003
335 2.80315
336 2.8085500000000003
337 2.8268500000000003
338 2.8311
339 2.8397
340 2.84835
341 2.8537000000000003
342 2.8612
343 2.87845
344 2.886
345 2.89025
346 2.8979
347 2.9087
348 2.91615
349 2.92055
350 2.9335
351 2.94095
352 2.9517
353 2.9604
354 2.96685
355 2.97655
356 2.98085
357 2.99275
358 3.00345
359 3.0121
360 3.0164
361 3.0303500000000003
362 3.0357000000000003
363 3.0444
364 3.0541
365 3.05845
366 3.07235
367 3.081
368 3.08955
369 3.0961000000000003
370 3.10575
371 3.1112
372 3.11775
373 3.12725
374 3.1349500000000003
375 3.1445000000000003
376 3.1542000000000003
377 3.1596
378 3.16725
379 3.17795
380 3.18865
381 3.19625
382 3.2028000000000003
383 3.2102
384 3.22315
385 3.23285
386 3.2403500000000003
387 3.2437
388 3.2512000000000003
389 3.2609500000000002
390 3.2738500000000004
391 3.2845
392 3.2911
393 3.2986
394 3.3072500000000002
395 3.3125500000000003
396 3.3276000000000003
397 3.3352
398 3.3406000000000002
399 3.34595
400 3.3546
401 3.361
402 3.3675
403 3.37935
404 3.39015
405 3.39765
406 3.40295
407 3.4160000000000004
408 3.4202500000000002
409 3.4278500000000003
410 3.44185
411 3.44715
412 3.45255
413 3.46455
414 3.47525
415 3.4806500000000002
416 3.4882
417 3.4956500000000004
418 3.50535
419 3.5108
420 3.5216000000000003
421 3.5291
422 3.53555
423 3.5453
424 3.55385
425 3.55925
426 3.569
427 3.5753500000000003
428 3.58405
429 3.5895
430 3.6023
431 3.6088500000000003
432 3.6216500000000003
433 3.6282
434 3.6336000000000004
435 3.6453
436 3.65185
437 3.6572500000000003
438 3.6713
439 3.6788000000000003
440 3.68745
441 3.7003000000000004
442 3.70895
443 3.7154000000000003
444 3.72085
445 3.7283000000000004
446 3.7401500000000003
447 3.74445
448 3.7563
449 3.7638000000000003
450 3.7746500000000003
451 3.7779000000000003
452 3.78865
453 3.7961500000000004
454 3.8026500000000003
455 3.8134
456 3.8199500000000004
457 3.8327
458 3.8392500000000003
459 3.85
460 3.8565
461 3.8673
462 3.8726000000000003
463 3.8845
464 3.8909000000000002
465 3.8985000000000003
466 3.90505
467 3.918
468 3.9254000000000002
469 3.93515
470 3.9404500000000002
471 3.9501500000000003
472 3.9544
473 3.9652000000000003
474 3.96965
475 3.98145
476 3.98795
477 4.00075
478 4.011550000000001
479 4.01685
480 4.02125
481 4.0299000000000005
482 4.0364
483 4.0428500000000005
484 4.0557
485 4.0686
486 4.0762
487 4.08925
488 4.0988500000000005
489 4.1031
490 4.10855
491 4.1139
492 4.12465
493 4.1302
494 4.141900000000001
495 4.1472500000000005
496 4.160200000000001
497 4.1656
498 4.16985
499 4.18175
500 4.1893
501 4.199050000000001
502 4.205550000000001
503 4.21835
504 4.2248
505 4.2302
506 4.2346
507 4.2475000000000005
508 4.2540000000000004
509 4.26795
510 4.27545
511 4.28305
512 4.2949
513 4.3002
514 4.3056
515 4.314150000000001
516 4.321750000000001
517 4.333600000000001
518 4.34
519 4.3519000000000005
520 4.36055
521 4.3660000000000005
522 4.372450000000001
523 4.381
524 4.39395
525 4.3993
526 4.4079500000000005
527 4.415500000000001
528 4.4274000000000004
529 4.4338500000000005
530 4.4446
531 4.45115
532 4.4565
533 4.46185
534 4.4758000000000004
535 4.4812
536 4.4941
537 4.50065
538 4.5123500000000005
539 4.5189
540 4.52635
541 4.535
542 4.54375
543 4.5512500000000005
544 4.5566
545 4.56625
546 4.5748500000000005
547 4.5803
548 4.5868
549 4.5997
550 4.60505
551 4.6159
552 4.62655
553 4.6342
554 4.6417
555 4.6471
556 4.65895
557 4.66645
558 4.67835
559 4.6826
560 4.68905
561 4.69875
562 4.70845
563 4.71705
564 4.72245
565 4.72785
566 4.7472
567 4.75255
568 4.759
569 4.76455
570 4.7730500000000005
571 4.77955
572 4.79145
573 4.79885
574 4.8097
575 4.8163
576 4.8269
577 4.83885
578 4.84625
579 4.85175
580 4.8603000000000005
581 4.87
582 4.87655
583 4.8839500000000005
584 4.89375
585 4.9024
586 4.9088
587 4.91525
588 4.9270000000000005
589 4.93355
590 4.93785
591 4.947500000000001
592 4.95725
593 4.961600000000001
594 4.978750000000001
595 4.9863
596 4.990600000000001
597 5.00035
598 5.01015
599 5.0197
600 5.0262
601 5.03155
602 5.04025
603 5.0478000000000005
604 5.0563
605 5.06715
606 5.072500000000001
607 5.07995
608 5.08975
609 5.1015500000000005
610 5.110250000000001
611 5.11775
612 5.1296
613 5.13715
614 5.14145
615 5.145700000000001
616 5.1523
617 5.163
618 5.1748
619 5.1845
620 5.19425
621 5.2017500000000005
622 5.21135
623 5.21575
624 5.22435
625 5.23085
626 5.2426
627 5.25235
628 5.25785
629 5.2652
630 5.27285
631 5.28355
632 5.2922
633 5.3029
634 5.30945
635 5.3148
636 5.33425
637 5.3375
638 5.3439000000000005
639 5.3482
640 5.3580000000000005
641 5.3645000000000005
642 5.3752
643 5.3849
644 5.39775
645 5.4053
646 5.4118
647 5.424650000000001
648 5.43015
649 5.4397
650 5.44405
651 5.45265
652 5.45805
653 5.4677500000000006
654 5.4732
655 5.485
656 5.4915
657 5.49905
658 5.5065
659 5.5206
660 5.526000000000001
661 5.53455
662 5.5486
663 5.55395
664 5.56465
665 5.56905
666 5.5745000000000005
667 5.58615
668 5.59375
669 5.6025
670 5.6089
671 5.62075
672 5.6272
673 5.63365
674 5.639
675 5.6488000000000005
676 5.660550000000001
677 5.667050000000001
678 5.6735500000000005
679 5.681100000000001
680 5.6973
681 5.704750000000001
682 5.7091
683 5.72095
684 5.7316
685 5.73705
686 5.74575
687 5.75105
688 5.765000000000001
689 5.76935
690 5.7747
691 5.785550000000001
692 5.79405
693 5.80595
694 5.8145500000000006
695 5.8188
696 5.82965
697 5.8340000000000005
698 5.840450000000001
699 5.854500000000001
700 5.85975
701 5.87385
702 5.8814
703 5.8867
704 5.89315
705 5.9018500000000005
706 5.9083000000000006
707 5.914750000000001
708 5.9222
709 5.9352
710 5.9439
711 5.951350000000001
712 5.96005
713 5.96865
714 5.97285
715 5.982600000000001
716 5.99015
717 5.995550000000001

100001
flowchart_c_sig_0.1.csv Normal file

File diff suppressed because it is too large Load Diff

40001
flowchart_c_sig_0.9_a_fe_0.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

40001
flowchart_c_sig_0_a_fe_0.2.csv Normal file

File diff suppressed because it is too large Load Diff

40001
flowchart_c_sig_0_a_fe_0.csv Normal file

File diff suppressed because it is too large Load Diff

100001
flowchart_c_sig_1.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

40001
flowchart_c_sig_1_a_fe_0.2.csv Normal file

File diff suppressed because it is too large Load Diff

40001
flowchart_c_sig_1_a_fe_0.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,394 @@
,spikes
0,0.00015000000000000001
1,0.0005
2,0.0010500000000000002
3,0.00215
4,0.07135
5,0.08335000000000001
6,0.09745000000000001
7,0.11025
8,0.11995
9,0.13720000000000002
10,0.15005000000000002
11,0.16190000000000002
12,0.1749
13,0.18660000000000002
14,0.2018
15,0.21365
16,0.22655
17,0.2416
18,0.2545
19,0.26205
20,0.27715
21,0.2869
22,0.3009
23,0.3095
24,0.3279
25,0.3396
26,0.35585
27,0.36660000000000004
28,0.3805
29,0.39125000000000004
30,0.4022
31,0.4182
32,0.42910000000000004
33,0.4441
34,0.45585000000000003
35,0.46575
36,0.47865
37,0.49150000000000005
38,0.5067
39,0.5163
40,0.5335
41,0.54315
42,0.5551
43,0.5658500000000001
44,0.5809000000000001
45,0.5939
46,0.6068
47,0.6197
48,0.6325500000000001
49,0.6455500000000001
50,0.65625
51,0.6681
52,0.6843
53,0.69515
54,0.7058
55,0.7188
56,0.73165
57,0.7499
58,0.7597
59,0.7705000000000001
60,0.7855500000000001
61,0.79415
62,0.8072
63,0.8232
64,0.8318500000000001
65,0.8437
66,0.8545
67,0.8728
68,0.8836
69,0.8975000000000001
70,0.9094500000000001
71,0.91695
72,0.9331
73,0.9524
74,0.9611500000000001
75,0.96975
76,0.98695
77,0.99555
78,1.0074
79,1.02365
80,1.0353
81,1.04725
82,1.0559
83,1.0742500000000001
84,1.08615
85,1.0945500000000001
86,1.10755
87,1.1238000000000001
88,1.1367
89,1.1506
90,1.1626
91,1.1734
92,1.18625
93,1.1981000000000002
94,1.21315
95,1.2282
96,1.23465
97,1.2518500000000001
98,1.25945
99,1.2735
100,1.28635
101,1.2995
102,1.3090000000000002
103,1.3295000000000001
104,1.3402500000000002
105,1.35105
106,1.36175
107,1.3746500000000001
108,1.3920000000000001
109,1.40165
110,1.41455
111,1.42745
112,1.44045
113,1.4533500000000001
114,1.4652500000000002
115,1.4749
116,1.4942
117,1.5051
118,1.5147000000000002
119,1.5244
120,1.53845
121,1.5503
122,1.5663500000000001
123,1.5794000000000001
124,1.5924
125,1.60505
126,1.62135
127,1.63005
128,1.64615
129,1.6537000000000002
130,1.66765
131,1.6817
132,1.6956
133,1.70425
134,1.7194
135,1.7333
136,1.742
137,1.7603
138,1.7721500000000001
139,1.7872000000000001
140,1.7991000000000001
141,1.80885
142,1.8207
143,1.8368
144,1.8485500000000001
145,1.8615000000000002
146,1.8702500000000002
147,1.88525
148,1.89925
149,1.9110500000000001
150,1.9228500000000002
151,1.9359000000000002
152,1.9500000000000002
153,1.9617
154,1.9756500000000001
155,1.9897500000000001
156,2.0026
157,2.0103500000000003
158,2.0296000000000003
159,2.0445
160,2.0532
161,2.0619
162,2.07815
163,2.08875
164,2.105
165,2.1178500000000002
166,2.1275500000000003
167,2.1437
168,2.1513500000000003
169,2.16645
170,2.1814
171,2.1911
172,2.2051000000000003
173,2.2201500000000003
174,2.2342
175,2.24385
176,2.25785
177,2.2676000000000003
178,2.2848
179,2.2945
180,2.3086
181,2.3235
182,2.3344
183,2.3452
184,2.35915
185,2.3678
186,2.37955
187,2.39685
188,2.41075
189,2.4173500000000003
190,2.43025
191,2.4463500000000002
192,2.45505
193,2.46795
194,2.4808000000000003
195,2.4906
196,2.50565
197,2.5175
198,2.53145
199,2.5444500000000003
200,2.5553
201,2.56385
202,2.5821
203,2.5940000000000003
204,2.60795
205,2.62405
206,2.63165
207,2.6467
208,2.65855
209,2.6683000000000003
210,2.6876
211,2.69625
212,2.7091000000000003
213,2.72755
214,2.73495
215,2.7447500000000002
216,2.75775
217,2.77165
218,2.7803
219,2.7954000000000003
220,2.8114500000000002
221,2.82335
222,2.8363
223,2.8491500000000003
224,2.862
225,2.8718500000000002
226,2.8880500000000002
227,2.89345
228,2.9138
229,2.92245
230,2.9322000000000004
231,2.9547000000000003
232,2.96015
233,2.97305
234,2.9817
235,2.99465
236,3.0118500000000004
237,3.0258000000000003
238,3.0356
239,3.05275
240,3.06135
241,3.0743500000000004
242,3.0892500000000003
243,3.09905
244,3.11085
245,3.12385
246,3.1378000000000004
247,3.1508000000000003
248,3.1637
249,3.1734
250,3.1853000000000002
251,3.20475
252,3.2174500000000004
253,3.2273
254,3.24025
255,3.2563500000000003
256,3.2681500000000003
257,3.28105
258,3.294
259,3.3081
260,3.31775
261,3.3306
262,3.34585
263,3.3521
264,3.36835
265,3.3792
266,3.3932
267,3.4028500000000004
268,3.4233000000000002
269,3.4297
270,3.4449
271,3.4588
272,3.47505
273,3.4858000000000002
274,3.49655
275,3.5061500000000003
276,3.5225
277,3.53425
278,3.5492500000000002
279,3.5600500000000004
280,3.5687
281,3.5816000000000003
282,3.5966
283,3.6096500000000002
284,3.6214500000000003
285,3.63445
286,3.64725
287,3.6591500000000003
288,3.6699
289,3.68495
290,3.70005
291,3.713
292,3.7237500000000003
293,3.7388500000000002
294,3.7508500000000002
295,3.7606
296,3.7713
297,3.79155
298,3.7991
299,3.8143000000000002
300,3.82615
301,3.8348500000000003
302,3.84335
303,3.8627000000000002
304,3.87025
305,3.8907000000000003
306,3.8992500000000003
307,3.9196500000000003
308,3.9295
309,3.9424
310,3.9520500000000003
311,3.9672
312,3.98015
313,3.99195
314,3.9995000000000003
315,4.0135000000000005
316,4.02855
317,4.0394000000000005
318,4.0501000000000005
319,4.0663
320,4.0760000000000005
321,4.0899
322,4.1019000000000005
323,4.11705
324,4.129700000000001
325,4.14275
326,4.152550000000001
327,4.168550000000001
328,4.1837
329,4.19445
330,4.20525
331,4.21805
332,4.23
333,4.2407
334,4.255850000000001
335,4.2678
336,4.2795000000000005
337,4.28925
338,4.30335
339,4.31405
340,4.32915
341,4.345400000000001
342,4.36035
343,4.36895
344,4.384
345,4.3937
346,4.40765
347,4.422750000000001
348,4.4336
349,4.443350000000001
350,4.455150000000001
351,4.47125
352,4.4852
353,4.4949
354,4.50795
355,4.51755
356,4.5327
357,4.542400000000001
358,4.55535
359,4.56925
360,4.5854
361,4.5962000000000005
362,4.609100000000001
363,4.62215
364,4.63605
365,4.648000000000001
366,4.6587000000000005
367,4.6748
368,4.684550000000001
369,4.69535
370,4.7103
371,4.72325
372,4.7351
373,4.7525
374,4.7631000000000006
375,4.77705
376,4.7869
377,4.7965
378,4.8129
379,4.826700000000001
380,4.8398
381,4.8483
382,4.8632
383,4.8761
384,4.8924
385,4.90425
386,4.9117500000000005
387,4.9236
388,4.9387
389,4.9484
390,4.9634
391,4.9785
392,4.9947
1 spikes
2 0 0.00015000000000000001
3 1 0.0005
4 2 0.0010500000000000002
5 3 0.00215
6 4 0.07135
7 5 0.08335000000000001
8 6 0.09745000000000001
9 7 0.11025
10 8 0.11995
11 9 0.13720000000000002
12 10 0.15005000000000002
13 11 0.16190000000000002
14 12 0.1749
15 13 0.18660000000000002
16 14 0.2018
17 15 0.21365
18 16 0.22655
19 17 0.2416
20 18 0.2545
21 19 0.26205
22 20 0.27715
23 21 0.2869
24 22 0.3009
25 23 0.3095
26 24 0.3279
27 25 0.3396
28 26 0.35585
29 27 0.36660000000000004
30 28 0.3805
31 29 0.39125000000000004
32 30 0.4022
33 31 0.4182
34 32 0.42910000000000004
35 33 0.4441
36 34 0.45585000000000003
37 35 0.46575
38 36 0.47865
39 37 0.49150000000000005
40 38 0.5067
41 39 0.5163
42 40 0.5335
43 41 0.54315
44 42 0.5551
45 43 0.5658500000000001
46 44 0.5809000000000001
47 45 0.5939
48 46 0.6068
49 47 0.6197
50 48 0.6325500000000001
51 49 0.6455500000000001
52 50 0.65625
53 51 0.6681
54 52 0.6843
55 53 0.69515
56 54 0.7058
57 55 0.7188
58 56 0.73165
59 57 0.7499
60 58 0.7597
61 59 0.7705000000000001
62 60 0.7855500000000001
63 61 0.79415
64 62 0.8072
65 63 0.8232
66 64 0.8318500000000001
67 65 0.8437
68 66 0.8545
69 67 0.8728
70 68 0.8836
71 69 0.8975000000000001
72 70 0.9094500000000001
73 71 0.91695
74 72 0.9331
75 73 0.9524
76 74 0.9611500000000001
77 75 0.96975
78 76 0.98695
79 77 0.99555
80 78 1.0074
81 79 1.02365
82 80 1.0353
83 81 1.04725
84 82 1.0559
85 83 1.0742500000000001
86 84 1.08615
87 85 1.0945500000000001
88 86 1.10755
89 87 1.1238000000000001
90 88 1.1367
91 89 1.1506
92 90 1.1626
93 91 1.1734
94 92 1.18625
95 93 1.1981000000000002
96 94 1.21315
97 95 1.2282
98 96 1.23465
99 97 1.2518500000000001
100 98 1.25945
101 99 1.2735
102 100 1.28635
103 101 1.2995
104 102 1.3090000000000002
105 103 1.3295000000000001
106 104 1.3402500000000002
107 105 1.35105
108 106 1.36175
109 107 1.3746500000000001
110 108 1.3920000000000001
111 109 1.40165
112 110 1.41455
113 111 1.42745
114 112 1.44045
115 113 1.4533500000000001
116 114 1.4652500000000002
117 115 1.4749
118 116 1.4942
119 117 1.5051
120 118 1.5147000000000002
121 119 1.5244
122 120 1.53845
123 121 1.5503
124 122 1.5663500000000001
125 123 1.5794000000000001
126 124 1.5924
127 125 1.60505
128 126 1.62135
129 127 1.63005
130 128 1.64615
131 129 1.6537000000000002
132 130 1.66765
133 131 1.6817
134 132 1.6956
135 133 1.70425
136 134 1.7194
137 135 1.7333
138 136 1.742
139 137 1.7603
140 138 1.7721500000000001
141 139 1.7872000000000001
142 140 1.7991000000000001
143 141 1.80885
144 142 1.8207
145 143 1.8368
146 144 1.8485500000000001
147 145 1.8615000000000002
148 146 1.8702500000000002
149 147 1.88525
150 148 1.89925
151 149 1.9110500000000001
152 150 1.9228500000000002
153 151 1.9359000000000002
154 152 1.9500000000000002
155 153 1.9617
156 154 1.9756500000000001
157 155 1.9897500000000001
158 156 2.0026
159 157 2.0103500000000003
160 158 2.0296000000000003
161 159 2.0445
162 160 2.0532
163 161 2.0619
164 162 2.07815
165 163 2.08875
166 164 2.105
167 165 2.1178500000000002
168 166 2.1275500000000003
169 167 2.1437
170 168 2.1513500000000003
171 169 2.16645
172 170 2.1814
173 171 2.1911
174 172 2.2051000000000003
175 173 2.2201500000000003
176 174 2.2342
177 175 2.24385
178 176 2.25785
179 177 2.2676000000000003
180 178 2.2848
181 179 2.2945
182 180 2.3086
183 181 2.3235
184 182 2.3344
185 183 2.3452
186 184 2.35915
187 185 2.3678
188 186 2.37955
189 187 2.39685
190 188 2.41075
191 189 2.4173500000000003
192 190 2.43025
193 191 2.4463500000000002
194 192 2.45505
195 193 2.46795
196 194 2.4808000000000003
197 195 2.4906
198 196 2.50565
199 197 2.5175
200 198 2.53145
201 199 2.5444500000000003
202 200 2.5553
203 201 2.56385
204 202 2.5821
205 203 2.5940000000000003
206 204 2.60795
207 205 2.62405
208 206 2.63165
209 207 2.6467
210 208 2.65855
211 209 2.6683000000000003
212 210 2.6876
213 211 2.69625
214 212 2.7091000000000003
215 213 2.72755
216 214 2.73495
217 215 2.7447500000000002
218 216 2.75775
219 217 2.77165
220 218 2.7803
221 219 2.7954000000000003
222 220 2.8114500000000002
223 221 2.82335
224 222 2.8363
225 223 2.8491500000000003
226 224 2.862
227 225 2.8718500000000002
228 226 2.8880500000000002
229 227 2.89345
230 228 2.9138
231 229 2.92245
232 230 2.9322000000000004
233 231 2.9547000000000003
234 232 2.96015
235 233 2.97305
236 234 2.9817
237 235 2.99465
238 236 3.0118500000000004
239 237 3.0258000000000003
240 238 3.0356
241 239 3.05275
242 240 3.06135
243 241 3.0743500000000004
244 242 3.0892500000000003
245 243 3.09905
246 244 3.11085
247 245 3.12385
248 246 3.1378000000000004
249 247 3.1508000000000003
250 248 3.1637
251 249 3.1734
252 250 3.1853000000000002
253 251 3.20475
254 252 3.2174500000000004
255 253 3.2273
256 254 3.24025
257 255 3.2563500000000003
258 256 3.2681500000000003
259 257 3.28105
260 258 3.294
261 259 3.3081
262 260 3.31775
263 261 3.3306
264 262 3.34585
265 263 3.3521
266 264 3.36835
267 265 3.3792
268 266 3.3932
269 267 3.4028500000000004
270 268 3.4233000000000002
271 269 3.4297
272 270 3.4449
273 271 3.4588
274 272 3.47505
275 273 3.4858000000000002
276 274 3.49655
277 275 3.5061500000000003
278 276 3.5225
279 277 3.53425
280 278 3.5492500000000002
281 279 3.5600500000000004
282 280 3.5687
283 281 3.5816000000000003
284 282 3.5966
285 283 3.6096500000000002
286 284 3.6214500000000003
287 285 3.63445
288 286 3.64725
289 287 3.6591500000000003
290 288 3.6699
291 289 3.68495
292 290 3.70005
293 291 3.713
294 292 3.7237500000000003
295 293 3.7388500000000002
296 294 3.7508500000000002
297 295 3.7606
298 296 3.7713
299 297 3.79155
300 298 3.7991
301 299 3.8143000000000002
302 300 3.82615
303 301 3.8348500000000003
304 302 3.84335
305 303 3.8627000000000002
306 304 3.87025
307 305 3.8907000000000003
308 306 3.8992500000000003
309 307 3.9196500000000003
310 308 3.9295
311 309 3.9424
312 310 3.9520500000000003
313 311 3.9672
314 312 3.98015
315 313 3.99195
316 314 3.9995000000000003
317 315 4.0135000000000005
318 316 4.02855
319 317 4.0394000000000005
320 318 4.0501000000000005
321 319 4.0663
322 320 4.0760000000000005
323 321 4.0899
324 322 4.1019000000000005
325 323 4.11705
326 324 4.129700000000001
327 325 4.14275
328 326 4.152550000000001
329 327 4.168550000000001
330 328 4.1837
331 329 4.19445
332 330 4.20525
333 331 4.21805
334 332 4.23
335 333 4.2407
336 334 4.255850000000001
337 335 4.2678
338 336 4.2795000000000005
339 337 4.28925
340 338 4.30335
341 339 4.31405
342 340 4.32915
343 341 4.345400000000001
344 342 4.36035
345 343 4.36895
346 344 4.384
347 345 4.3937
348 346 4.40765
349 347 4.422750000000001
350 348 4.4336
351 349 4.443350000000001
352 350 4.455150000000001
353 351 4.47125
354 352 4.4852
355 353 4.4949
356 354 4.50795
357 355 4.51755
358 356 4.5327
359 357 4.542400000000001
360 358 4.55535
361 359 4.56925
362 360 4.5854
363 361 4.5962000000000005
364 362 4.609100000000001
365 363 4.62215
366 364 4.63605
367 365 4.648000000000001
368 366 4.6587000000000005
369 367 4.6748
370 368 4.684550000000001
371 369 4.69535
372 370 4.7103
373 371 4.72325
374 372 4.7351
375 373 4.7525
376 374 4.7631000000000006
377 375 4.77705
378 376 4.7869
379 377 4.7965
380 378 4.8129
381 379 4.826700000000001
382 380 4.8398
383 381 4.8483
384 382 4.8632
385 383 4.8761
386 384 4.8924
387 385 4.90425
388 386 4.9117500000000005
389 387 4.9236
390 388 4.9387
391 389 4.9484
392 390 4.9634
393 391 4.9785
394 392 4.9947

View File

@ -0,0 +1,240 @@
,spikes
0,0.0018000000000000002
1,0.013550000000000001
2,0.02315
3,0.029750000000000002
4,0.0383
5,0.043750000000000004
6,0.05335
7,0.05985
8,0.06960000000000001
9,0.08135
10,0.0868
11,0.09535
12,0.10405
13,0.1115
14,0.11910000000000001
15,0.13090000000000002
16,0.13645000000000002
17,0.14395
18,0.1515
19,0.1633
20,0.1719
21,0.17735
22,0.18805000000000002
23,0.1956
24,0.20315
25,0.2117
26,0.21925
27,0.2258
28,0.2366
29,0.24295
30,0.2538
31,0.26130000000000003
32,0.27205
33,0.2796
34,0.28815
35,0.29575
36,0.3055
37,0.31195
38,0.3195
39,0.32805
40,0.33665
41,0.3442
42,0.35285
43,0.3603
44,0.37120000000000003
45,0.37970000000000004
46,0.38735
47,0.397
48,0.4077
49,0.4131
50,0.4229
51,0.4304
52,0.43905
53,0.44545
54,0.45295
55,0.4627
56,0.4723
57,0.47985
58,0.48645000000000005
59,0.49720000000000003
60,0.50355
61,0.5133
62,0.5198
63,0.52945
64,0.538
65,0.54455
66,0.55425
67,0.5607
68,0.5704
69,0.5790500000000001
70,0.58555
71,0.59835
72,0.60595
73,0.61355
74,0.6253500000000001
75,0.63185
76,0.63825
77,0.64585
78,0.65225
79,0.66195
80,0.6727500000000001
81,0.68235
82,0.6899000000000001
83,0.6964
84,0.7018
85,0.7126
86,0.7222500000000001
87,0.732
88,0.73955
89,0.74705
90,0.75565
91,0.76215
92,0.7718
93,0.7793
94,0.79115
95,0.7988000000000001
96,0.80735
97,0.8138500000000001
98,0.8256
99,0.8311000000000001
100,0.8375
101,0.8482500000000001
102,0.8558
103,0.8633500000000001
104,0.8741500000000001
105,0.88265
106,0.8913000000000001
107,0.89895
108,0.9065000000000001
109,0.91615
110,0.9247500000000001
111,0.93125
112,0.9419000000000001
113,0.94845
114,0.9591500000000001
115,0.9646
116,0.9721500000000001
117,0.98075
118,0.9894000000000001
119,1.0012
120,1.0087000000000002
121,1.01745
122,1.0238500000000001
123,1.03145
124,1.0421
125,1.0497
126,1.0572000000000001
127,1.06585
128,1.0723
129,1.08195
130,1.0885
131,1.0981
132,1.10995
133,1.1175000000000002
134,1.12405
135,1.1316000000000002
136,1.13805
137,1.1456
138,1.1531500000000001
139,1.16605
140,1.1736
141,1.1811500000000001
142,1.1918
143,1.1994500000000001
144,1.20795
145,1.21455
146,1.22085
147,1.2296
148,1.2382
149,1.2446000000000002
150,1.2575500000000002
151,1.2640500000000001
152,1.27475
153,1.2824
154,1.292
155,1.30175
156,1.3082
157,1.31565
158,1.32325
159,1.33405
160,1.3426
161,1.35125
162,1.3577000000000001
163,1.3642
164,1.3761
165,1.3846
166,1.39215
167,1.39975
168,1.4115
169,1.4191
170,1.4277
171,1.4352500000000001
172,1.44175
173,1.4492500000000001
174,1.459
175,1.4697500000000001
176,1.4783000000000002
177,1.4848000000000001
178,1.4934
179,1.50095
180,1.5053
181,1.5171000000000001
182,1.5258500000000002
183,1.5333
184,1.5387000000000002
185,1.5494
186,1.5570000000000002
187,1.56565
188,1.5774000000000001
189,1.58285
190,1.5914000000000001
191,1.6022500000000002
192,1.6129
193,1.6184500000000002
194,1.62705
195,1.6345500000000002
196,1.6442
197,1.6506500000000002
198,1.6604
199,1.6712
200,1.67655
201,1.6841000000000002
202,1.6927
203,1.7002000000000002
204,1.70885
205,1.7185000000000001
206,1.7271500000000002
207,1.7336500000000001
208,1.7444000000000002
209,1.752
210,1.7584000000000002
211,1.77025
212,1.77675
213,1.7853
214,1.79505
215,1.80255
216,1.8100500000000002
217,1.81765
218,1.8263
219,1.83485
220,1.8467
221,1.85315
222,1.8607
223,1.8726
224,1.8780000000000001
225,1.88545
226,1.893
227,1.9049
228,1.9124
229,1.91995
230,1.92855
231,1.9361000000000002
232,1.9437
233,1.9534
234,1.9619000000000002
235,1.9695
236,1.9771
237,1.98675
238,1.9953
1 spikes
2 0 0.0018000000000000002
3 1 0.013550000000000001
4 2 0.02315
5 3 0.029750000000000002
6 4 0.0383
7 5 0.043750000000000004
8 6 0.05335
9 7 0.05985
10 8 0.06960000000000001
11 9 0.08135
12 10 0.0868
13 11 0.09535
14 12 0.10405
15 13 0.1115
16 14 0.11910000000000001
17 15 0.13090000000000002
18 16 0.13645000000000002
19 17 0.14395
20 18 0.1515
21 19 0.1633
22 20 0.1719
23 21 0.17735
24 22 0.18805000000000002
25 23 0.1956
26 24 0.20315
27 25 0.2117
28 26 0.21925
29 27 0.2258
30 28 0.2366
31 29 0.24295
32 30 0.2538
33 31 0.26130000000000003
34 32 0.27205
35 33 0.2796
36 34 0.28815
37 35 0.29575
38 36 0.3055
39 37 0.31195
40 38 0.3195
41 39 0.32805
42 40 0.33665
43 41 0.3442
44 42 0.35285
45 43 0.3603
46 44 0.37120000000000003
47 45 0.37970000000000004
48 46 0.38735
49 47 0.397
50 48 0.4077
51 49 0.4131
52 50 0.4229
53 51 0.4304
54 52 0.43905
55 53 0.44545
56 54 0.45295
57 55 0.4627
58 56 0.4723
59 57 0.47985
60 58 0.48645000000000005
61 59 0.49720000000000003
62 60 0.50355
63 61 0.5133
64 62 0.5198
65 63 0.52945
66 64 0.538
67 65 0.54455
68 66 0.55425
69 67 0.5607
70 68 0.5704
71 69 0.5790500000000001
72 70 0.58555
73 71 0.59835
74 72 0.60595
75 73 0.61355
76 74 0.6253500000000001
77 75 0.63185
78 76 0.63825
79 77 0.64585
80 78 0.65225
81 79 0.66195
82 80 0.6727500000000001
83 81 0.68235
84 82 0.6899000000000001
85 83 0.6964
86 84 0.7018
87 85 0.7126
88 86 0.7222500000000001
89 87 0.732
90 88 0.73955
91 89 0.74705
92 90 0.75565
93 91 0.76215
94 92 0.7718
95 93 0.7793
96 94 0.79115
97 95 0.7988000000000001
98 96 0.80735
99 97 0.8138500000000001
100 98 0.8256
101 99 0.8311000000000001
102 100 0.8375
103 101 0.8482500000000001
104 102 0.8558
105 103 0.8633500000000001
106 104 0.8741500000000001
107 105 0.88265
108 106 0.8913000000000001
109 107 0.89895
110 108 0.9065000000000001
111 109 0.91615
112 110 0.9247500000000001
113 111 0.93125
114 112 0.9419000000000001
115 113 0.94845
116 114 0.9591500000000001
117 115 0.9646
118 116 0.9721500000000001
119 117 0.98075
120 118 0.9894000000000001
121 119 1.0012
122 120 1.0087000000000002
123 121 1.01745
124 122 1.0238500000000001
125 123 1.03145
126 124 1.0421
127 125 1.0497
128 126 1.0572000000000001
129 127 1.06585
130 128 1.0723
131 129 1.08195
132 130 1.0885
133 131 1.0981
134 132 1.10995
135 133 1.1175000000000002
136 134 1.12405
137 135 1.1316000000000002
138 136 1.13805
139 137 1.1456
140 138 1.1531500000000001
141 139 1.16605
142 140 1.1736
143 141 1.1811500000000001
144 142 1.1918
145 143 1.1994500000000001
146 144 1.20795
147 145 1.21455
148 146 1.22085
149 147 1.2296
150 148 1.2382
151 149 1.2446000000000002
152 150 1.2575500000000002
153 151 1.2640500000000001
154 152 1.27475
155 153 1.2824
156 154 1.292
157 155 1.30175
158 156 1.3082
159 157 1.31565
160 158 1.32325
161 159 1.33405
162 160 1.3426
163 161 1.35125
164 162 1.3577000000000001
165 163 1.3642
166 164 1.3761
167 165 1.3846
168 166 1.39215
169 167 1.39975
170 168 1.4115
171 169 1.4191
172 170 1.4277
173 171 1.4352500000000001
174 172 1.44175
175 173 1.4492500000000001
176 174 1.459
177 175 1.4697500000000001
178 176 1.4783000000000002
179 177 1.4848000000000001
180 178 1.4934
181 179 1.50095
182 180 1.5053
183 181 1.5171000000000001
184 182 1.5258500000000002
185 183 1.5333
186 184 1.5387000000000002
187 185 1.5494
188 186 1.5570000000000002
189 187 1.56565
190 188 1.5774000000000001
191 189 1.58285
192 190 1.5914000000000001
193 191 1.6022500000000002
194 192 1.6129
195 193 1.6184500000000002
196 194 1.62705
197 195 1.6345500000000002
198 196 1.6442
199 197 1.6506500000000002
200 198 1.6604
201 199 1.6712
202 200 1.67655
203 201 1.6841000000000002
204 202 1.6927
205 203 1.7002000000000002
206 204 1.70885
207 205 1.7185000000000001
208 206 1.7271500000000002
209 207 1.7336500000000001
210 208 1.7444000000000002
211 209 1.752
212 210 1.7584000000000002
213 211 1.77025
214 212 1.77675
215 213 1.7853
216 214 1.79505
217 215 1.80255
218 216 1.8100500000000002
219 217 1.81765
220 218 1.8263
221 219 1.83485
222 220 1.8467
223 221 1.85315
224 222 1.8607
225 223 1.8726
226 224 1.8780000000000001
227 225 1.88545
228 226 1.893
229 227 1.9049
230 228 1.9124
231 229 1.91995
232 230 1.92855
233 231 1.9361000000000002
234 232 1.9437
235 233 1.9534
236 234 1.9619000000000002
237 235 1.9695
238 236 1.9771
239 237 1.98675
240 238 1.9953

View File

@ -0,0 +1,242 @@
,spikes
0,0.0039000000000000003
1,0.0115
2,0.02
3,0.0253
4,0.040400000000000005
5,0.044750000000000005
6,0.05455
7,0.0587
8,0.06635
9,0.08030000000000001
10,0.08795
11,0.09535
12,0.1019
13,0.11155000000000001
14,0.12010000000000001
15,0.1287
16,0.1342
17,0.1471
18,0.15785000000000002
19,0.16435
20,0.16965
21,0.1826
22,0.19010000000000002
23,0.19775
24,0.20425000000000001
25,0.21280000000000002
26,0.22035000000000002
27,0.22575
28,0.2333
29,0.24185
30,0.2494
31,0.258
32,0.26765
33,0.2806
34,0.2849
35,0.29475
36,0.30225
37,0.31185
38,0.31835
39,0.32480000000000003
40,0.33775
41,0.3506
42,0.35705000000000003
43,0.36150000000000004
44,0.36575
45,0.38075000000000003
46,0.38630000000000003
47,0.39595
48,0.40345000000000003
49,0.40995000000000004
50,0.4238
51,0.43035
52,0.43565000000000004
53,0.44210000000000005
54,0.453
55,0.4605
56,0.46595000000000003
57,0.47445000000000004
58,0.48650000000000004
59,0.49065000000000003
60,0.49810000000000004
61,0.5037
62,0.51215
63,0.52405
64,0.5347500000000001
65,0.5402
66,0.55105
67,0.55855
68,0.56505
69,0.5758
70,0.5844
71,0.5919
72,0.5963
73,0.6113000000000001
74,0.61665
75,0.6264500000000001
76,0.63505
77,0.6414500000000001
78,0.64785
79,0.6588
80,0.6684
81,0.6781
82,0.6888500000000001
83,0.69735
84,0.7038500000000001
85,0.70825
86,0.71585
87,0.7266
88,0.7373000000000001
89,0.7428
90,0.7524000000000001
91,0.7621
92,0.7686000000000001
93,0.7794000000000001
94,0.7836000000000001
95,0.78905
96,0.7998000000000001
97,0.8083
98,0.8149500000000001
99,0.8278000000000001
100,0.8331500000000001
101,0.8397
102,0.8482500000000001
103,0.859
104,0.86555
105,0.87205
106,0.88275
107,0.8934500000000001
108,0.8988
109,0.90535
110,0.91605
111,0.9258500000000001
112,0.9312
113,0.9388000000000001
114,0.94945
115,0.96245
116,0.9688500000000001
117,0.9742000000000001
118,0.9830000000000001
119,0.99045
120,1.0044
121,1.0118500000000001
122,1.0184
123,1.0258500000000002
124,1.0399
125,1.0442
126,1.05085
127,1.0572000000000001
128,1.06595
129,1.0777
130,1.0874000000000001
131,1.0938
132,1.1003500000000002
133,1.1068
134,1.1186
135,1.1229
136,1.1327
137,1.14125
138,1.1487
139,1.15945
140,1.1692
141,1.1746
142,1.1833
143,1.1918
144,1.1994
145,1.21115
146,1.21785
147,1.2231
148,1.23265
149,1.23935
150,1.25
151,1.25745
152,1.2641
153,1.27145
154,1.28135
155,1.2942
156,1.30065
157,1.3051000000000001
158,1.31455
159,1.3211000000000002
160,1.32875
161,1.3394000000000001
162,1.35135
163,1.35775
164,1.36315
165,1.3685
166,1.38245
167,1.3889500000000001
168,1.4008500000000002
169,1.4096
170,1.41585
171,1.4244
172,1.4321000000000002
173,1.4417
174,1.4471500000000002
175,1.4568
176,1.4653500000000002
177,1.4709
178,1.47855
179,1.4891
180,1.49455
181,1.5022
182,1.51065
183,1.52255
184,1.5342500000000001
185,1.5397500000000002
186,1.5505
187,1.55475
188,1.5645
189,1.5688
190,1.5785500000000001
191,1.5904
192,1.5958
193,1.6076000000000001
194,1.61515
195,1.6206
196,1.6335000000000002
197,1.63995
198,1.64735
199,1.65175
200,1.6625
201,1.67215
202,1.6788
203,1.6894
204,1.6980000000000002
205,1.7055500000000001
206,1.7131
207,1.725
208,1.7336
209,1.74115
210,1.7508000000000001
211,1.7584000000000002
212,1.7637500000000002
213,1.7756
214,1.7810000000000001
215,1.7876500000000002
216,1.7982
217,1.8057500000000002
218,1.8101
219,1.8240500000000002
220,1.8316000000000001
221,1.8370000000000002
222,1.8467
223,1.85745
224,1.86405
225,1.8715000000000002
226,1.8833000000000002
227,1.893
228,1.8983
229,1.90605
230,1.9167
231,1.92435
232,1.92855
233,1.9372500000000001
234,1.94365
235,1.95775
236,1.9640000000000002
237,1.9726000000000001
238,1.97815
239,1.9878500000000001
240,1.99855
1 spikes
2 0 0.0039000000000000003
3 1 0.0115
4 2 0.02
5 3 0.0253
6 4 0.040400000000000005
7 5 0.044750000000000005
8 6 0.05455
9 7 0.0587
10 8 0.06635
11 9 0.08030000000000001
12 10 0.08795
13 11 0.09535
14 12 0.1019
15 13 0.11155000000000001
16 14 0.12010000000000001
17 15 0.1287
18 16 0.1342
19 17 0.1471
20 18 0.15785000000000002
21 19 0.16435
22 20 0.16965
23 21 0.1826
24 22 0.19010000000000002
25 23 0.19775
26 24 0.20425000000000001
27 25 0.21280000000000002
28 26 0.22035000000000002
29 27 0.22575
30 28 0.2333
31 29 0.24185
32 30 0.2494
33 31 0.258
34 32 0.26765
35 33 0.2806
36 34 0.2849
37 35 0.29475
38 36 0.30225
39 37 0.31185
40 38 0.31835
41 39 0.32480000000000003
42 40 0.33775
43 41 0.3506
44 42 0.35705000000000003
45 43 0.36150000000000004
46 44 0.36575
47 45 0.38075000000000003
48 46 0.38630000000000003
49 47 0.39595
50 48 0.40345000000000003
51 49 0.40995000000000004
52 50 0.4238
53 51 0.43035
54 52 0.43565000000000004
55 53 0.44210000000000005
56 54 0.453
57 55 0.4605
58 56 0.46595000000000003
59 57 0.47445000000000004
60 58 0.48650000000000004
61 59 0.49065000000000003
62 60 0.49810000000000004
63 61 0.5037
64 62 0.51215
65 63 0.52405
66 64 0.5347500000000001
67 65 0.5402
68 66 0.55105
69 67 0.55855
70 68 0.56505
71 69 0.5758
72 70 0.5844
73 71 0.5919
74 72 0.5963
75 73 0.6113000000000001
76 74 0.61665
77 75 0.6264500000000001
78 76 0.63505
79 77 0.6414500000000001
80 78 0.64785
81 79 0.6588
82 80 0.6684
83 81 0.6781
84 82 0.6888500000000001
85 83 0.69735
86 84 0.7038500000000001
87 85 0.70825
88 86 0.71585
89 87 0.7266
90 88 0.7373000000000001
91 89 0.7428
92 90 0.7524000000000001
93 91 0.7621
94 92 0.7686000000000001
95 93 0.7794000000000001
96 94 0.7836000000000001
97 95 0.78905
98 96 0.7998000000000001
99 97 0.8083
100 98 0.8149500000000001
101 99 0.8278000000000001
102 100 0.8331500000000001
103 101 0.8397
104 102 0.8482500000000001
105 103 0.859
106 104 0.86555
107 105 0.87205
108 106 0.88275
109 107 0.8934500000000001
110 108 0.8988
111 109 0.90535
112 110 0.91605
113 111 0.9258500000000001
114 112 0.9312
115 113 0.9388000000000001
116 114 0.94945
117 115 0.96245
118 116 0.9688500000000001
119 117 0.9742000000000001
120 118 0.9830000000000001
121 119 0.99045
122 120 1.0044
123 121 1.0118500000000001
124 122 1.0184
125 123 1.0258500000000002
126 124 1.0399
127 125 1.0442
128 126 1.05085
129 127 1.0572000000000001
130 128 1.06595
131 129 1.0777
132 130 1.0874000000000001
133 131 1.0938
134 132 1.1003500000000002
135 133 1.1068
136 134 1.1186
137 135 1.1229
138 136 1.1327
139 137 1.14125
140 138 1.1487
141 139 1.15945
142 140 1.1692
143 141 1.1746
144 142 1.1833
145 143 1.1918
146 144 1.1994
147 145 1.21115
148 146 1.21785
149 147 1.2231
150 148 1.23265
151 149 1.23935
152 150 1.25
153 151 1.25745
154 152 1.2641
155 153 1.27145
156 154 1.28135
157 155 1.2942
158 156 1.30065
159 157 1.3051000000000001
160 158 1.31455
161 159 1.3211000000000002
162 160 1.32875
163 161 1.3394000000000001
164 162 1.35135
165 163 1.35775
166 164 1.36315
167 165 1.3685
168 166 1.38245
169 167 1.3889500000000001
170 168 1.4008500000000002
171 169 1.4096
172 170 1.41585
173 171 1.4244
174 172 1.4321000000000002
175 173 1.4417
176 174 1.4471500000000002
177 175 1.4568
178 176 1.4653500000000002
179 177 1.4709
180 178 1.47855
181 179 1.4891
182 180 1.49455
183 181 1.5022
184 182 1.51065
185 183 1.52255
186 184 1.5342500000000001
187 185 1.5397500000000002
188 186 1.5505
189 187 1.55475
190 188 1.5645
191 189 1.5688
192 190 1.5785500000000001
193 191 1.5904
194 192 1.5958
195 193 1.6076000000000001
196 194 1.61515
197 195 1.6206
198 196 1.6335000000000002
199 197 1.63995
200 198 1.64735
201 199 1.65175
202 200 1.6625
203 201 1.67215
204 202 1.6788
205 203 1.6894
206 204 1.6980000000000002
207 205 1.7055500000000001
208 206 1.7131
209 207 1.725
210 208 1.7336
211 209 1.74115
212 210 1.7508000000000001
213 211 1.7584000000000002
214 212 1.7637500000000002
215 213 1.7756
216 214 1.7810000000000001
217 215 1.7876500000000002
218 216 1.7982
219 217 1.8057500000000002
220 218 1.8101
221 219 1.8240500000000002
222 220 1.8316000000000001
223 221 1.8370000000000002
224 222 1.8467
225 223 1.85745
226 224 1.86405
227 225 1.8715000000000002
228 226 1.8833000000000002
229 227 1.893
230 228 1.8983
231 229 1.90605
232 230 1.9167
233 231 1.92435
234 232 1.92855
235 233 1.9372500000000001
236 234 1.94365
237 235 1.95775
238 236 1.9640000000000002
239 237 1.9726000000000001
240 238 1.97815
241 239 1.9878500000000001
242 240 1.99855

View File

@ -0,0 +1,285 @@
,spikes
0,0.0037
1,0.01235
2,0.01345
3,0.015600000000000001
4,0.0233
5,0.02545
6,0.033100000000000004
7,0.043550000000000005
8,0.04565
9,0.048100000000000004
10,0.05335
11,0.055400000000000005
12,0.06925
13,0.07050000000000001
14,0.0728
15,0.07705000000000001
16,0.09405000000000001
17,0.09530000000000001
18,0.13005
19,0.13615
20,0.1383
21,0.14600000000000002
22,0.15115
23,0.1708
24,0.17295000000000002
25,0.1825
26,0.18460000000000001
27,0.18605000000000002
28,0.20320000000000002
29,0.20520000000000002
30,0.21475
31,0.2159
32,0.2194
33,0.22225
34,0.2505
35,0.2591
36,0.26445
37,0.2687
38,0.27940000000000004
39,0.28475
40,0.28700000000000003
41,0.28895000000000004
42,0.29015
43,0.2934
44,0.29775
45,0.32145
46,0.3257
47,0.33230000000000004
48,0.34405
49,0.34655
50,0.35385
51,0.35950000000000004
52,0.3613
53,0.3808
54,0.38275000000000003
55,0.3904
56,0.39255
57,0.3946
58,0.4067
59,0.42405000000000004
60,0.42910000000000004
61,0.43455000000000005
62,0.44210000000000005
63,0.4451
64,0.44635
65,0.466
66,0.468
67,0.4766
68,0.47865
69,0.4908
70,0.49610000000000004
71,0.50685
72,0.50785
73,0.5089
74,0.51765
75,0.5196000000000001
76,0.5356000000000001
77,0.55955
78,0.5778
79,0.58425
80,0.5959
81,0.60055
82,0.60165
83,0.60575
84,0.6111500000000001
85,0.61775
86,0.62
87,0.62515
88,0.6272
89,0.6318
90,0.6445500000000001
91,0.64685
92,0.6521
93,0.6736500000000001
94,0.6751
95,0.68435
96,0.6951
97,0.70055
98,0.70265
99,0.7093
100,0.7457
101,0.74695
102,0.7492000000000001
103,0.7512500000000001
104,0.7533500000000001
105,0.7555000000000001
106,0.7629
107,0.77075
108,0.7813
109,0.7891
110,0.7944
111,0.7963
112,0.7987000000000001
113,0.8007000000000001
114,0.802
115,0.80325
116,0.80515
117,0.81915
118,0.8342
119,0.83535
120,0.8526
121,0.8546
122,0.85785
123,0.8783000000000001
124,0.88265
125,0.8849
126,0.8903000000000001
127,0.9054000000000001
128,0.9087500000000001
129,0.91185
130,0.9138000000000001
131,0.9288500000000001
132,0.93535
133,0.9387000000000001
134,0.9514
135,0.95265
136,0.9537500000000001
137,0.9548500000000001
138,0.9753000000000001
139,0.9871000000000001
140,0.9893000000000001
141,0.9913500000000001
142,0.99895
143,1.0043
144,1.01285
145,1.01415
146,1.0239500000000001
147,1.0430000000000001
148,1.0452000000000001
149,1.0474
150,1.0529
151,1.0549
152,1.06885
153,1.0701
154,1.0722
155,1.0775000000000001
156,1.0937000000000001
157,1.09485
158,1.1260000000000001
159,1.1305
160,1.1359000000000001
161,1.13795
162,1.1464
163,1.1508
164,1.1712500000000001
165,1.18205
166,1.1841000000000002
167,1.1854500000000001
168,1.19825
169,1.2035500000000001
170,1.2144000000000001
171,1.2155500000000001
172,1.2187000000000001
173,1.2219
174,1.22325
175,1.2509000000000001
176,1.2595500000000002
177,1.26825
178,1.27895
179,1.28125
180,1.28525
181,1.2877
182,1.28885
183,1.2899
184,1.2930000000000001
185,1.2976
186,1.2994
187,1.32195
188,1.3263500000000001
189,1.3437000000000001
190,1.3468
191,1.3543500000000002
192,1.3597000000000001
193,1.3811
194,1.3824
195,1.38565
196,1.3909
197,1.3931
198,1.3951500000000001
199,1.4071500000000001
200,1.42435
201,1.4288
202,1.4341000000000002
203,1.44265
204,1.44485
205,1.4460000000000002
206,1.4535500000000001
207,1.46635
208,1.4729
209,1.4772
210,1.4794
211,1.49645
212,1.5072
213,1.50825
214,1.5094
215,1.5180500000000001
216,1.5195500000000002
217,1.53535
218,1.55915
219,1.5774000000000001
220,1.5838
221,1.5956000000000001
222,1.60095
223,1.6021
224,1.6055000000000001
225,1.6107
226,1.6182
227,1.6204
228,1.6249
229,1.6268
230,1.63225
231,1.64415
232,1.64635
233,1.6517000000000002
234,1.6733500000000001
235,1.6752500000000001
236,1.68405
237,1.6948
238,1.7001000000000002
239,1.7022000000000002
240,1.709
241,1.7453500000000002
242,1.74655
243,1.7485000000000002
244,1.75085
245,1.75285
246,1.75435
247,1.76255
248,1.77115
249,1.78105
250,1.78945
251,1.79475
252,1.7961
253,1.79915
254,1.8012000000000001
255,1.80245
256,1.8037
257,1.81855
258,1.8345
259,1.83575
260,1.8529
261,1.8543500000000002
262,1.85735
263,1.87795
264,1.8823
265,1.8843
266,1.8907500000000002
267,1.90585
268,1.9090500000000001
269,1.91235
270,1.91425
271,1.9285
272,1.9350500000000002
273,1.93815
274,1.951
275,1.95235
276,1.9533500000000001
277,1.9544000000000001
278,1.95645
279,1.9757500000000001
280,1.9876
281,1.9898500000000001
282,1.992
283,1.9995
1 spikes
2 0 0.0037
3 1 0.01235
4 2 0.01345
5 3 0.015600000000000001
6 4 0.0233
7 5 0.02545
8 6 0.033100000000000004
9 7 0.043550000000000005
10 8 0.04565
11 9 0.048100000000000004
12 10 0.05335
13 11 0.055400000000000005
14 12 0.06925
15 13 0.07050000000000001
16 14 0.0728
17 15 0.07705000000000001
18 16 0.09405000000000001
19 17 0.09530000000000001
20 18 0.13005
21 19 0.13615
22 20 0.1383
23 21 0.14600000000000002
24 22 0.15115
25 23 0.1708
26 24 0.17295000000000002
27 25 0.1825
28 26 0.18460000000000001
29 27 0.18605000000000002
30 28 0.20320000000000002
31 29 0.20520000000000002
32 30 0.21475
33 31 0.2159
34 32 0.2194
35 33 0.22225
36 34 0.2505
37 35 0.2591
38 36 0.26445
39 37 0.2687
40 38 0.27940000000000004
41 39 0.28475
42 40 0.28700000000000003
43 41 0.28895000000000004
44 42 0.29015
45 43 0.2934
46 44 0.29775
47 45 0.32145
48 46 0.3257
49 47 0.33230000000000004
50 48 0.34405
51 49 0.34655
52 50 0.35385
53 51 0.35950000000000004
54 52 0.3613
55 53 0.3808
56 54 0.38275000000000003
57 55 0.3904
58 56 0.39255
59 57 0.3946
60 58 0.4067
61 59 0.42405000000000004
62 60 0.42910000000000004
63 61 0.43455000000000005
64 62 0.44210000000000005
65 63 0.4451
66 64 0.44635
67 65 0.466
68 66 0.468
69 67 0.4766
70 68 0.47865
71 69 0.4908
72 70 0.49610000000000004
73 71 0.50685
74 72 0.50785
75 73 0.5089
76 74 0.51765
77 75 0.5196000000000001
78 76 0.5356000000000001
79 77 0.55955
80 78 0.5778
81 79 0.58425
82 80 0.5959
83 81 0.60055
84 82 0.60165
85 83 0.60575
86 84 0.6111500000000001
87 85 0.61775
88 86 0.62
89 87 0.62515
90 88 0.6272
91 89 0.6318
92 90 0.6445500000000001
93 91 0.64685
94 92 0.6521
95 93 0.6736500000000001
96 94 0.6751
97 95 0.68435
98 96 0.6951
99 97 0.70055
100 98 0.70265
101 99 0.7093
102 100 0.7457
103 101 0.74695
104 102 0.7492000000000001
105 103 0.7512500000000001
106 104 0.7533500000000001
107 105 0.7555000000000001
108 106 0.7629
109 107 0.77075
110 108 0.7813
111 109 0.7891
112 110 0.7944
113 111 0.7963
114 112 0.7987000000000001
115 113 0.8007000000000001
116 114 0.802
117 115 0.80325
118 116 0.80515
119 117 0.81915
120 118 0.8342
121 119 0.83535
122 120 0.8526
123 121 0.8546
124 122 0.85785
125 123 0.8783000000000001
126 124 0.88265
127 125 0.8849
128 126 0.8903000000000001
129 127 0.9054000000000001
130 128 0.9087500000000001
131 129 0.91185
132 130 0.9138000000000001
133 131 0.9288500000000001
134 132 0.93535
135 133 0.9387000000000001
136 134 0.9514
137 135 0.95265
138 136 0.9537500000000001
139 137 0.9548500000000001
140 138 0.9753000000000001
141 139 0.9871000000000001
142 140 0.9893000000000001
143 141 0.9913500000000001
144 142 0.99895
145 143 1.0043
146 144 1.01285
147 145 1.01415
148 146 1.0239500000000001
149 147 1.0430000000000001
150 148 1.0452000000000001
151 149 1.0474
152 150 1.0529
153 151 1.0549
154 152 1.06885
155 153 1.0701
156 154 1.0722
157 155 1.0775000000000001
158 156 1.0937000000000001
159 157 1.09485
160 158 1.1260000000000001
161 159 1.1305
162 160 1.1359000000000001
163 161 1.13795
164 162 1.1464
165 163 1.1508
166 164 1.1712500000000001
167 165 1.18205
168 166 1.1841000000000002
169 167 1.1854500000000001
170 168 1.19825
171 169 1.2035500000000001
172 170 1.2144000000000001
173 171 1.2155500000000001
174 172 1.2187000000000001
175 173 1.2219
176 174 1.22325
177 175 1.2509000000000001
178 176 1.2595500000000002
179 177 1.26825
180 178 1.27895
181 179 1.28125
182 180 1.28525
183 181 1.2877
184 182 1.28885
185 183 1.2899
186 184 1.2930000000000001
187 185 1.2976
188 186 1.2994
189 187 1.32195
190 188 1.3263500000000001
191 189 1.3437000000000001
192 190 1.3468
193 191 1.3543500000000002
194 192 1.3597000000000001
195 193 1.3811
196 194 1.3824
197 195 1.38565
198 196 1.3909
199 197 1.3931
200 198 1.3951500000000001
201 199 1.4071500000000001
202 200 1.42435
203 201 1.4288
204 202 1.4341000000000002
205 203 1.44265
206 204 1.44485
207 205 1.4460000000000002
208 206 1.4535500000000001
209 207 1.46635
210 208 1.4729
211 209 1.4772
212 210 1.4794
213 211 1.49645
214 212 1.5072
215 213 1.50825
216 214 1.5094
217 215 1.5180500000000001
218 216 1.5195500000000002
219 217 1.53535
220 218 1.55915
221 219 1.5774000000000001
222 220 1.5838
223 221 1.5956000000000001
224 222 1.60095
225 223 1.6021
226 224 1.6055000000000001
227 225 1.6107
228 226 1.6182
229 227 1.6204
230 228 1.6249
231 229 1.6268
232 230 1.63225
233 231 1.64415
234 232 1.64635
235 233 1.6517000000000002
236 234 1.6733500000000001
237 235 1.6752500000000001
238 236 1.68405
239 237 1.6948
240 238 1.7001000000000002
241 239 1.7022000000000002
242 240 1.709
243 241 1.7453500000000002
244 242 1.74655
245 243 1.7485000000000002
246 244 1.75085
247 245 1.75285
248 246 1.75435
249 247 1.76255
250 248 1.77115
251 249 1.78105
252 250 1.78945
253 251 1.79475
254 252 1.7961
255 253 1.79915
256 254 1.8012000000000001
257 255 1.80245
258 256 1.8037
259 257 1.81855
260 258 1.8345
261 259 1.83575
262 260 1.8529
263 261 1.8543500000000002
264 262 1.85735
265 263 1.87795
266 264 1.8823
267 265 1.8843
268 266 1.8907500000000002
269 267 1.90585
270 268 1.9090500000000001
271 269 1.91235
272 270 1.91425
273 271 1.9285
274 272 1.9350500000000002
275 273 1.93815
276 274 1.951
277 275 1.95235
278 276 1.9533500000000001
279 277 1.9544000000000001
280 278 1.95645
281 279 1.9757500000000001
282 280 1.9876
283 281 1.9898500000000001
284 282 1.992
285 283 1.9995

View File

@ -0,0 +1,241 @@
,spikes
0,0.01025
1,0.0178
2,0.024300000000000002
3,0.03295
4,0.03935
5,0.049100000000000005
6,0.057850000000000006
7,0.06545000000000001
8,0.07385
9,0.0826
10,0.0879
11,0.09970000000000001
12,0.10830000000000001
13,0.1169
14,0.12345
15,0.133
16,0.14285
17,0.14930000000000002
18,0.15785000000000002
19,0.16855
20,0.1772
21,0.1827
22,0.19235000000000002
23,0.19990000000000002
24,0.20845
25,0.21930000000000002
26,0.2258
27,0.23215000000000002
28,0.23975000000000002
29,0.24835000000000002
30,0.2601
31,0.26665
32,0.27425
33,0.28285
34,0.29145
35,0.29995
36,0.30755
37,0.31515000000000004
38,0.32265
39,0.33130000000000004
40,0.341
41,0.35065
42,0.3593
43,0.36575
44,0.3755
45,0.3851
46,0.3926
47,0.39815
48,0.4077
49,0.4142
50,0.42495
51,0.4315
52,0.44215000000000004
53,0.45070000000000005
54,0.45940000000000003
55,0.46595000000000003
56,0.4756
57,0.48325
58,0.49175
59,0.5014500000000001
60,0.51015
61,0.5166000000000001
62,0.52515
63,0.5326500000000001
64,0.54125
65,0.5467500000000001
66,0.56065
67,0.56715
68,0.5746
69,0.5812
70,0.58975
71,0.59635
72,0.60695
73,0.61565
74,0.6242500000000001
75,0.63185
76,0.6404000000000001
77,0.649
78,0.6586500000000001
79,0.6652
80,0.6748000000000001
81,0.6824
82,0.6899000000000001
83,0.7008500000000001
84,0.7062
85,0.7148
86,0.7212000000000001
87,0.7319
88,0.73945
89,0.7502500000000001
90,0.7579
91,0.7653500000000001
92,0.7718
93,0.7837500000000001
94,0.79115
95,0.7966500000000001
96,0.80535
97,0.8159500000000001
98,0.82455
99,0.8331500000000001
100,0.84175
101,0.84835
102,0.8569
103,0.8657
104,0.8731
105,0.88275
106,0.8903000000000001
107,0.8978
108,0.9064500000000001
109,0.91395
110,0.9215500000000001
111,0.92915
112,0.9388000000000001
113,0.9484
114,0.9570500000000001
115,0.9657
116,0.97635
117,0.98285
118,0.9893000000000001
119,1.00015
120,1.0077
121,1.0152
122,1.0238
123,1.03245
124,1.0421500000000001
125,1.0497
126,1.0573000000000001
127,1.0637
128,1.0722500000000001
129,1.07885
130,1.09375
131,1.1003
132,1.1057000000000001
133,1.1144
134,1.11975
135,1.1305
136,1.1390500000000001
137,1.1467500000000002
138,1.1541000000000001
139,1.167
140,1.1735
141,1.1843000000000001
142,1.18965
143,1.1972500000000001
144,1.20485
145,1.21445
146,1.22315
147,1.2295500000000001
148,1.2382
149,1.2457
150,1.2543
151,1.2619
152,1.27145
153,1.2791000000000001
154,1.2909000000000002
155,1.29855
156,1.306
157,1.31455
158,1.32325
159,1.3286
160,1.3384
161,1.34795
162,1.35345
163,1.362
164,1.3696000000000002
165,1.37615
166,1.38795
167,1.3965
168,1.4041000000000001
169,1.4137000000000002
170,1.4213
171,1.4289
172,1.4353
173,1.4482000000000002
174,1.45475
175,1.4623000000000002
176,1.4708
177,1.4816
178,1.4903000000000002
179,1.49665
180,1.50535
181,1.5150000000000001
182,1.52255
183,1.5300500000000001
184,1.53865
185,1.5472000000000001
186,1.5558500000000002
187,1.5645
188,1.5699
189,1.58175
190,1.5881500000000002
191,1.59795
192,1.6054000000000002
193,1.614
194,1.62155
195,1.6313
196,1.6377000000000002
197,1.6474
198,1.65825
199,1.6636000000000002
200,1.6713
201,1.6808
202,1.6885000000000001
203,1.6948
204,1.7056
205,1.7109500000000002
206,1.7218
207,1.73045
208,1.739
209,1.74875
210,1.7562
211,1.76485
212,1.77135
213,1.7778500000000002
214,1.7885
215,1.7971000000000001
216,1.8047000000000002
217,1.8133000000000001
218,1.82095
219,1.8305500000000001
220,1.8370000000000002
221,1.8456000000000001
222,1.85325
223,1.8628
224,1.8695000000000002
225,1.879
226,1.88755
227,1.8973
228,1.9049
229,1.9134
230,1.9189
231,1.92645
232,1.9371500000000001
233,1.94575
234,1.95665
235,1.963
236,1.97055
237,1.9793
238,1.9889000000000001
239,1.9974500000000002
1 spikes
2 0 0.01025
3 1 0.0178
4 2 0.024300000000000002
5 3 0.03295
6 4 0.03935
7 5 0.049100000000000005
8 6 0.057850000000000006
9 7 0.06545000000000001
10 8 0.07385
11 9 0.0826
12 10 0.0879
13 11 0.09970000000000001
14 12 0.10830000000000001
15 13 0.1169
16 14 0.12345
17 15 0.133
18 16 0.14285
19 17 0.14930000000000002
20 18 0.15785000000000002
21 19 0.16855
22 20 0.1772
23 21 0.1827
24 22 0.19235000000000002
25 23 0.19990000000000002
26 24 0.20845
27 25 0.21930000000000002
28 26 0.2258
29 27 0.23215000000000002
30 28 0.23975000000000002
31 29 0.24835000000000002
32 30 0.2601
33 31 0.26665
34 32 0.27425
35 33 0.28285
36 34 0.29145
37 35 0.29995
38 36 0.30755
39 37 0.31515000000000004
40 38 0.32265
41 39 0.33130000000000004
42 40 0.341
43 41 0.35065
44 42 0.3593
45 43 0.36575
46 44 0.3755
47 45 0.3851
48 46 0.3926
49 47 0.39815
50 48 0.4077
51 49 0.4142
52 50 0.42495
53 51 0.4315
54 52 0.44215000000000004
55 53 0.45070000000000005
56 54 0.45940000000000003
57 55 0.46595000000000003
58 56 0.4756
59 57 0.48325
60 58 0.49175
61 59 0.5014500000000001
62 60 0.51015
63 61 0.5166000000000001
64 62 0.52515
65 63 0.5326500000000001
66 64 0.54125
67 65 0.5467500000000001
68 66 0.56065
69 67 0.56715
70 68 0.5746
71 69 0.5812
72 70 0.58975
73 71 0.59635
74 72 0.60695
75 73 0.61565
76 74 0.6242500000000001
77 75 0.63185
78 76 0.6404000000000001
79 77 0.649
80 78 0.6586500000000001
81 79 0.6652
82 80 0.6748000000000001
83 81 0.6824
84 82 0.6899000000000001
85 83 0.7008500000000001
86 84 0.7062
87 85 0.7148
88 86 0.7212000000000001
89 87 0.7319
90 88 0.73945
91 89 0.7502500000000001
92 90 0.7579
93 91 0.7653500000000001
94 92 0.7718
95 93 0.7837500000000001
96 94 0.79115
97 95 0.7966500000000001
98 96 0.80535
99 97 0.8159500000000001
100 98 0.82455
101 99 0.8331500000000001
102 100 0.84175
103 101 0.84835
104 102 0.8569
105 103 0.8657
106 104 0.8731
107 105 0.88275
108 106 0.8903000000000001
109 107 0.8978
110 108 0.9064500000000001
111 109 0.91395
112 110 0.9215500000000001
113 111 0.92915
114 112 0.9388000000000001
115 113 0.9484
116 114 0.9570500000000001
117 115 0.9657
118 116 0.97635
119 117 0.98285
120 118 0.9893000000000001
121 119 1.00015
122 120 1.0077
123 121 1.0152
124 122 1.0238
125 123 1.03245
126 124 1.0421500000000001
127 125 1.0497
128 126 1.0573000000000001
129 127 1.0637
130 128 1.0722500000000001
131 129 1.07885
132 130 1.09375
133 131 1.1003
134 132 1.1057000000000001
135 133 1.1144
136 134 1.11975
137 135 1.1305
138 136 1.1390500000000001
139 137 1.1467500000000002
140 138 1.1541000000000001
141 139 1.167
142 140 1.1735
143 141 1.1843000000000001
144 142 1.18965
145 143 1.1972500000000001
146 144 1.20485
147 145 1.21445
148 146 1.22315
149 147 1.2295500000000001
150 148 1.2382
151 149 1.2457
152 150 1.2543
153 151 1.2619
154 152 1.27145
155 153 1.2791000000000001
156 154 1.2909000000000002
157 155 1.29855
158 156 1.306
159 157 1.31455
160 158 1.32325
161 159 1.3286
162 160 1.3384
163 161 1.34795
164 162 1.35345
165 163 1.362
166 164 1.3696000000000002
167 165 1.37615
168 166 1.38795
169 167 1.3965
170 168 1.4041000000000001
171 169 1.4137000000000002
172 170 1.4213
173 171 1.4289
174 172 1.4353
175 173 1.4482000000000002
176 174 1.45475
177 175 1.4623000000000002
178 176 1.4708
179 177 1.4816
180 178 1.4903000000000002
181 179 1.49665
182 180 1.50535
183 181 1.5150000000000001
184 182 1.52255
185 183 1.5300500000000001
186 184 1.53865
187 185 1.5472000000000001
188 186 1.5558500000000002
189 187 1.5645
190 188 1.5699
191 189 1.58175
192 190 1.5881500000000002
193 191 1.59795
194 192 1.6054000000000002
195 193 1.614
196 194 1.62155
197 195 1.6313
198 196 1.6377000000000002
199 197 1.6474
200 198 1.65825
201 199 1.6636000000000002
202 200 1.6713
203 201 1.6808
204 202 1.6885000000000001
205 203 1.6948
206 204 1.7056
207 205 1.7109500000000002
208 206 1.7218
209 207 1.73045
210 208 1.739
211 209 1.74875
212 210 1.7562
213 211 1.76485
214 212 1.77135
215 213 1.7778500000000002
216 214 1.7885
217 215 1.7971000000000001
218 216 1.8047000000000002
219 217 1.8133000000000001
220 218 1.82095
221 219 1.8305500000000001
222 220 1.8370000000000002
223 221 1.8456000000000001
224 222 1.85325
225 223 1.8628
226 224 1.8695000000000002
227 225 1.879
228 226 1.88755
229 227 1.8973
230 228 1.9049
231 229 1.9134
232 230 1.9189
233 231 1.92645
234 232 1.9371500000000001
235 233 1.94575
236 234 1.95665
237 235 1.963
238 236 1.97055
239 237 1.9793
240 238 1.9889000000000001
241 239 1.9974500000000002

417
flowchartspikes_c_sig_1.csv Normal file
View File

@ -0,0 +1,417 @@
,spikes
0,0.00015000000000000001
1,0.00055
2,0.00115
3,0.0024000000000000002
4,0.07345
5,0.07675
6,0.08315
7,0.1081
8,0.12200000000000001
9,0.12855
10,0.1381
11,0.1597
12,0.17700000000000002
13,0.18125000000000002
14,0.19840000000000002
15,0.2094
16,0.22110000000000002
17,0.23075
18,0.24150000000000002
19,0.2589
20,0.2619
21,0.2782
22,0.29215
23,0.29860000000000003
24,0.31595
25,0.3299
26,0.33755
27,0.34490000000000004
28,0.3569
29,0.37195
30,0.39255
31,0.3957
32,0.41705000000000003
33,0.4204
34,0.43235
35,0.4494
36,0.46030000000000004
37,0.47005
38,0.48400000000000004
39,0.5012
40,0.5065000000000001
41,0.5227
42,0.5464
43,0.54965
44,0.56465
45,0.5679500000000001
46,0.5778
47,0.57985
48,0.60345
49,0.60885
50,0.6262500000000001
51,0.6293000000000001
52,0.6628000000000001
53,0.6702
54,0.67795
55,0.68645
56,0.70145
57,0.7091000000000001
58,0.72185
59,0.7402000000000001
60,0.7478
61,0.7544000000000001
62,0.7725500000000001
63,0.7811
64,0.79205
65,0.8102
66,0.81565
67,0.8404
68,0.8436
69,0.86955
70,0.8739
71,0.8823500000000001
72,0.88675
73,0.8976500000000001
74,0.90275
75,0.9267000000000001
76,0.93735
77,0.95255
78,0.9685
79,0.97165
80,0.9761500000000001
81,0.9892000000000001
82,1.00535
83,1.0182
84,1.0322
85,1.0515
86,1.0580500000000002
87,1.0709
88,1.08075
89,1.0883
90,1.10535
91,1.11405
92,1.1366500000000002
93,1.1443
94,1.16355
95,1.16675
96,1.1691
97,1.19575
98,1.2034
99,1.22275
100,1.2294
101,1.24005
102,1.2475
103,1.26475
104,1.2681
105,1.2735
106,1.31545
107,1.32295
108,1.3294000000000001
109,1.33475
110,1.3477000000000001
111,1.3604500000000002
112,1.3724
113,1.38125
114,1.3994
115,1.4123
116,1.4231500000000001
117,1.43055
118,1.4382000000000001
119,1.45225
120,1.47685
121,1.4813
122,1.48875
123,1.4954500000000002
124,1.5157
125,1.5287000000000002
126,1.53515
127,1.55655
128,1.5619500000000002
129,1.5696
130,1.57495
131,1.5997000000000001
132,1.6052000000000002
133,1.61805
134,1.6224
135,1.65035
136,1.6569
137,1.67195
138,1.6772500000000001
139,1.6871
140,1.7085000000000001
141,1.7256
142,1.73655
143,1.7463000000000002
144,1.76455
145,1.77535
146,1.79035
147,1.79475
148,1.8021500000000001
149,1.81735
150,1.8238
151,1.83135
152,1.8432000000000002
153,1.8465
154,1.8712000000000002
155,1.8765500000000002
156,1.88945
157,1.90135
158,1.9185500000000002
159,1.92185
160,1.93795
161,1.953
162,1.9572500000000002
163,1.9713500000000002
164,1.9896500000000001
165,1.99825
166,2.00685
167,2.0306
168,2.0391
169,2.04245
170,2.06405
171,2.07375
172,2.08015
173,2.0889
174,2.1028000000000002
175,2.1275
176,2.14805
177,2.1555500000000003
178,2.161
179,2.1793
180,2.18475
181,2.1899
182,2.1976500000000003
183,2.205
184,2.20845
185,2.2426500000000003
186,2.2471
187,2.2590500000000002
188,2.275
189,2.2869
190,2.3097000000000003
191,2.31405
192,2.3192500000000003
193,2.3312500000000003
194,2.3537
195,2.3603
196,2.37205
197,2.386
198,2.39255
199,2.41505
200,2.43325
201,2.44095
202,2.45175
203,2.4701
204,2.4745
205,2.4895
206,2.4992
207,2.5044
208,2.50985
209,2.5207
210,2.5303500000000003
211,2.5402500000000003
212,2.55845
213,2.5715000000000003
214,2.59375
215,2.5993500000000003
216,2.60685
217,2.6111
218,2.6304000000000003
219,2.637
220,2.66175
221,2.6758
222,2.6854500000000003
223,2.6898
224,2.69945
225,2.7199
226,2.72755
227,2.7404
228,2.7467
229,2.7641500000000003
230,2.7716000000000003
231,2.77915
232,2.79955
233,2.8039
234,2.8105
235,2.82435
236,2.8468500000000003
237,2.8600000000000003
238,2.87075
239,2.887
240,2.8933
241,2.90095
242,2.9256
243,2.9375
244,2.9483
245,2.95695
246,2.9699
247,2.97515
248,2.9880500000000003
249,3.00315
250,3.0258000000000003
251,3.0311000000000003
252,3.03985
253,3.056
254,3.0732500000000003
255,3.0806
256,3.09905
257,3.1173
258,3.1217
259,3.1367000000000003
260,3.14645
261,3.1507
262,3.16265
263,3.1767000000000003
264,3.2036000000000002
265,3.2089000000000003
266,3.21525
267,3.2271
268,3.2347
269,3.2487500000000002
270,3.2660500000000003
271,3.2831
272,3.29175
273,3.30825
274,3.3165
275,3.33375
276,3.3413500000000003
277,3.35115
278,3.3801
279,3.38445
280,3.3931500000000003
281,3.4028
282,3.4136
283,3.4263500000000002
284,3.434
285,3.4512
286,3.4728000000000003
287,3.47715
288,3.488
289,3.4932000000000003
290,3.5084
291,3.5223
292,3.5321000000000002
293,3.5396
294,3.56115
295,3.5720500000000004
296,3.5827500000000003
297,3.58595
298,3.59355
299,3.61065
300,3.6259
301,3.62895
302,3.64725
303,3.6506000000000003
304,3.6721500000000002
305,3.68075
306,3.6915500000000003
307,3.7193500000000004
308,3.7313
309,3.75705
310,3.7594000000000003
311,3.7626500000000003
312,3.7733000000000003
313,3.7884
314,3.7993
315,3.80355
316,3.8186500000000003
317,3.8293500000000003
318,3.8390500000000003
319,3.8444000000000003
320,3.8798500000000002
321,3.8841
322,3.9047500000000004
323,3.9111000000000002
324,3.9219000000000004
325,3.9359
326,3.94465
327,3.9489
328,3.96285
329,3.97255
330,3.9865000000000004
331,3.98985
332,4.01555
333,4.0372
334,4.04145
335,4.0533
336,4.0629
337,4.068350000000001
338,4.078
339,4.09105
340,4.09855
341,4.1267000000000005
342,4.129700000000001
343,4.14925
344,4.15995
345,4.16755
346,4.174
347,4.1805
348,4.1913
349,4.20295
350,4.2280500000000005
351,4.24085
352,4.25265
353,4.2698
354,4.2753000000000005
355,4.284800000000001
356,4.2924
357,4.3131
358,4.32685
359,4.3441
360,4.3496500000000005
361,4.357
362,4.3733
363,4.383
364,4.392650000000001
365,4.41295
366,4.42375
367,4.429250000000001
368,4.4411000000000005
369,4.4518
370,4.47125
371,4.48425
372,4.4927
373,4.4971000000000005
374,4.51745
375,4.5219000000000005
376,4.54555
377,4.554250000000001
378,4.5574
379,4.576700000000001
380,4.58125
381,4.5874500000000005
382,4.59835
383,4.62305
384,4.6392500000000005
385,4.651050000000001
386,4.6564000000000005
387,4.6618
388,4.67715
389,4.69535
390,4.701700000000001
391,4.70605
392,4.7331
393,4.744800000000001
394,4.75345
395,4.771850000000001
396,4.77825
397,4.795450000000001
398,4.79985
399,4.8169
400,4.82235
401,4.82775
402,4.8428
403,4.85355
404,4.86535
405,4.8731
406,4.90095
407,4.9053
408,4.92895
409,4.9321
410,4.94085
411,4.9483500000000005
412,4.96335
413,4.9743
414,4.9861
415,4.99145
1 spikes
2 0 0.00015000000000000001
3 1 0.00055
4 2 0.00115
5 3 0.0024000000000000002
6 4 0.07345
7 5 0.07675
8 6 0.08315
9 7 0.1081
10 8 0.12200000000000001
11 9 0.12855
12 10 0.1381
13 11 0.1597
14 12 0.17700000000000002
15 13 0.18125000000000002
16 14 0.19840000000000002
17 15 0.2094
18 16 0.22110000000000002
19 17 0.23075
20 18 0.24150000000000002
21 19 0.2589
22 20 0.2619
23 21 0.2782
24 22 0.29215
25 23 0.29860000000000003
26 24 0.31595
27 25 0.3299
28 26 0.33755
29 27 0.34490000000000004
30 28 0.3569
31 29 0.37195
32 30 0.39255
33 31 0.3957
34 32 0.41705000000000003
35 33 0.4204
36 34 0.43235
37 35 0.4494
38 36 0.46030000000000004
39 37 0.47005
40 38 0.48400000000000004
41 39 0.5012
42 40 0.5065000000000001
43 41 0.5227
44 42 0.5464
45 43 0.54965
46 44 0.56465
47 45 0.5679500000000001
48 46 0.5778
49 47 0.57985
50 48 0.60345
51 49 0.60885
52 50 0.6262500000000001
53 51 0.6293000000000001
54 52 0.6628000000000001
55 53 0.6702
56 54 0.67795
57 55 0.68645
58 56 0.70145
59 57 0.7091000000000001
60 58 0.72185
61 59 0.7402000000000001
62 60 0.7478
63 61 0.7544000000000001
64 62 0.7725500000000001
65 63 0.7811
66 64 0.79205
67 65 0.8102
68 66 0.81565
69 67 0.8404
70 68 0.8436
71 69 0.86955
72 70 0.8739
73 71 0.8823500000000001
74 72 0.88675
75 73 0.8976500000000001
76 74 0.90275
77 75 0.9267000000000001
78 76 0.93735
79 77 0.95255
80 78 0.9685
81 79 0.97165
82 80 0.9761500000000001
83 81 0.9892000000000001
84 82 1.00535
85 83 1.0182
86 84 1.0322
87 85 1.0515
88 86 1.0580500000000002
89 87 1.0709
90 88 1.08075
91 89 1.0883
92 90 1.10535
93 91 1.11405
94 92 1.1366500000000002
95 93 1.1443
96 94 1.16355
97 95 1.16675
98 96 1.1691
99 97 1.19575
100 98 1.2034
101 99 1.22275
102 100 1.2294
103 101 1.24005
104 102 1.2475
105 103 1.26475
106 104 1.2681
107 105 1.2735
108 106 1.31545
109 107 1.32295
110 108 1.3294000000000001
111 109 1.33475
112 110 1.3477000000000001
113 111 1.3604500000000002
114 112 1.3724
115 113 1.38125
116 114 1.3994
117 115 1.4123
118 116 1.4231500000000001
119 117 1.43055
120 118 1.4382000000000001
121 119 1.45225
122 120 1.47685
123 121 1.4813
124 122 1.48875
125 123 1.4954500000000002
126 124 1.5157
127 125 1.5287000000000002
128 126 1.53515
129 127 1.55655
130 128 1.5619500000000002
131 129 1.5696
132 130 1.57495
133 131 1.5997000000000001
134 132 1.6052000000000002
135 133 1.61805
136 134 1.6224
137 135 1.65035
138 136 1.6569
139 137 1.67195
140 138 1.6772500000000001
141 139 1.6871
142 140 1.7085000000000001
143 141 1.7256
144 142 1.73655
145 143 1.7463000000000002
146 144 1.76455
147 145 1.77535
148 146 1.79035
149 147 1.79475
150 148 1.8021500000000001
151 149 1.81735
152 150 1.8238
153 151 1.83135
154 152 1.8432000000000002
155 153 1.8465
156 154 1.8712000000000002
157 155 1.8765500000000002
158 156 1.88945
159 157 1.90135
160 158 1.9185500000000002
161 159 1.92185
162 160 1.93795
163 161 1.953
164 162 1.9572500000000002
165 163 1.9713500000000002
166 164 1.9896500000000001
167 165 1.99825
168 166 2.00685
169 167 2.0306
170 168 2.0391
171 169 2.04245
172 170 2.06405
173 171 2.07375
174 172 2.08015
175 173 2.0889
176 174 2.1028000000000002
177 175 2.1275
178 176 2.14805
179 177 2.1555500000000003
180 178 2.161
181 179 2.1793
182 180 2.18475
183 181 2.1899
184 182 2.1976500000000003
185 183 2.205
186 184 2.20845
187 185 2.2426500000000003
188 186 2.2471
189 187 2.2590500000000002
190 188 2.275
191 189 2.2869
192 190 2.3097000000000003
193 191 2.31405
194 192 2.3192500000000003
195 193 2.3312500000000003
196 194 2.3537
197 195 2.3603
198 196 2.37205
199 197 2.386
200 198 2.39255
201 199 2.41505
202 200 2.43325
203 201 2.44095
204 202 2.45175
205 203 2.4701
206 204 2.4745
207 205 2.4895
208 206 2.4992
209 207 2.5044
210 208 2.50985
211 209 2.5207
212 210 2.5303500000000003
213 211 2.5402500000000003
214 212 2.55845
215 213 2.5715000000000003
216 214 2.59375
217 215 2.5993500000000003
218 216 2.60685
219 217 2.6111
220 218 2.6304000000000003
221 219 2.637
222 220 2.66175
223 221 2.6758
224 222 2.6854500000000003
225 223 2.6898
226 224 2.69945
227 225 2.7199
228 226 2.72755
229 227 2.7404
230 228 2.7467
231 229 2.7641500000000003
232 230 2.7716000000000003
233 231 2.77915
234 232 2.79955
235 233 2.8039
236 234 2.8105
237 235 2.82435
238 236 2.8468500000000003
239 237 2.8600000000000003
240 238 2.87075
241 239 2.887
242 240 2.8933
243 241 2.90095
244 242 2.9256
245 243 2.9375
246 244 2.9483
247 245 2.95695
248 246 2.9699
249 247 2.97515
250 248 2.9880500000000003
251 249 3.00315
252 250 3.0258000000000003
253 251 3.0311000000000003
254 252 3.03985
255 253 3.056
256 254 3.0732500000000003
257 255 3.0806
258 256 3.09905
259 257 3.1173
260 258 3.1217
261 259 3.1367000000000003
262 260 3.14645
263 261 3.1507
264 262 3.16265
265 263 3.1767000000000003
266 264 3.2036000000000002
267 265 3.2089000000000003
268 266 3.21525
269 267 3.2271
270 268 3.2347
271 269 3.2487500000000002
272 270 3.2660500000000003
273 271 3.2831
274 272 3.29175
275 273 3.30825
276 274 3.3165
277 275 3.33375
278 276 3.3413500000000003
279 277 3.35115
280 278 3.3801
281 279 3.38445
282 280 3.3931500000000003
283 281 3.4028
284 282 3.4136
285 283 3.4263500000000002
286 284 3.434
287 285 3.4512
288 286 3.4728000000000003
289 287 3.47715
290 288 3.488
291 289 3.4932000000000003
292 290 3.5084
293 291 3.5223
294 292 3.5321000000000002
295 293 3.5396
296 294 3.56115
297 295 3.5720500000000004
298 296 3.5827500000000003
299 297 3.58595
300 298 3.59355
301 299 3.61065
302 300 3.6259
303 301 3.62895
304 302 3.64725
305 303 3.6506000000000003
306 304 3.6721500000000002
307 305 3.68075
308 306 3.6915500000000003
309 307 3.7193500000000004
310 308 3.7313
311 309 3.75705
312 310 3.7594000000000003
313 311 3.7626500000000003
314 312 3.7733000000000003
315 313 3.7884
316 314 3.7993
317 315 3.80355
318 316 3.8186500000000003
319 317 3.8293500000000003
320 318 3.8390500000000003
321 319 3.8444000000000003
322 320 3.8798500000000002
323 321 3.8841
324 322 3.9047500000000004
325 323 3.9111000000000002
326 324 3.9219000000000004
327 325 3.9359
328 326 3.94465
329 327 3.9489
330 328 3.96285
331 329 3.97255
332 330 3.9865000000000004
333 331 3.98985
334 332 4.01555
335 333 4.0372
336 334 4.04145
337 335 4.0533
338 336 4.0629
339 337 4.068350000000001
340 338 4.078
341 339 4.09105
342 340 4.09855
343 341 4.1267000000000005
344 342 4.129700000000001
345 343 4.14925
346 344 4.15995
347 345 4.16755
348 346 4.174
349 347 4.1805
350 348 4.1913
351 349 4.20295
352 350 4.2280500000000005
353 351 4.24085
354 352 4.25265
355 353 4.2698
356 354 4.2753000000000005
357 355 4.284800000000001
358 356 4.2924
359 357 4.3131
360 358 4.32685
361 359 4.3441
362 360 4.3496500000000005
363 361 4.357
364 362 4.3733
365 363 4.383
366 364 4.392650000000001
367 365 4.41295
368 366 4.42375
369 367 4.429250000000001
370 368 4.4411000000000005
371 369 4.4518
372 370 4.47125
373 371 4.48425
374 372 4.4927
375 373 4.4971000000000005
376 374 4.51745
377 375 4.5219000000000005
378 376 4.54555
379 377 4.554250000000001
380 378 4.5574
381 379 4.576700000000001
382 380 4.58125
383 381 4.5874500000000005
384 382 4.59835
385 383 4.62305
386 384 4.6392500000000005
387 385 4.651050000000001
388 386 4.6564000000000005
389 387 4.6618
390 388 4.67715
391 389 4.69535
392 390 4.701700000000001
393 391 4.70605
394 392 4.7331
395 393 4.744800000000001
396 394 4.75345
397 395 4.771850000000001
398 396 4.77825
399 397 4.795450000000001
400 398 4.79985
401 399 4.8169
402 400 4.82235
403 401 4.82775
404 402 4.8428
405 403 4.85355
406 404 4.86535
407 405 4.8731
408 406 4.90095
409 407 4.9053
410 408 4.92895
411 409 4.9321
412 410 4.94085
413 411 4.9483500000000005
414 412 4.96335
415 413 4.9743
416 414 4.9861
417 415 4.99145

View File

@ -0,0 +1,242 @@
,spikes
0,0.00715
1,0.014650000000000002
2,0.02325
3,0.030850000000000002
4,0.0426
5,0.050050000000000004
6,0.05545
7,0.06425
8,0.07165
9,0.0792
10,0.08575
11,0.09325
12,0.10285000000000001
13,0.1115
14,0.11905
15,0.12890000000000001
16,0.13955
17,0.15025
18,0.1557
19,0.16005
20,0.17065
21,0.17830000000000001
22,0.1902
23,0.1956
24,0.2031
25,0.21385
26,0.2225
27,0.2321
28,0.2366
29,0.24185
30,0.2538
31,0.26235
32,0.2667
33,0.27740000000000004
34,0.28385
35,0.29685
36,0.3032
37,0.3119
38,0.31835
39,0.3301
40,0.3346
41,0.34735
42,0.35395000000000004
43,0.36255000000000004
44,0.37110000000000004
45,0.3765
46,0.38845
47,0.39695
48,0.40440000000000004
49,0.40895000000000004
50,0.41850000000000004
51,0.42285
52,0.43470000000000003
53,0.44775000000000004
54,0.45285000000000003
55,0.45735000000000003
56,0.46705
57,0.47555000000000003
58,0.48635
59,0.49285
60,0.5014500000000001
61,0.509
62,0.5165500000000001
63,0.5251
64,0.5295500000000001
65,0.5488500000000001
66,0.55625
67,0.5629500000000001
68,0.5714
69,0.57915
70,0.5845
71,0.5940500000000001
72,0.60375
73,0.6123000000000001
74,0.6199
75,0.6285000000000001
76,0.635
77,0.64375
78,0.65005
79,0.6619
80,0.66835
81,0.68235
82,0.6868500000000001
83,0.6943
84,0.7028500000000001
85,0.71145
86,0.7179500000000001
87,0.73
88,0.7393500000000001
89,0.7448
90,0.7535000000000001
91,0.7599
92,0.7663500000000001
93,0.77175
94,0.7846500000000001
95,0.79545
96,0.7999
97,0.80625
98,0.8171
99,0.8257
100,0.8321500000000001
101,0.8450000000000001
102,0.8526
103,0.8602500000000001
104,0.8698
105,0.8783500000000001
106,0.88595
107,0.8913000000000001
108,0.89685
109,0.9074000000000001
110,0.91515
111,0.92045
112,0.9354
113,0.94725
114,0.9517500000000001
115,0.9591500000000001
116,0.9678
117,0.97765
118,0.9850000000000001
119,0.9904000000000001
120,1.00015
121,1.0088000000000001
122,1.01945
123,1.0238
124,1.03565
125,1.0433000000000001
126,1.05285
127,1.06365
128,1.0711
129,1.0765500000000001
130,1.083
131,1.09375
132,1.10145
133,1.1067500000000001
134,1.11335
135,1.11975
136,1.1359000000000001
137,1.1476
138,1.1531
139,1.15845
140,1.1693
141,1.1735
142,1.18755
143,1.19405
144,1.2027
145,1.209
146,1.21775
147,1.2253
148,1.2338
149,1.2392
150,1.2489000000000001
151,1.25535
152,1.26295
153,1.2769000000000001
154,1.2823
155,1.2910000000000001
156,1.29955
157,1.30385
158,1.31355
159,1.3200500000000002
160,1.3307
161,1.3382500000000002
162,1.34915
163,1.35765
164,1.36415
165,1.3749
166,1.3814
167,1.3890500000000001
168,1.39655
169,1.4030500000000001
170,1.4083
171,1.4202000000000001
172,1.4331
173,1.43955
174,1.4482000000000002
175,1.4534500000000001
176,1.4590500000000002
177,1.4697
178,1.4762000000000002
179,1.4881
180,1.49665
181,1.5074
182,1.5160500000000001
183,1.52045
184,1.5256
185,1.5299500000000001
186,1.5495
187,1.55685
188,1.56455
189,1.57315
190,1.58395
191,1.5882
192,1.5947
193,1.6064500000000002
194,1.61195
195,1.6205
196,1.62595
197,1.63555
198,1.6474
199,1.65815
200,1.6636000000000002
201,1.6733
202,1.6829
203,1.6893500000000001
204,1.6959000000000002
205,1.70775
206,1.7152500000000002
207,1.72285
208,1.73045
209,1.7411
210,1.7454500000000002
211,1.7574
212,1.7627000000000002
213,1.7701500000000001
214,1.77885
215,1.7918500000000002
216,1.796
217,1.8057500000000002
218,1.8154000000000001
219,1.8261500000000002
220,1.83155
221,1.8424500000000001
222,1.84985
223,1.8543
224,1.8628500000000001
225,1.8747
226,1.8791
227,1.8865500000000002
228,1.89415
229,1.905
230,1.91015
231,1.91785
232,1.9317000000000002
233,1.9414
234,1.9489
235,1.9576500000000001
236,1.9684000000000001
237,1.975
238,1.9835500000000001
239,1.9899
240,1.9996500000000001
1 spikes
2 0 0.00715
3 1 0.014650000000000002
4 2 0.02325
5 3 0.030850000000000002
6 4 0.0426
7 5 0.050050000000000004
8 6 0.05545
9 7 0.06425
10 8 0.07165
11 9 0.0792
12 10 0.08575
13 11 0.09325
14 12 0.10285000000000001
15 13 0.1115
16 14 0.11905
17 15 0.12890000000000001
18 16 0.13955
19 17 0.15025
20 18 0.1557
21 19 0.16005
22 20 0.17065
23 21 0.17830000000000001
24 22 0.1902
25 23 0.1956
26 24 0.2031
27 25 0.21385
28 26 0.2225
29 27 0.2321
30 28 0.2366
31 29 0.24185
32 30 0.2538
33 31 0.26235
34 32 0.2667
35 33 0.27740000000000004
36 34 0.28385
37 35 0.29685
38 36 0.3032
39 37 0.3119
40 38 0.31835
41 39 0.3301
42 40 0.3346
43 41 0.34735
44 42 0.35395000000000004
45 43 0.36255000000000004
46 44 0.37110000000000004
47 45 0.3765
48 46 0.38845
49 47 0.39695
50 48 0.40440000000000004
51 49 0.40895000000000004
52 50 0.41850000000000004
53 51 0.42285
54 52 0.43470000000000003
55 53 0.44775000000000004
56 54 0.45285000000000003
57 55 0.45735000000000003
58 56 0.46705
59 57 0.47555000000000003
60 58 0.48635
61 59 0.49285
62 60 0.5014500000000001
63 61 0.509
64 62 0.5165500000000001
65 63 0.5251
66 64 0.5295500000000001
67 65 0.5488500000000001
68 66 0.55625
69 67 0.5629500000000001
70 68 0.5714
71 69 0.57915
72 70 0.5845
73 71 0.5940500000000001
74 72 0.60375
75 73 0.6123000000000001
76 74 0.6199
77 75 0.6285000000000001
78 76 0.635
79 77 0.64375
80 78 0.65005
81 79 0.6619
82 80 0.66835
83 81 0.68235
84 82 0.6868500000000001
85 83 0.6943
86 84 0.7028500000000001
87 85 0.71145
88 86 0.7179500000000001
89 87 0.73
90 88 0.7393500000000001
91 89 0.7448
92 90 0.7535000000000001
93 91 0.7599
94 92 0.7663500000000001
95 93 0.77175
96 94 0.7846500000000001
97 95 0.79545
98 96 0.7999
99 97 0.80625
100 98 0.8171
101 99 0.8257
102 100 0.8321500000000001
103 101 0.8450000000000001
104 102 0.8526
105 103 0.8602500000000001
106 104 0.8698
107 105 0.8783500000000001
108 106 0.88595
109 107 0.8913000000000001
110 108 0.89685
111 109 0.9074000000000001
112 110 0.91515
113 111 0.92045
114 112 0.9354
115 113 0.94725
116 114 0.9517500000000001
117 115 0.9591500000000001
118 116 0.9678
119 117 0.97765
120 118 0.9850000000000001
121 119 0.9904000000000001
122 120 1.00015
123 121 1.0088000000000001
124 122 1.01945
125 123 1.0238
126 124 1.03565
127 125 1.0433000000000001
128 126 1.05285
129 127 1.06365
130 128 1.0711
131 129 1.0765500000000001
132 130 1.083
133 131 1.09375
134 132 1.10145
135 133 1.1067500000000001
136 134 1.11335
137 135 1.11975
138 136 1.1359000000000001
139 137 1.1476
140 138 1.1531
141 139 1.15845
142 140 1.1693
143 141 1.1735
144 142 1.18755
145 143 1.19405
146 144 1.2027
147 145 1.209
148 146 1.21775
149 147 1.2253
150 148 1.2338
151 149 1.2392
152 150 1.2489000000000001
153 151 1.25535
154 152 1.26295
155 153 1.2769000000000001
156 154 1.2823
157 155 1.2910000000000001
158 156 1.29955
159 157 1.30385
160 158 1.31355
161 159 1.3200500000000002
162 160 1.3307
163 161 1.3382500000000002
164 162 1.34915
165 163 1.35765
166 164 1.36415
167 165 1.3749
168 166 1.3814
169 167 1.3890500000000001
170 168 1.39655
171 169 1.4030500000000001
172 170 1.4083
173 171 1.4202000000000001
174 172 1.4331
175 173 1.43955
176 174 1.4482000000000002
177 175 1.4534500000000001
178 176 1.4590500000000002
179 177 1.4697
180 178 1.4762000000000002
181 179 1.4881
182 180 1.49665
183 181 1.5074
184 182 1.5160500000000001
185 183 1.52045
186 184 1.5256
187 185 1.5299500000000001
188 186 1.5495
189 187 1.55685
190 188 1.56455
191 189 1.57315
192 190 1.58395
193 191 1.5882
194 192 1.5947
195 193 1.6064500000000002
196 194 1.61195
197 195 1.6205
198 196 1.62595
199 197 1.63555
200 198 1.6474
201 199 1.65815
202 200 1.6636000000000002
203 201 1.6733
204 202 1.6829
205 203 1.6893500000000001
206 204 1.6959000000000002
207 205 1.70775
208 206 1.7152500000000002
209 207 1.72285
210 208 1.73045
211 209 1.7411
212 210 1.7454500000000002
213 211 1.7574
214 212 1.7627000000000002
215 213 1.7701500000000001
216 214 1.77885
217 215 1.7918500000000002
218 216 1.796
219 217 1.8057500000000002
220 218 1.8154000000000001
221 219 1.8261500000000002
222 220 1.83155
223 221 1.8424500000000001
224 222 1.84985
225 223 1.8543
226 224 1.8628500000000001
227 225 1.8747
228 226 1.8791
229 227 1.8865500000000002
230 228 1.89415
231 229 1.905
232 230 1.91015
233 231 1.91785
234 232 1.9317000000000002
235 233 1.9414
236 234 1.9489
237 235 1.9576500000000001
238 236 1.9684000000000001
239 237 1.975
240 238 1.9835500000000001
241 239 1.9899
242 240 1.9996500000000001

View File

@ -0,0 +1,278 @@
,spikes
0,0.0037500000000000003
1,0.018850000000000002
2,0.02205
3,0.023350000000000003
4,0.0251
5,0.0349
6,0.05115
7,0.058600000000000006
8,0.0653
9,0.06845
10,0.08985
11,0.09105
12,0.0932
13,0.11025
14,0.11455
15,0.11575
16,0.1222
17,0.12365000000000001
18,0.12545
19,0.13735
20,0.14375000000000002
21,0.15565
22,0.16515000000000002
23,0.1666
24,0.1696
25,0.17285
26,0.17405
27,0.19355
28,0.20115000000000002
29,0.21610000000000001
30,0.22025
31,0.2215
32,0.22895000000000001
33,0.23405
34,0.2353
35,0.23645000000000002
36,0.257
37,0.2827
38,0.28705
39,0.2892
40,0.29250000000000004
41,0.29435
42,0.29985
43,0.30110000000000003
44,0.31195
45,0.3171
46,0.32905
47,0.35050000000000003
48,0.35400000000000004
49,0.35595000000000004
50,0.36115
51,0.37415000000000004
52,0.3753
53,0.3775
54,0.38715
55,0.39575000000000005
56,0.4025
57,0.40655
58,0.41075
59,0.4238
60,0.44420000000000004
61,0.4486
62,0.44970000000000004
63,0.45180000000000003
64,0.4596
65,0.46155
66,0.46580000000000005
67,0.48855000000000004
68,0.4904
69,0.49155000000000004
70,0.4929
71,0.5088
72,0.5111
73,0.5357000000000001
74,0.5422
75,0.5499
76,0.5531
77,0.55435
78,0.5671
79,0.57135
80,0.5746
81,0.57655
82,0.58125
83,0.59075
84,0.5930000000000001
85,0.5972000000000001
86,0.5993
87,0.6005
88,0.60585
89,0.6134000000000001
90,0.61555
91,0.6434000000000001
92,0.6513
93,0.6696000000000001
94,0.68125
95,0.6834
96,0.68765
97,0.6898000000000001
98,0.6952
99,0.6996
100,0.7038
101,0.7179500000000001
102,0.72435
103,0.73945
104,0.7437
105,0.75555
106,0.7567
107,0.76095
108,0.7673500000000001
109,0.7694000000000001
110,0.7708
111,0.7858
112,0.7933
113,0.7945
114,0.79745
115,0.7987500000000001
116,0.8136
117,0.8223
118,0.8244
119,0.8353
120,0.8482000000000001
121,0.8569
122,0.8633000000000001
123,0.8742000000000001
124,0.8761
125,0.8826
126,0.8998
127,0.9137500000000001
128,0.91605
129,0.9386
130,0.9430000000000001
131,0.9517
132,0.9528500000000001
133,0.9551000000000001
134,0.9580000000000001
135,0.9612
136,0.9655
137,0.9840500000000001
138,0.9860500000000001
139,0.9902000000000001
140,1.01935
141,1.0226
142,1.0238
143,1.028
144,1.0345
145,1.05075
146,1.0582
147,1.0615
148,1.06795
149,1.08945
150,1.0907
151,1.0925500000000001
152,1.1099
153,1.1142
154,1.1154
155,1.1227
156,1.124
157,1.1368500000000001
158,1.14235
159,1.1454
160,1.1562000000000001
161,1.1648
162,1.1669
163,1.1701000000000001
164,1.1733
165,1.17455
166,1.19385
167,1.2015500000000001
168,1.21655
169,1.22065
170,1.22215
171,1.2337
172,1.23485
173,1.23595
174,1.2371
175,1.24895
176,1.28235
177,1.2875
178,1.28975
179,1.29295
180,1.2942500000000001
181,1.29855
182,1.3005
183,1.3019
184,1.31565
185,1.32875
186,1.3502
187,1.3533000000000002
188,1.35565
189,1.3608
190,1.37165
191,1.3746500000000001
192,1.3761
193,1.3783
194,1.3878000000000001
195,1.3964
196,1.4041000000000001
197,1.41035
198,1.4235
199,1.4439
200,1.449
201,1.45015
202,1.45465
203,1.4599
204,1.4622000000000002
205,1.4655500000000001
206,1.48895
207,1.49025
208,1.49125
209,1.4924000000000002
210,1.5084
211,1.51065
212,1.53535
213,1.5418500000000002
214,1.5503
215,1.55355
216,1.5613000000000001
217,1.5668
218,1.5710000000000002
219,1.5741500000000002
220,1.5762
221,1.5816000000000001
222,1.5903500000000002
223,1.59355
224,1.59695
225,1.5989
226,1.6001500000000002
227,1.6063500000000002
228,1.61385
229,1.643
230,1.65155
231,1.6699000000000002
232,1.681
233,1.6829
234,1.6873500000000001
235,1.6892500000000001
236,1.6948500000000002
237,1.6992
238,1.7033
239,1.71835
240,1.7239
241,1.7399
242,1.7434
243,1.7455500000000002
244,1.7559
245,1.7573500000000002
246,1.76685
247,1.7689000000000001
248,1.77025
249,1.78315
250,1.7936
251,1.79695
252,1.7981
253,1.81315
254,1.8146
255,1.822
256,1.8239500000000002
257,1.8349000000000002
258,1.8487
259,1.8573000000000002
260,1.8629
261,1.8745500000000002
262,1.8811
263,1.89945
264,1.9134
265,1.9146
266,1.91775
267,1.9383000000000001
268,1.9519000000000002
269,1.9531500000000002
270,1.9565000000000001
271,1.95855
272,1.96175
273,1.9651500000000002
274,1.9844000000000002
275,1.98655
276,1.9898500000000001
1 spikes
2 0 0.0037500000000000003
3 1 0.018850000000000002
4 2 0.02205
5 3 0.023350000000000003
6 4 0.0251
7 5 0.0349
8 6 0.05115
9 7 0.058600000000000006
10 8 0.0653
11 9 0.06845
12 10 0.08985
13 11 0.09105
14 12 0.0932
15 13 0.11025
16 14 0.11455
17 15 0.11575
18 16 0.1222
19 17 0.12365000000000001
20 18 0.12545
21 19 0.13735
22 20 0.14375000000000002
23 21 0.15565
24 22 0.16515000000000002
25 23 0.1666
26 24 0.1696
27 25 0.17285
28 26 0.17405
29 27 0.19355
30 28 0.20115000000000002
31 29 0.21610000000000001
32 30 0.22025
33 31 0.2215
34 32 0.22895000000000001
35 33 0.23405
36 34 0.2353
37 35 0.23645000000000002
38 36 0.257
39 37 0.2827
40 38 0.28705
41 39 0.2892
42 40 0.29250000000000004
43 41 0.29435
44 42 0.29985
45 43 0.30110000000000003
46 44 0.31195
47 45 0.3171
48 46 0.32905
49 47 0.35050000000000003
50 48 0.35400000000000004
51 49 0.35595000000000004
52 50 0.36115
53 51 0.37415000000000004
54 52 0.3753
55 53 0.3775
56 54 0.38715
57 55 0.39575000000000005
58 56 0.4025
59 57 0.40655
60 58 0.41075
61 59 0.4238
62 60 0.44420000000000004
63 61 0.4486
64 62 0.44970000000000004
65 63 0.45180000000000003
66 64 0.4596
67 65 0.46155
68 66 0.46580000000000005
69 67 0.48855000000000004
70 68 0.4904
71 69 0.49155000000000004
72 70 0.4929
73 71 0.5088
74 72 0.5111
75 73 0.5357000000000001
76 74 0.5422
77 75 0.5499
78 76 0.5531
79 77 0.55435
80 78 0.5671
81 79 0.57135
82 80 0.5746
83 81 0.57655
84 82 0.58125
85 83 0.59075
86 84 0.5930000000000001
87 85 0.5972000000000001
88 86 0.5993
89 87 0.6005
90 88 0.60585
91 89 0.6134000000000001
92 90 0.61555
93 91 0.6434000000000001
94 92 0.6513
95 93 0.6696000000000001
96 94 0.68125
97 95 0.6834
98 96 0.68765
99 97 0.6898000000000001
100 98 0.6952
101 99 0.6996
102 100 0.7038
103 101 0.7179500000000001
104 102 0.72435
105 103 0.73945
106 104 0.7437
107 105 0.75555
108 106 0.7567
109 107 0.76095
110 108 0.7673500000000001
111 109 0.7694000000000001
112 110 0.7708
113 111 0.7858
114 112 0.7933
115 113 0.7945
116 114 0.79745
117 115 0.7987500000000001
118 116 0.8136
119 117 0.8223
120 118 0.8244
121 119 0.8353
122 120 0.8482000000000001
123 121 0.8569
124 122 0.8633000000000001
125 123 0.8742000000000001
126 124 0.8761
127 125 0.8826
128 126 0.8998
129 127 0.9137500000000001
130 128 0.91605
131 129 0.9386
132 130 0.9430000000000001
133 131 0.9517
134 132 0.9528500000000001
135 133 0.9551000000000001
136 134 0.9580000000000001
137 135 0.9612
138 136 0.9655
139 137 0.9840500000000001
140 138 0.9860500000000001
141 139 0.9902000000000001
142 140 1.01935
143 141 1.0226
144 142 1.0238
145 143 1.028
146 144 1.0345
147 145 1.05075
148 146 1.0582
149 147 1.0615
150 148 1.06795
151 149 1.08945
152 150 1.0907
153 151 1.0925500000000001
154 152 1.1099
155 153 1.1142
156 154 1.1154
157 155 1.1227
158 156 1.124
159 157 1.1368500000000001
160 158 1.14235
161 159 1.1454
162 160 1.1562000000000001
163 161 1.1648
164 162 1.1669
165 163 1.1701000000000001
166 164 1.1733
167 165 1.17455
168 166 1.19385
169 167 1.2015500000000001
170 168 1.21655
171 169 1.22065
172 170 1.22215
173 171 1.2337
174 172 1.23485
175 173 1.23595
176 174 1.2371
177 175 1.24895
178 176 1.28235
179 177 1.2875
180 178 1.28975
181 179 1.29295
182 180 1.2942500000000001
183 181 1.29855
184 182 1.3005
185 183 1.3019
186 184 1.31565
187 185 1.32875
188 186 1.3502
189 187 1.3533000000000002
190 188 1.35565
191 189 1.3608
192 190 1.37165
193 191 1.3746500000000001
194 192 1.3761
195 193 1.3783
196 194 1.3878000000000001
197 195 1.3964
198 196 1.4041000000000001
199 197 1.41035
200 198 1.4235
201 199 1.4439
202 200 1.449
203 201 1.45015
204 202 1.45465
205 203 1.4599
206 204 1.4622000000000002
207 205 1.4655500000000001
208 206 1.48895
209 207 1.49025
210 208 1.49125
211 209 1.4924000000000002
212 210 1.5084
213 211 1.51065
214 212 1.53535
215 213 1.5418500000000002
216 214 1.5503
217 215 1.55355
218 216 1.5613000000000001
219 217 1.5668
220 218 1.5710000000000002
221 219 1.5741500000000002
222 220 1.5762
223 221 1.5816000000000001
224 222 1.5903500000000002
225 223 1.59355
226 224 1.59695
227 225 1.5989
228 226 1.6001500000000002
229 227 1.6063500000000002
230 228 1.61385
231 229 1.643
232 230 1.65155
233 231 1.6699000000000002
234 232 1.681
235 233 1.6829
236 234 1.6873500000000001
237 235 1.6892500000000001
238 236 1.6948500000000002
239 237 1.6992
240 238 1.7033
241 239 1.71835
242 240 1.7239
243 241 1.7399
244 242 1.7434
245 243 1.7455500000000002
246 244 1.7559
247 245 1.7573500000000002
248 246 1.76685
249 247 1.7689000000000001
250 248 1.77025
251 249 1.78315
252 250 1.7936
253 251 1.79695
254 252 1.7981
255 253 1.81315
256 254 1.8146
257 255 1.822
258 256 1.8239500000000002
259 257 1.8349000000000002
260 258 1.8487
261 259 1.8573000000000002
262 260 1.8629
263 261 1.8745500000000002
264 262 1.8811
265 263 1.89945
266 264 1.9134
267 265 1.9146
268 266 1.91775
269 267 1.9383000000000001
270 268 1.9519000000000002
271 269 1.9531500000000002
272 270 1.9565000000000001
273 271 1.95855
274 272 1.96175
275 273 1.9651500000000002
276 274 1.9844000000000002
277 275 1.98655
278 276 1.9898500000000001

View File

@ -0,0 +1,242 @@
,spikes
0,0.00055
1,0.0082
2,0.02015
3,0.02545
4,0.037200000000000004
5,0.0449
6,0.050100000000000006
7,0.05885
8,0.06635
9,0.07595
10,0.08365
11,0.09225
12,0.0998
13,0.10725000000000001
14,0.11810000000000001
15,0.12665
16,0.13415000000000002
17,0.14495
18,0.15145
19,0.15885000000000002
20,0.1686
21,0.17715
22,0.18375
23,0.1957
24,0.201
25,0.2096
26,0.21815
27,0.22355
28,0.23215000000000002
29,0.23870000000000002
30,0.25270000000000004
31,0.25915
32,0.26765
33,0.2753
34,0.28605
35,0.29250000000000004
36,0.30105000000000004
37,0.30875
38,0.31845
39,0.32480000000000003
40,0.3366
41,0.3421
42,0.35075
43,0.3602
44,0.3669
45,0.37345
46,0.3809
47,0.3896
48,0.39805
49,0.40875
50,0.41745000000000004
51,0.42615000000000003
52,0.43355000000000005
53,0.43905
54,0.44765000000000005
55,0.45835000000000004
56,0.4691
57,0.4756
58,0.48435
59,0.4939
60,0.4993
61,0.5068
62,0.5165500000000001
63,0.5262
64,0.5337000000000001
65,0.54015
66,0.5477000000000001
67,0.55635
68,0.5650000000000001
69,0.57475
70,0.5811000000000001
71,0.5920000000000001
72,0.5984
73,0.6081
74,0.61785
75,0.6242
76,0.63175
77,0.6404000000000001
78,0.649
79,0.6565500000000001
80,0.6642
81,0.6747500000000001
82,0.68245
83,0.6909500000000001
84,0.6975
85,0.70625
86,0.71355
87,0.7211500000000001
88,0.732
89,0.7406
90,0.7523000000000001
91,0.75885
92,0.7653500000000001
93,0.7739
94,0.7826000000000001
95,0.788
96,0.7997500000000001
97,0.8084
98,0.8149500000000001
99,0.8236
100,0.8331500000000001
101,0.8407
102,0.85055
103,0.8600500000000001
104,0.86545
105,0.8741500000000001
106,0.8817
107,0.8892500000000001
108,0.8968
109,0.9075000000000001
110,0.9139
111,0.9236000000000001
112,0.93325
113,0.9419500000000001
114,0.9474
115,0.9559500000000001
116,0.9636
117,0.9721000000000001
118,0.98075
119,0.9915
120,0.99685
121,1.00345
122,1.01305
123,1.0206
124,1.03135
125,1.0399
126,1.0476
127,1.0541
128,1.0637
129,1.0745500000000001
130,1.0808
131,1.09075
132,1.096
133,1.1067500000000001
134,1.11425
135,1.1229
136,1.1305
137,1.13915
138,1.14455
139,1.1530500000000001
140,1.16595
141,1.1714
142,1.17785
143,1.18755
144,1.1941000000000002
145,1.20365
146,1.2124000000000001
147,1.2188
148,1.2274
149,1.23815
150,1.2467000000000001
151,1.25225
152,1.26085
153,1.2694
154,1.2770000000000001
155,1.2877
156,1.2941
157,1.3038
158,1.31255
159,1.3222500000000001
160,1.3307
161,1.3384500000000001
162,1.3448
163,1.3545500000000001
164,1.36095
165,1.37175
166,1.38145
167,1.38575
168,1.39435
169,1.40185
170,1.41375
171,1.42015
172,1.4300000000000002
173,1.4374500000000001
174,1.4450500000000002
175,1.4546000000000001
176,1.46665
177,1.47295
178,1.4785000000000001
179,1.48915
180,1.4956
181,1.5031
182,1.5107000000000002
183,1.5193
184,1.52885
185,1.53545
186,1.54515
187,1.55365
188,1.5592000000000001
189,1.5678
190,1.5784500000000001
191,1.5861
192,1.5936000000000001
193,1.6034000000000002
194,1.6119
195,1.6216000000000002
196,1.62915
197,1.6367500000000001
198,1.64535
199,1.6528
200,1.6614
201,1.6689500000000002
202,1.67755
203,1.6872500000000001
204,1.6949
205,1.70025
206,1.71215
207,1.7206000000000001
208,1.7272
209,1.74
210,1.74655
211,1.75295
212,1.76265
213,1.77035
214,1.7798
215,1.7875
216,1.7939500000000002
217,1.80255
218,1.8122
219,1.8219500000000002
220,1.8283500000000001
221,1.8359500000000002
222,1.8456000000000001
223,1.8532000000000002
224,1.8618000000000001
225,1.8725500000000002
226,1.8801
227,1.8855000000000002
228,1.893
229,1.90385
230,1.91345
231,1.9199000000000002
232,1.9253500000000001
233,1.935
234,1.9447
235,1.95235
236,1.9608500000000002
237,1.9706000000000001
238,1.97815
239,1.9846000000000001
240,1.9964000000000002
1 spikes
2 0 0.00055
3 1 0.0082
4 2 0.02015
5 3 0.02545
6 4 0.037200000000000004
7 5 0.0449
8 6 0.050100000000000006
9 7 0.05885
10 8 0.06635
11 9 0.07595
12 10 0.08365
13 11 0.09225
14 12 0.0998
15 13 0.10725000000000001
16 14 0.11810000000000001
17 15 0.12665
18 16 0.13415000000000002
19 17 0.14495
20 18 0.15145
21 19 0.15885000000000002
22 20 0.1686
23 21 0.17715
24 22 0.18375
25 23 0.1957
26 24 0.201
27 25 0.2096
28 26 0.21815
29 27 0.22355
30 28 0.23215000000000002
31 29 0.23870000000000002
32 30 0.25270000000000004
33 31 0.25915
34 32 0.26765
35 33 0.2753
36 34 0.28605
37 35 0.29250000000000004
38 36 0.30105000000000004
39 37 0.30875
40 38 0.31845
41 39 0.32480000000000003
42 40 0.3366
43 41 0.3421
44 42 0.35075
45 43 0.3602
46 44 0.3669
47 45 0.37345
48 46 0.3809
49 47 0.3896
50 48 0.39805
51 49 0.40875
52 50 0.41745000000000004
53 51 0.42615000000000003
54 52 0.43355000000000005
55 53 0.43905
56 54 0.44765000000000005
57 55 0.45835000000000004
58 56 0.4691
59 57 0.4756
60 58 0.48435
61 59 0.4939
62 60 0.4993
63 61 0.5068
64 62 0.5165500000000001
65 63 0.5262
66 64 0.5337000000000001
67 65 0.54015
68 66 0.5477000000000001
69 67 0.55635
70 68 0.5650000000000001
71 69 0.57475
72 70 0.5811000000000001
73 71 0.5920000000000001
74 72 0.5984
75 73 0.6081
76 74 0.61785
77 75 0.6242
78 76 0.63175
79 77 0.6404000000000001
80 78 0.649
81 79 0.6565500000000001
82 80 0.6642
83 81 0.6747500000000001
84 82 0.68245
85 83 0.6909500000000001
86 84 0.6975
87 85 0.70625
88 86 0.71355
89 87 0.7211500000000001
90 88 0.732
91 89 0.7406
92 90 0.7523000000000001
93 91 0.75885
94 92 0.7653500000000001
95 93 0.7739
96 94 0.7826000000000001
97 95 0.788
98 96 0.7997500000000001
99 97 0.8084
100 98 0.8149500000000001
101 99 0.8236
102 100 0.8331500000000001
103 101 0.8407
104 102 0.85055
105 103 0.8600500000000001
106 104 0.86545
107 105 0.8741500000000001
108 106 0.8817
109 107 0.8892500000000001
110 108 0.8968
111 109 0.9075000000000001
112 110 0.9139
113 111 0.9236000000000001
114 112 0.93325
115 113 0.9419500000000001
116 114 0.9474
117 115 0.9559500000000001
118 116 0.9636
119 117 0.9721000000000001
120 118 0.98075
121 119 0.9915
122 120 0.99685
123 121 1.00345
124 122 1.01305
125 123 1.0206
126 124 1.03135
127 125 1.0399
128 126 1.0476
129 127 1.0541
130 128 1.0637
131 129 1.0745500000000001
132 130 1.0808
133 131 1.09075
134 132 1.096
135 133 1.1067500000000001
136 134 1.11425
137 135 1.1229
138 136 1.1305
139 137 1.13915
140 138 1.14455
141 139 1.1530500000000001
142 140 1.16595
143 141 1.1714
144 142 1.17785
145 143 1.18755
146 144 1.1941000000000002
147 145 1.20365
148 146 1.2124000000000001
149 147 1.2188
150 148 1.2274
151 149 1.23815
152 150 1.2467000000000001
153 151 1.25225
154 152 1.26085
155 153 1.2694
156 154 1.2770000000000001
157 155 1.2877
158 156 1.2941
159 157 1.3038
160 158 1.31255
161 159 1.3222500000000001
162 160 1.3307
163 161 1.3384500000000001
164 162 1.3448
165 163 1.3545500000000001
166 164 1.36095
167 165 1.37175
168 166 1.38145
169 167 1.38575
170 168 1.39435
171 169 1.40185
172 170 1.41375
173 171 1.42015
174 172 1.4300000000000002
175 173 1.4374500000000001
176 174 1.4450500000000002
177 175 1.4546000000000001
178 176 1.46665
179 177 1.47295
180 178 1.4785000000000001
181 179 1.48915
182 180 1.4956
183 181 1.5031
184 182 1.5107000000000002
185 183 1.5193
186 184 1.52885
187 185 1.53545
188 186 1.54515
189 187 1.55365
190 188 1.5592000000000001
191 189 1.5678
192 190 1.5784500000000001
193 191 1.5861
194 192 1.5936000000000001
195 193 1.6034000000000002
196 194 1.6119
197 195 1.6216000000000002
198 196 1.62915
199 197 1.6367500000000001
200 198 1.64535
201 199 1.6528
202 200 1.6614
203 201 1.6689500000000002
204 202 1.67755
205 203 1.6872500000000001
206 204 1.6949
207 205 1.70025
208 206 1.71215
209 207 1.7206000000000001
210 208 1.7272
211 209 1.74
212 210 1.74655
213 211 1.75295
214 212 1.76265
215 213 1.77035
216 214 1.7798
217 215 1.7875
218 216 1.7939500000000002
219 217 1.80255
220 218 1.8122
221 219 1.8219500000000002
222 220 1.8283500000000001
223 221 1.8359500000000002
224 222 1.8456000000000001
225 223 1.8532000000000002
226 224 1.8618000000000001
227 225 1.8725500000000002
228 226 1.8801
229 227 1.8855000000000002
230 228 1.893
231 229 1.90385
232 230 1.91345
233 231 1.9199000000000002
234 232 1.9253500000000001
235 233 1.935
236 234 1.9447
237 235 1.95235
238 236 1.9608500000000002
239 237 1.9706000000000001
240 238 1.97815
241 239 1.9846000000000001
242 240 1.9964000000000002

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

After

Width:  |  Height:  |  Size: 109 KiB

View File

@ -106,7 +106,7 @@ def model_and_data2(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1
# ax.text(1.66, 0.5, nonlin_title(), rotation=90, ha='center', va='center',
# transform=ax.transAxes)
ax_external.arrow_spines('lb')
#ax_external.arrow_spines('lb')
#embed()
#plt.show()
@ -448,6 +448,7 @@ if __name__ == '__main__':
##########################
#embed()
print('hi')
model_and_data2(eod_metrice = False, width=0.005, show=show, D_extraction_method=D_extraction_method,
label=r'$\frac{1}{mV^2S}$') #r'$\frac{1}{mV^2S}$'

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 80 KiB

View File

@ -1,7 +1,7 @@
from utils_suseptibility import *
def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='all', chose_score='mean_nrs',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm',ylim = [-1.25, 1.25], dfs = ['m1', 'm2']):
def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], end='all', chose_score='mean_nrs',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm', dfs = ['m1', 'm2']):
plot_style()
default_figsize(column=2, length=2.3)
@ -24,17 +24,12 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
f1 = 33
f2 = 139
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
#embed()
#ax.plot(fr_noise * f1/fr_waves, fr_noise*f2/fr_waves, 'o', ms = 5, markeredgecolor = color012, markerfacecolor="None")
#ax.plot(-fr_noise * f1 / fr_waves, fr_noise * f2 / fr_waves, 'o', ms = 5, markeredgecolor=color01_2, markerfacecolor="None")
# if len(cbar) > 0:
###############################
# data part
data_extra = False
if data_extra:
data_square_extra = False
if data_square_extra:
ax = plt.subplot(grid[0])
axes.append(ax)
cell = '2012-07-03-ak-invivo-1'
@ -98,32 +93,43 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
markers = ['s', 'o']
ms = 14
DF1_desired, DF2_desired, fr, eod_fr, arrays_len = plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid[3], mult_type, sorted_on, ms = ms, markers = ['s', 'o'],clip_on = True, DF2_desired = DF2_desired_orig, DF1_desired = DF1_desired_orig, alpha = [1,1], log = log, ylim_log = ylim_log, nfft = nfft, xlim_psd = xlim_psd)
data_extra = False
if data_extra:
DF1_desired, DF2_desired, fr, eod_fr, arrays_len = plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid[3], mult_type, sorted_on, ms = ms, markers = ['s', 'o'],clip_on = True, DF2_desired = DF2_desired_orig, DF1_desired = DF1_desired_orig, alpha = [1,1], log = log, ylim_log = ylim_log, nfft = nfft, xlim_psd = xlim_psd)
fr_mult = fr / eod_fr
multwise = False
if multwise:
DF1_frmult = np.abs((np.array(DF1_desired)-1)/fr_mult)
DF2_frmult = np.abs((np.array(DF2_desired) - 1) / fr_mult)
else:
DF1_frmult = np.array(DF1_desired_orig)/fr
DF2_frmult = np.array(DF2_desired_orig) / fr
#embed()
DF1_frmult[0] = 1
DF2_frmult[1] = 0.32339256#1.06949369
print(DF1_frmult)
print(DF2_frmult)
grid0 = gridspec.GridSpecFromSubplotSpec(len(DF1_desired), 1, wspace=0.15, hspace=0.35,
subplot_spec=grid[2])
else:
markers = ['o', 'o', 'o', 'o', ]
DF1_frmult = [0.28, 1.28, 1, 1]
DF2_frmult = [1-0.28, 0.28, 0.28, 0.48] # 1.06949369
grid0 = gridspec.GridSpecFromSubplotSpec(2, 2, wspace=0.15, hspace=0.35,
subplot_spec=grid[2:3])
#################
#################
# power spectra model
grid0 = gridspec.GridSpecFromSubplotSpec(len(DF1_desired), 1, wspace=0.15, hspace=0.35,
subplot_spec=grid[2])
fr_mult = fr / eod_fr
multwise = False
if multwise:
DF1_frmult = np.abs((np.array(DF1_desired)-1)/fr_mult)
DF2_frmult = np.abs((np.array(DF2_desired) - 1) / fr_mult)
else:
DF1_frmult = np.array(DF1_desired_orig)/fr
DF2_frmult = np.array(DF2_desired_orig) / fr
#embed()
DF1_frmult[0] = 1
DF2_frmult[1] = 0.32339256#1.06949369
print(DF1_frmult)
print(DF2_frmult)
#DF1_frmult[1] = 0.4
#DF2_frmult[1] = 1.8
#DF1_frmult[1] = 1.45
@ -167,12 +173,11 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
# ATTENTION: Diese Zelle ('2012-07-03-ak-invivo-1') braucht längere Abschnitte, mindsetesn 5 Sekunden damit das Powerspectrum nicht so niosy ist!
#embed()dev_spikes='original',
fr = plt_model_full_model2(grid0, reshuffled=reshuffled, datapoints=50, limit=10.2,
reshuffle=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size, array_len=[20,20],
stimulus_length=length, way=way, plus_q=plus_q,
diagonal=diagonal, runs=1,nfft = nfft,xlim_psd = xlim_psd, ylim_log = ylim_log,
cells=[cell], dev_spikes = '05', markers = markers,DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
show=True, log = log,ms = ms, clip_on = True) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
fr, eod_fr_m = plt_model_full_model2(grid0, reshuffled=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size,
stimulus_length=length, plus_q=plus_q,
diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd, ylim_log = ylim_log,
cells=[cell], dev_spikes = '05', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
log = log, ms = ms, clip_on = True) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
@ -185,16 +190,24 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
#ax.plot(-fr_noise * f1 / fr_waves, fr_noise * f2 / fr_waves, 'o', ms=5, markeredgecolor=color01_2,
# markerfacecolor="None", alpha = 0.5)
DF2_hz = np.abs(np.array(DF1_desired) * eod_fr-eod_fr)
DF1_hz = np.abs(np.array(DF2_desired) * eod_fr - eod_fr)
for f in range(len(DF1_hz)):
ax.plot(fr_noise * DF1_hz[f] / fr_waves, fr_noise * DF2_hz[f] / fr_waves, markers[f], ms=5, markeredgecolor=color012,
markerfacecolor="None")#, alpha = alphas[f]
ax.plot(-fr_noise * DF1_hz[f] / fr_waves, fr_noise * DF2_hz[f] / fr_waves, markers[f], ms=5, markeredgecolor=color01_2,
markerfacecolor="None")#, alpha = alphas[f]
if data_extra:
DF2_hz = np.abs(np.array(DF1_desired) * eod_fr - eod_fr)
DF1_hz = np.abs(np.array(DF2_desired) * eod_fr - eod_fr)
for f in range(len(DF1_hz)):
ax.plot(fr_noise * DF1_hz[f] / fr_waves, fr_noise * DF2_hz[f] / fr_waves, markers[f], ms=5, markeredgecolor=color012,
markerfacecolor="None")#, alpha = alphas[f]
ax.plot(-fr_noise * DF1_hz[f] / fr_waves, fr_noise * DF2_hz[f] / fr_waves, markers[f], ms=5, markeredgecolor=color01_2,
markerfacecolor="None")#, alpha = alphas[f]
else:
#embed()
for f in range(len(DF1_frmult)):
ax.plot((fr_noise*DF1_frmult[f]), (fr_noise*DF2_frmult[f]-1), markers[f], ms=5, markeredgecolor=color012,
markerfacecolor="None")#, alpha = alphas[f]
ax.plot(-(fr_noise*DF1_frmult[f]-1), (fr_noise*DF2_frmult[f]-1), markers[f], ms=5, markeredgecolor=color01_2,
markerfacecolor="None")#, alpha = alphas[f]
#embed()
#tag2(fig=fig, xoffs=[-4.5, -4.5, -4.5, -5.5], yoffs=1.25)
@ -205,10 +218,11 @@ def model_full(c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='al
save_visualization()
def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha = 1, trials_nr = 15, add_pp=50,
single_waves=['_SingleWave_', '_SeveralWave_', ], cell_start=13,
zeros='zeros', several_peaks_nr = 2, a_f1s=[0, 0.005, 0.01, 0.05, 0.1, 0.2, ], a_frs=[1],
add_half=0, log = 'log', xlim = [0, 350], freqs_mult1 = None, freqs_mult2 = None, show=False, nfft=int(2 ** 15), beat='', gain=1, us_name=''):
def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha = 1, trials_nr = 15,
single_waves=['_SingleWave_', '_SeveralWave_', ], cell_start=13,
several_peaks_nr = 2, a_f1s=[0, 0.005, 0.01, 0.05, 0.1, 0.2, ], a_frs=[1],
add_half=0, log = 'log', xlim = [0, 350], freqs_mult1 = None, freqs_mult2 = None,
nfft=int(2 ** 15), gain=1, us_name=''):
model_cells = pd.read_csv(load_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
if len(cells) < 1:
cells = model_cells.cell.loc[range(cell_start, len(model_cells))]
@ -364,32 +378,17 @@ def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha
freqs_beat = [fr, np.abs(beat1), np.abs(beat2), np.abs(np.abs(beat2) + np.abs(beat1)),np.abs(np.abs(beat2) - np.abs(beat1))
] # np.abs(beat2 - beat1),np.abs(beat2 + beat1),
#colors_w, colors_wo, color_base, color_01, color_02, color_012 = colors_cocktailparty_all()
colors = [color0,color_01, color_02, color_012, color01_2] # 'blue'
labels = ['','', '', '', ''] # small , '|B1-B2|'
#labels = ['$f_{1}=%d$' % beat1 + '\,Hz', '$f_{2}=%d$' % beat2 + '\,Hz',
# '$f_{1} + f_{2}=f_{Base}=%d$' % (
# beat1 + beat2 - 1) + '\,Hz'] # small , '|B1-B2|'
add_texts = [nr, nr + 0.35, nr + 0.2, nr + 0.2, nr + 0.2] # [1.1,1.1,1.1]
texts_left = [-7, -7, -7, -7,-7]
# ax[1].set_title(
# '$f_{1}=%d$' % beat1 + '\,Hz' + ', ' + '$f_{2}=%d$' % beat2 + '\,Hz' + ', ' + '$ f_{Base}=%d$' % (
# beat1 + beat2 - 1) + '\,Hz')
else:
freqs_beat = [np.abs(beat1), np.abs(beat1) * 2, np.abs(beat1 * 3),
np.abs(beat1 * 4)] # np.abs(beat1) / 2,
colors = ['black', 'orange', 'blue', 'purple', 'black'] # 'grey',
#colors = colors_didactic()
add_texts = [nr + 0.1, nr + 0.1, nr + 0.1, nr + 0.1] # [1.1,1.1,1.1,1.1]
texts_left = [3, 0, 0, 0]
labels = labels_didactic2() # colors_didactic, labels_didactic
# labels = ['S1', 'S2 / B1', 'S3', 'S4 / B2', 'f0']#'',
if 'Several' in single_wave:
color_beat = 'black'
else:
color_beat = colors[0]
if (np.mean(stimulus) != 0) & (np.mean(stimulus) != 1):
# try:
eod_interp, eod_norm = extract_am(stimulus, time_array, sampling=sampling_rate,
@ -397,18 +396,11 @@ def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha
emb=False,
extract='', norm=False)
for l in range(len(spikes)):
# ax[2, aa].scatter(spikes[l]*1000, np.ones(len(spikes[l]))*(l+1), color = 'grey', s = 5)
spikes[l] = (spikes[l] - min) * 1000
# ax[5, ff].set_xlim(0.1,0.2)
pp, f = ml.psd(mat05 - np.mean(mat05), Fs=1 / deltat, NFFT=nfft,
noverlap=nfft // 2)
ref = (np.max(pp))
if log:
pp_mean = 10 * np.log10(pp_mean / np.max(pp_mean))
# pp_mean = np.log
print(freqs_beat)
print(labels)
plt_peaks_several(freqs_beat, pp_mean, axp, pp_mean, f, labels, 0, colors, ha='center',
@ -432,16 +424,15 @@ def plt_model_full_model(axp, min=0.2, cells=[], a_f2 = 0.1, perc = 0.05, alpha
axp.set_xlabel('Frequency [Hz]')
return fr
def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=1000, dev=0.0005, limit=10.2, a_f1s=[0.03],
pdf=True, printing=False, plus_q='minus', freq1_ratio=1 / 2, diagonal='diagonal',
freq2_ratio=2 / 3, way='absolut', stimulus_length=0.5, runs=1, trials_nr=500, cells=[],
show=False, nfft=int(4096), beat='', nfft_for_morph=4096 * 4, gain=1,
sampling_factors=[''],DF2_frmult = [],DF1_frmult = [],
fish_receiver='Alepto', end_f1=4645,array_len = [],
fish_emitter='Alepto', marker = 'o',xlim_psd = [], ylim_log = [],
fish_jammer='Alepto', reshuffle='reshuffled', markers = [], clip_on = True,
redo_level='celllevel',ms = 14, step=10, zeros='zeros', corr='ratecorrrisidual',
us_name='', dev_spikes='original', start_f1=20, log = '',plot=False):
def plt_model_full_model2(grid0, reshuffled='reshuffled', af_2 = 0.1, dev=0.0005, a_f1s=[0.03],
printing=False, plus_q='minus', diagonal='diagonal',
stimulus_length=0.5, runs=1, cells=[],
nfft=int(4096), beat='', nfft_for_morph=4096 * 4, gain=1,
DF2_frmult = [], DF1_frmult = [],
array_len = [20,20,20,20,20],
xlim_psd = [], ylim_log = [],
fish_jammer='Alepto', markers = [], clip_on = True,
ms = 14, us_name='', dev_spikes='original', log =''):
plot_style()
model_cells = pd.read_csv(load_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
@ -458,24 +449,15 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
#embed()
ax = plt.subplot(grid0[g])
axes.append(ax)
trials_nr = array_len[g]
marker = markers[g]
#embed()
#model_done = True
#if model_done:
#old = False
#if old:
# fr = plt_model_full_model(ax, a_f1s=[a_size], af_2 = 0.1, cells=[cell],trials_nr = arrays_len[g], add_pp=250, single_waves=['_SeveralSumWave_', ], cell_start=11,
# zeros='ones', perc = 0.25, several_peaks_nr = 2, alpha = alphas[g], log = log, nfft = nfft, freqs_mult1 = DF1_frmult[g], freqs_mult2 = DF2_frmult[g], xlim = [0, 170], a_frs=[1], add_half=0, show=True)#01
#else:
try:
trials_nr = array_len[g]
except:
print('array nr something')
embed()
for cell_here in cells:
# sachen die ich variieren will
###########################################
single_waves = ['_SeveralWave_'] # , '_SingleWave_']
####### VARY HERE
for single_wave in single_waves:
if single_wave == '_SingleWave_':
a_f2s = [0] # , 0,0.2
@ -484,7 +466,6 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
for a_f2 in a_f2s:
# ,0.05,0.01, 0.005, 0.1, 0.2] # 0.001,
for a_f1 in a_f1s:
#embed()
a_frs = [1]
titles_amp = ['base eodf'] # ,'baseline to Zero',]
for a, a_fr in enumerate(a_frs):
@ -513,42 +494,10 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
fish_morph_harmonics_var=fish_morph_harmonics_var,
beat=beat)
sampling = 1 / deltat
multiple = 0
slope = 0
add = 0
plus = 0
sig_val = (7, 1)
variant = 'sinz'
if exponential == '':
v_exp = 1
exp_tau = 0.001
# prepare for adapting offset due to baseline modification
baseline_with_wave_damping, baseline_without_wave = prepare_baseline_array(time_array, eod_fr,
nfft_for_morph,
phaseshift_fr,
mimick, zeros,
cell_recording,
sampling,
stimulus_length,
fish_receiver,
deltat, nfft,
damping_type,
damping, us_name,
gain, beat=beat,
fish_morph_harmonics_var=fish_morph_harmonics_var)
spikes_base = [[]] * trials_nr
color0 = 'green' # 'orange'
color01 = 'blue'
color02 = 'red'
color012 = 'orange'
color01_2 = 'purple'
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
#fig = plt.figure(figsize=(11.5, 5.4))
for run in range(runs):
print(run)
t1 = time.time()
@ -569,22 +518,9 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
adaptation_yes_j=f2,
adaptation_yes_e=f1,
adaptation_yes_t=t,
adaptation_upper_tol=upper_tol,
adaptation_lower_tol=lower_tol,
power_variant=power_here,
power_alpha=alpha,
power_nr=n,
reshuffle=reshuffled,
tau_change_choice=constant_reduction,
tau_change_val=dent_tau_change,
sigmoidal_mult=1,
sigmoidal_plus=plus,
sigmoidal_slope=slope,
sigmoidal_add=add,
sigmoidal_sigmoidal_val=sig_val,
LIF_exponential=exponential,
LIF_exponential_tau=exp_tau,
LIF_expontential__v=v_exp,
**model_params)
if t == 0:
@ -659,19 +595,10 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
eod_stimulus = eod_fish1 + eod_fish2
v_mems, offset_new, mat01, mat02, mat012, smoothed01, smoothed02, smoothed012, stimulus_01, stimulus_02, stimulus_012, mat05_01, spikes_01, mat05_02, spikes_02, mat05_012, spikes_012 = get_arrays_for_three(
cell, a_f2, a_f1, SAM, eod_stimulus, eod_fish_r, freq2, eod_fish1, eod_fish2,
stimulus_length, offset, model_params, n, 'sinz', adapt_offset, add, deltat,
f2, trials_nr, time_array, f1, freq1, eod_fr, reshuffle=reshuffled, dev=dev)
#cell, a_f2, a_f1,
#SAM, eod_stimulus, eod_fish_r, freq2, eod_fish1, eod_fish2, stimulus_length,
#baseline_with_wave_damping, offset, model_params, n, variant, adapt_offset,
#upper_tol, lower_tol, dent_tau_change, constant_reduction,
#exponential, plus, slope, add,
#deltat, alpha, sig_val, v_exp, exp_tau, f2,
#trials_nr, time_array,
#f1, freq1, damping_type,
#gain, eod_fr, damping, us_name, dev=dev, reshuffle=reshuffled)
v_mems, offset_new, mat01, mat02, mat012, smoothed01, smoothed02, smoothed012, stimulus_01, stimulus_02, stimulus_012, mat05_01, spikes_01, mat05_02, spikes_02, mat05_012, spikes_012 = get_arrays_for_three(cell, a_f2, a_f1, SAM, eod_stimulus, eod_fish_r, freq2,
eod_fish1, eod_fish2, stimulus_length, offset, model_params, n,
'sinz', adapt_offset, deltat, f2, trials_nr, time_array, f1,
freq1, eod_fr, reshuffle=reshuffled, dev=dev)
if printing:
print('Generation process' + str(time.time() - t1))
@ -762,10 +689,6 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
plt_peaks_several(freqs, p0_mean, ax, p0_mean, fs, labels, 0, colors, emb=False, marker=marker, add_log=2.5,
exact=False, perc_peaksize=0.08, ms=ms, clip_on=clip_on, log=log)
ax.set_xlim(0, 300)
#ax.set_ylim(0 - 20,
# np.max(np.max(ps)) + 70) # np.min(np.min(p0_means))
#if j == 0:
# ax.legend(ncol=2)
if j == 0:
ax.text(1, 1, 'Model', ha='right', va='top', transform=ax.transAxes)
if j == 0:
@ -779,21 +702,16 @@ def plt_model_full_model2(grid0, reshuffled='reshuffled',af_2 = 0.1, datapoints=
ax.set_ylim(ylim_log)
ax.set_ylabel('dB')
join_y(axes)#[1::]
#embed()
test = False
if test:
plt.plot(p0_means[0])
plt.plot(p0_means[1])
axes.append(ax)
return fr
return fr, eod_fr
def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_type, sorted_on, ms = 14, log = 'log',markers = ['s', 'o'], marker = 'o', clip_on = False, alpha = [],DF2_desired = [-33, -100], DF1_desired = [133, 66], ylim_log = (-15, 3), nfft = 2 ** 13, xlim_psd = [0, 235]):
def plt_data_full_model(c1, chose_score, detections, devs, dfs, end, grid, mult_type, sorted_on, ms = 14, log = 'log', markers = ['s', 'o'],
clip_on = False, alpha = [], DF2_desired = [-33, -100], DF1_desired = [133, 66], ylim_log = (-15, 3), nfft =2 ** 13, xlim_psd = [0, 235]):
# mean_type = '_MeanTrialsIndexPhaseSort_Min0.25sExcluded_'
extract = ''
datasets, data_dir = find_all_dir_cells()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,87 +1,91 @@
,0,1,2
0,5.360000000375287,3.6000000003509633,5.439999999890446
1,6.9100000003272655,5.150000000302942,7.064999999766755
2,28.034999999628774,6.5749999997747075,26.89000000007671
3,29.509999999656422,8.299999999853288,28.31500000045797
4,31.210000000366556,12.724999999936234,29.739999999929736
5,34.28499999999257,29.175000000013355,34.21499999965907
6,36.98499999999694,30.750000000243276,35.765000000520544
7,43.310000000285065,35.04999999984601,37.4149999997653
8,58.38499999962732,36.59999999979799,58.16500000035465
9,61.23500000038984,42.7999999996059,59.6400000003823
10,64.23500000009153,59.30000000023891,61.34000000018294
11,65.88500000024578,60.89999999983728,65.69000000034156
12,88.18499999987762,65.2499999999959,67.26499999966198
13,89.70999999955166,66.75000000030148,88.31499999994865
14,91.45999999990818,68.64999999959717,89.76499999969836
15,94.73499999993874,89.34999999963064,91.39000000048416
16,97.10999999996784,90.89999999958262,94.7649999998075
17,118.16000000025451,95.32499999966556,97.59000000029208
18,119.73499999957494,96.8500000002491,117.14000000027318
19,121.30999999980486,98.49999999949385,118.63999999966927
20,124.36000000006243,119.37499999965394,120.06500000005053
21,126.01000000021668,120.90000000023747,123.1150000003081
22,127.68499999973938,124.00000000014143,125.96500000016113
23,148.43500000032873,125.65000000029568,147.1899999996649
24,150.06000000020504,127.14999999969177,148.66499999969255
25,154.46000000001004,134.67499999967868,150.06499999979587
26,156.03500000023996,149.6250000003597,154.69000000028336
27,157.58500000019194,151.32500000016034,156.2149999999574
28,178.48499999972046,155.5750000001167,174.49000000031538
29,180.03499999967244,157.07499999951278,178.6650000003474
30,184.48500000003332,163.14999999974998,180.1150000000971
31,186.0349999999853,179.650000000383,181.7900000005293
32,187.58499999993728,181.37499999955207,186.11500000040996
33,208.58499999966807,185.57499999986203,187.84000000048854
34,210.08499999997366,187.09999999953607,208.9400000004216
35,212.38500000007843,189.05000000029713,210.28999999996904
36,216.03499999973064,194.75000000000318,211.9400000001233
37,217.58499999968262,209.77499999969905,216.1649999998017
38,238.68499999961568,211.32499999965103,217.86500000051183
39,240.21000000019922,215.77500000001191,238.83999999996468
40,241.8849999997219,217.2750000003175,240.34000000027027
41,246.05999999975393,223.27499999972088,241.91500000050019
42,247.6099999997059,239.87499999964666,245.0399999997726
43,268.76000000019485,241.62500000000318,246.54000000007818
44,270.2849999998689,245.8499999996816,267.59000000036485
45,271.88500000037675,247.37500000026512,269.0650000003925
46,276.2100000002574,249.07500000006576,270.5150000001422
47,277.6850000002851,269.89999999966994,274.98999999987154
48,298.90999999978885,271.39999999997553,276.56500000010146
49,300.35999999953856,275.79999999978054,297.61500000038814
50,301.9600000000464,277.3499999997325,299.11499999978423
51,305.010000000304,279.10000000008904,300.5400000001655
52,306.56000000025597,300.0249999998955,303.86499999984244
53,308.1349999995764,301.54999999956954,306.6150000004027
54,329.00999999973646,306.02500000020837,308.3150000002033
55,330.51000000004206,307.52499999960446,329.16500000008546
56,335.1100000002516,309.24999999968304,330.61499999983516
57,336.58500000027925,330.09999999956517,332.2399999997115
58,338.1849999998776,331.6250000001487,335.4399999998177
59,359.2350000001643,334.6999999997747,337.0150000000476
60,360.8600000000406,336.3000000002826,359.1649999998308
61,365.0099999997947,337.7500000000323,360.6650000001364
62,366.55999999974665,344.0500000000425,362.31500000029064
63,368.10999999969863,360.2750000003466,365.3649999996387
64,374.3349999997845,361.8250000002986,366.9650000001466
65,389.4599999996826,366.0999999996234,388.01500000043325
66,392.159999999687,367.64999999957536,389.41500000053657
67,395.2849999998689,373.89999999993915,390.8650000002863
68,396.88500000037675,390.39999999966267,392.5150000004405
69,398.4100000000508,394.85000000002356,396.7899999997653
70,419.63499999955457,396.3749999996976,398.61500000004617
71,422.2599999996346,397.8750000000032,418.2399999999516
72,425.45999999974083,402.6250000000614,419.8649999998279
73,426.91000000040003,420.72500000029277,421.3150000004871
74,428.43500000007407,425.12500000009777,425.5899999998119
75,435.960000000061,426.62499999949387,427.09000000011747
76,450.8349999999082,428.07500000015307,449.4899999999516
77,452.4100000001381,433.97500000026366,450.9649999999792
78,455.51000000004206,435.9749999997616,452.66499999977987
79,457.18499999956475,454.9499999997165,455.6899999997595
80,458.68499999987034,456.4999999996685,457.215000000343
81,480.8100000002851,457.97499999969614,479.56500000053074
82,482.3849999996055,461.324999999651,481.06499999992684
83,485.3850000002167,,482.91500000048563
84,486.98499999981505,,
85,488.60999999969135,,
,1,0
0,2.355000000535088,15.005000000250956
1,15.530000000581655,16.480000000278604
2,17.055000000255692,18.205000000357185
3,19.93000000038666,21.730000000438675
4,21.555000000262968,34.605000000787925
5,36.78000000036337,37.55500000084322
6,38.23000000011308,39.18000000071953
7,39.75500000069661,52.90500000051435
8,56.05500000001558,55.705000000720986
9,57.55500000032117,57.255000000672965
10,59.07999999999521,58.75500000006906
11,62.28000000010144,75.10500000085341
12,75.73000000047688,76.6050000002495
13,77.20500000050453,78.2800000006817
14,80.17999999992827,93.25500000073117
15,82.00500000020912,94.70500000048088
16,95.35500000038229,97.68000000081412
17,98.2550000007912,99.43000000026115
18,99.90500000003595,115.63000000028734
19,116.15500000061803,117.13000000059293
20,117.65500000001413,118.68000000054491
21,119.30500000016838,133.830000000721
22,123.98000000030225,135.2800000004707
23,135.68000000032117,136.78000000077628
24,137.23000000027315,139.93000000032663
25,140.1550000000505,154.7800000008054
26,141.8800000001291,156.55500000053036
27,155.33000000050453,159.3050000001811
28,158.23000000000394,172.9050000004052
29,159.8300000005118,175.93000000038484
30,176.23000000003304,177.45500000005887
31,177.73000000033863,179.155000000769
32,179.329999999937,195.230000000315
33,182.38000000019457,196.73000000062058
34,195.78000000001413,199.85500000080248
35,197.40499999989044,213.43000000074863
36,200.38000000022367,214.90500000077628
37,202.3050000007068,217.88000000020003
38,217.08000000035173,219.73000000075882
39,218.55500000037938,235.85500000086068
40,220.1300000006093,237.32999999997884
41,236.35500000000394,238.8800000008403
42,237.88000000058747,254.08000000066278
43,239.48000000018584,255.58000000005887
44,244.27999999989044,257.0550000000865
45,255.88000000061658,260.1800000002684
46,257.48000000021494,274.95500000082285
47,260.38000000062385,276.5550000004212
48,262.1300000000709,278.2800000004998
49,277.0800000007519,293.0300000007763
50,278.5300000005016,296.0050000002
51,280.05500000017565,297.555000000152
52,296.4550000006064,299.15500000065987
53,297.9550000000025,314.280000000558
54,299.5300000002324,315.75500000058565
55,314.7300000000549,317.1800000000574
56,316.28000000000685,321.7300000006206
57,317.85500000023677,333.7050000000589
58,320.73000000036774,335.20500000036446
59,335.579999999937,338.15500000041976
60,337.1550000001669,339.88000000049834
61,338.6550000004725,353.20500000039357
62,340.30500000062676,356.20500000009525
63,356.5300000000214,357.70500000040084
64,358.0799999999734,374.55500000037756
65,359.68000000048124,377.0549999999774
66,362.93000000023386,380.23000000071517
67,376.1050000002804,393.70500000045905
68,377.7800000007126,395.2300000001331
69,380.63000000056564,398.1800000001884
70,395.73000000018584,399.78000000069625
71,398.6050000003168,415.080000000721
72,400.2300000001931,417.6299999999672
73,415.35500000009125,419.255000000753
74,416.8300000001189,434.3550000003732
75,418.3300000004245,435.8050000001229
76,422.8050000001538,437.28000000015055
77,436.25500000052926,453.805000000152
78,437.7800000002033,455.3050000004576
79,440.70499999998066,458.23000000023495
80,442.5300000002615,459.8050000004649
81,455.955000000359,473.4800000006133
82,458.80500000021203,476.3050000001884
83,460.43000000008834,477.9300000000647
84,476.8300000005191,479.53000000057256
85,478.2800000002688,494.5550000002684
86,479.8550000004987,495.9800000006497
87,484.7800000006835,497.380000000753
88,495.0800000005991,
89,496.6300000005511,

1 1 0 2
2 0 3.6000000003509633 2.355000000535088 5.360000000375287 15.005000000250956 5.439999999890446
3 1 5.150000000302942 15.530000000581655 6.9100000003272655 16.480000000278604 7.064999999766755
4 2 6.5749999997747075 17.055000000255692 28.034999999628774 18.205000000357185 26.89000000007671
5 3 8.299999999853288 19.93000000038666 29.509999999656422 21.730000000438675 28.31500000045797
6 4 12.724999999936234 21.555000000262968 31.210000000366556 34.605000000787925 29.739999999929736
7 5 29.175000000013355 36.78000000036337 34.28499999999257 37.55500000084322 34.21499999965907
8 6 30.750000000243276 38.23000000011308 36.98499999999694 39.18000000071953 35.765000000520544
9 7 35.04999999984601 39.75500000069661 43.310000000285065 52.90500000051435 37.4149999997653
10 8 36.59999999979799 56.05500000001558 58.38499999962732 55.705000000720986 58.16500000035465
11 9 42.7999999996059 57.55500000032117 61.23500000038984 57.255000000672965 59.6400000003823
12 10 59.30000000023891 59.07999999999521 64.23500000009153 58.75500000006906 61.34000000018294
13 11 60.89999999983728 62.28000000010144 65.88500000024578 75.10500000085341 65.69000000034156
14 12 65.2499999999959 75.73000000047688 88.18499999987762 76.6050000002495 67.26499999966198
15 13 66.75000000030148 77.20500000050453 89.70999999955166 78.2800000006817 88.31499999994865
16 14 68.64999999959717 80.17999999992827 91.45999999990818 93.25500000073117 89.76499999969836
17 15 89.34999999963064 82.00500000020912 94.73499999993874 94.70500000048088 91.39000000048416
18 16 90.89999999958262 95.35500000038229 97.10999999996784 97.68000000081412 94.7649999998075
19 17 95.32499999966556 98.2550000007912 118.16000000025451 99.43000000026115 97.59000000029208
20 18 96.8500000002491 99.90500000003595 119.73499999957494 115.63000000028734 117.14000000027318
21 19 98.49999999949385 116.15500000061803 121.30999999980486 117.13000000059293 118.63999999966927
22 20 119.37499999965394 117.65500000001413 124.36000000006243 118.68000000054491 120.06500000005053
23 21 120.90000000023747 119.30500000016838 126.01000000021668 133.830000000721 123.1150000003081
24 22 124.00000000014143 123.98000000030225 127.68499999973938 135.2800000004707 125.96500000016113
25 23 125.65000000029568 135.68000000032117 148.43500000032873 136.78000000077628 147.1899999996649
26 24 127.14999999969177 137.23000000027315 150.06000000020504 139.93000000032663 148.66499999969255
27 25 134.67499999967868 140.1550000000505 154.46000000001004 154.7800000008054 150.06499999979587
28 26 149.6250000003597 141.8800000001291 156.03500000023996 156.55500000053036 154.69000000028336
29 27 151.32500000016034 155.33000000050453 157.58500000019194 159.3050000001811 156.2149999999574
30 28 155.5750000001167 158.23000000000394 178.48499999972046 172.9050000004052 174.49000000031538
31 29 157.07499999951278 159.8300000005118 180.03499999967244 175.93000000038484 178.6650000003474
32 30 163.14999999974998 176.23000000003304 184.48500000003332 177.45500000005887 180.1150000000971
33 31 179.650000000383 177.73000000033863 186.0349999999853 179.155000000769 181.7900000005293
34 32 181.37499999955207 179.329999999937 187.58499999993728 195.230000000315 186.11500000040996
35 33 185.57499999986203 182.38000000019457 208.58499999966807 196.73000000062058 187.84000000048854
36 34 187.09999999953607 195.78000000001413 210.08499999997366 199.85500000080248 208.9400000004216
37 35 189.05000000029713 197.40499999989044 212.38500000007843 213.43000000074863 210.28999999996904
38 36 194.75000000000318 200.38000000022367 216.03499999973064 214.90500000077628 211.9400000001233
39 37 209.77499999969905 202.3050000007068 217.58499999968262 217.88000000020003 216.1649999998017
40 38 211.32499999965103 217.08000000035173 238.68499999961568 219.73000000075882 217.86500000051183
41 39 215.77500000001191 218.55500000037938 240.21000000019922 235.85500000086068 238.83999999996468
42 40 217.2750000003175 220.1300000006093 241.8849999997219 237.32999999997884 240.34000000027027
43 41 223.27499999972088 236.35500000000394 246.05999999975393 238.8800000008403 241.91500000050019
44 42 239.87499999964666 237.88000000058747 247.6099999997059 254.08000000066278 245.0399999997726
45 43 241.62500000000318 239.48000000018584 268.76000000019485 255.58000000005887 246.54000000007818
46 44 245.8499999996816 244.27999999989044 270.2849999998689 257.0550000000865 267.59000000036485
47 45 247.37500000026512 255.88000000061658 271.88500000037675 260.1800000002684 269.0650000003925
48 46 249.07500000006576 257.48000000021494 276.2100000002574 274.95500000082285 270.5150000001422
49 47 269.89999999966994 260.38000000062385 277.6850000002851 276.5550000004212 274.98999999987154
50 48 271.39999999997553 262.1300000000709 298.90999999978885 278.2800000004998 276.56500000010146
51 49 275.79999999978054 277.0800000007519 300.35999999953856 293.0300000007763 297.61500000038814
52 50 277.3499999997325 278.5300000005016 301.9600000000464 296.0050000002 299.11499999978423
53 51 279.10000000008904 280.05500000017565 305.010000000304 297.555000000152 300.5400000001655
54 52 300.0249999998955 296.4550000006064 306.56000000025597 299.15500000065987 303.86499999984244
55 53 301.54999999956954 297.9550000000025 308.1349999995764 314.280000000558 306.6150000004027
56 54 306.02500000020837 299.5300000002324 329.00999999973646 315.75500000058565 308.3150000002033
57 55 307.52499999960446 314.7300000000549 330.51000000004206 317.1800000000574 329.16500000008546
58 56 309.24999999968304 316.28000000000685 335.1100000002516 321.7300000006206 330.61499999983516
59 57 330.09999999956517 317.85500000023677 336.58500000027925 333.7050000000589 332.2399999997115
60 58 331.6250000001487 320.73000000036774 338.1849999998776 335.20500000036446 335.4399999998177
61 59 334.6999999997747 335.579999999937 359.2350000001643 338.15500000041976 337.0150000000476
62 60 336.3000000002826 337.1550000001669 360.8600000000406 339.88000000049834 359.1649999998308
63 61 337.7500000000323 338.6550000004725 365.0099999997947 353.20500000039357 360.6650000001364
64 62 344.0500000000425 340.30500000062676 366.55999999974665 356.20500000009525 362.31500000029064
65 63 360.2750000003466 356.5300000000214 368.10999999969863 357.70500000040084 365.3649999996387
66 64 361.8250000002986 358.0799999999734 374.3349999997845 374.55500000037756 366.9650000001466
67 65 366.0999999996234 359.68000000048124 389.4599999996826 377.0549999999774 388.01500000043325
68 66 367.64999999957536 362.93000000023386 392.159999999687 380.23000000071517 389.41500000053657
69 67 373.89999999993915 376.1050000002804 395.2849999998689 393.70500000045905 390.8650000002863
70 68 390.39999999966267 377.7800000007126 396.88500000037675 395.2300000001331 392.5150000004405
71 69 394.85000000002356 380.63000000056564 398.4100000000508 398.1800000001884 396.7899999997653
72 70 396.3749999996976 395.73000000018584 419.63499999955457 399.78000000069625 398.61500000004617
73 71 397.8750000000032 398.6050000003168 422.2599999996346 415.080000000721 418.2399999999516
74 72 402.6250000000614 400.2300000001931 425.45999999974083 417.6299999999672 419.8649999998279
75 73 420.72500000029277 415.35500000009125 426.91000000040003 419.255000000753 421.3150000004871
76 74 425.12500000009777 416.8300000001189 428.43500000007407 434.3550000003732 425.5899999998119
77 75 426.62499999949387 418.3300000004245 435.960000000061 435.8050000001229 427.09000000011747
78 76 428.07500000015307 422.8050000001538 450.8349999999082 437.28000000015055 449.4899999999516
79 77 433.97500000026366 436.25500000052926 452.4100000001381 453.805000000152 450.9649999999792
80 78 435.9749999997616 437.7800000002033 455.51000000004206 455.3050000004576 452.66499999977987
81 79 454.9499999997165 440.70499999998066 457.18499999956475 458.23000000023495 455.6899999997595
82 80 456.4999999996685 442.5300000002615 458.68499999987034 459.8050000004649 457.215000000343
83 81 457.97499999969614 455.955000000359 480.8100000002851 473.4800000006133 479.56500000053074
84 82 461.324999999651 458.80500000021203 482.3849999996055 476.3050000001884 481.06499999992684
85 83 460.43000000008834 485.3850000002167 477.9300000000647 482.91500000048563
86 84 476.8300000005191 486.98499999981505 479.53000000057256
87 85 478.2800000002688 488.60999999969135 494.5550000002684
88 86 479.8550000004987 495.9800000006497
89 87 484.7800000006835 497.380000000753
90 88 495.0800000005991
91 89 496.6300000005511

View File

@ -1,71 +1,72 @@
,0,1,2
0,4.374999999527063,0.8000000000265572,3.375000000005457
1,12.3249999996915,9.94999999988977,9.649999999737702
2,19.900000000234286,15.899999999646752,17.150000000356158
3,25.649999999586726,22.12499999973261,24.5250000004944
4,31.525000000328873,31.100000000378714,33.44999999967513
5,40.77500000039436,38.499999999885404,39.524999999912325
6,46.55000000002474,44.67500000032487,48.62500000012915
7,52.64999999963038,50.700000000006185,53.24999999970714
8,61.674999999922875,58.0000000002201,62.050000000226646
9,72.19999999961146,65.67500000005566,72.6750000001175
10,79.62500000030559,73.2250000003205,78.69999999979882
11,85.72499999991123,82.09999999985484,87.6000000005206
12,94.62499999972351,88.25000000001637,90.75000000007094
13,99.79999999995925,95.87500000020555,96.7500000003838
14,106.87500000040018,104.67499999981555,108.67500000017571
15,115.67500000001019,106.3749999996162,111.65000000050895
16,117.57500000021537,115.27500000033797,120.67499999989195
17,127.87500000013097,121.27499999974134,126.7249999998512
18,133.74999999996362,130.59999999973115,132.8000000000884
19,142.74999999997817,136.39999999963948,138.95000000024993
20,146.09999999993306,142.549999999801,147.87500000034015
21,156.45000000040454,149.77500000009059,155.50000000052933
22,160.874999999578,160.600000000386,161.4999999999327
23,171.62499999994907,169.37499999971806,169.09999999984393
24,177.47500000041327,172.60000000010223,179.42500000003747
25,182.24999999983993,181.42499999999018,183.97499999969114
26,188.17500000022847,186.22499999969477,191.74999999972897
27,197.1000000003187,193.44999999998436,198.97500000001855
28,206.0750000000553,202.40000000035252,207.9750000000331
29,212.12500000001455,208.5250000002361,211.04999999965912
30,218.10000000004948,215.97500000029868,223.0749999996533
31,230.0999999997657,222.32499999995525,229.00000000004184
32,233.17500000030122,231.07499999991887,235.0500000000011
33,242.1249999997599,235.7249999997748,241.0749999996824
34,245.2499999999418,241.72500000008768,250.07499999969696
35,254.37499999952706,250.599999999622,256.32500000006075
36,263.1499999997686,253.92500000020846,265.2000000005046
37,264.9250000004031,265.800000000354,271.2250000001859
38,275.3999999995358,272.0750000000862,280.17499999964457
39,279.9750000003769,277.8499999997166,287.900000000036
40,291.7749999996886,285.3749999997035,296.699999999646
41,293.4750000003987,290.15000000003965,298.3250000004318
42,299.4749999998021,296.0249999998723,307.3250000004464
43,308.324999999968,306.7750000002434,313.27500000020336
44,315.87500000023283,316.850000000386,322.4999999999909
45,323.4499999998661,320.1000000001386,331.3999999998032
46,329.47499999954744,328.9500000003045,337.425000000394
47,335.62499999970896,335.09999999955653,343.47500000035325
48,346.3000000001557,344.124999999849,352.6500000004944
49,350.8249999995314,352.949999999737,358.4250000001248
50,359.69999999997526,360.69999999949687,361.70000000015534
51,367.2500000002401,365.19999999950414,372.12499999964166
52,371.6500000000451,374.2750000003525,379.70000000018445
53,382.09999999980937,381.8000000003394,387.34999999974207
54,386.55000000017026,389.0750000002754,394.62499999967804
55,392.57499999985157,395.17499999988104,405.05000000007385
56,398.92499999950815,404.1250000002492,406.5749999997479
57,409.1500000004089,413.17499999991014,412.7249999999094
58,415.29999999966094,419.175000000223,418.82500000042455
59,422.82499999964784,426.77500000013424,427.67499999968095
60,431.775000000016,435.6749999999465,436.92499999974643
61,437.8999999998996,437.4000000000251,445.97500000031687
62,445.34999999996217,447.8750000000673,454.7749999999269
63,452.8250000003027,455.37499999977626,461.29999999971005
64,461.9750000001659,461.67499999978645,468.4500000000753
65,470.97500000018044,470.34999999982574,475.87499999985994
66,475.4499999999098,476.37499999950705,482.0999999999458
67,481.4249999999447,482.32500000017353,489.72500000013497
68,487.5499999998283,488.52499999998145,496.95000000042455
69,497.90000000029977,496.09999999961474,
,1,0
0,0.09999999997489795,7.850000000416912
1,8.849999999938518,16.800000000785076
2,12.225000000171349,22.82500000046639
3,21.175000000539512,28.925000000072032
4,26.975000000447835,37.925000000086584
5,36.25000000079126,45.37500000014916
6,42.07500000006803,49.95000000008076
7,48.150000000305226,59.0000000006512
8,54.15000000061809,64.82500000083746
9,63.10000000007676,75.42500000045038
10,69.17500000031396,77.12500000025102
11,75.22500000027321,87.60000000029322
12,81.15000000066175,95.0000000007094
13,93.05000000017571,101.05000000066866
14,96.27500000055988,107.25000000047658
15,105.12500000072578,115.97500000016225
16,111.32500000053369,122.02500000012151
17,120.22500000034597,131.02500000013606
18,126.32499999995161,137.02500000044893
19,133.9500000001408,143.07500000040818
20,136.77500000062537,149.15000000064538
21,145.72500000008404,158.32500000078653
22,156.09999999992397,167.1000000001186
23,162.17500000016116,173.15000000007785
24,169.9000000005526,179.2000000000371
25,174.22500000043328,185.15000000070359
26,180.30000000067048,191.5250000006381
27,189.25000000012915,203.07500000080836
28,195.27500000071996,209.10000000048967
29,203.0000000002019,216.67500000012296
30,210.7499999999618,224.1000000008171
31,219.27500000015243,230.02500000029613
32,225.57500000016262,233.3000000003267
33,234.27500000047985,242.2750000000633
34,240.30000000016116,249.8500000006061
35,246.32500000075197,255.72500000043874
36,252.4250000003576,266.25000000012733
37,258.5000000005948,275.22500000077343
38,267.4750000003314,278.2250000004751
39,276.475000000346,284.3000000007123
40,282.5749999999516,290.4750000002423
41,288.4250000004158,297.8250000001026
42,294.5500000002994,308.32500000042273
43,303.3499999999094,311.5500000008069
44,306.45000000072287,317.225000000235
45,315.5500000000302,329.4250000003558
46,324.5750000003227,334.0000000002874
47,330.7000000002063,339.8500000007516
48,338.1750000005468,344.4250000006832
49,344.05000000037944,354.9500000003718
50,351.52500000071996,362.4250000007123
51,357.6250000003256,371.375000000171
52,366.4750000004915,376.0750000005828
53,368.2750000004944,383.40000000016516
54,378.6250000000564,389.6750000008069
55,387.6500000003489,397.00000000038926
56,393.6750000000302,407.47500000043146
57,399.7500000002674,410.65000000025975
58,411.4999999999327,419.45000000077926
59,413.2250000000113,422.8250000001026
60,423.5500000002048,433.05000000009386
61,426.6750000003867,434.95000000029904
62,435.6250000007549,446.5000000004693
63,446.20000000008986,449.7000000005755
64,451.200000000199,458.57500000010987
65,459.6500000004653,464.7250000002714
66,462.75000000036925,473.45000000086657
67,471.8500000005861,479.6500000006745
68,479.5000000001437,485.7250000000022
69,485.4000000002543,494.85000000049695
70,492.7500000001146,

1 1 0 2
2 0 0.8000000000265572 0.09999999997489795 4.374999999527063 7.850000000416912 3.375000000005457
3 1 9.94999999988977 8.849999999938518 12.3249999996915 16.800000000785076 9.649999999737702
4 2 15.899999999646752 12.225000000171349 19.900000000234286 22.82500000046639 17.150000000356158
5 3 22.12499999973261 21.175000000539512 25.649999999586726 28.925000000072032 24.5250000004944
6 4 31.100000000378714 26.975000000447835 31.525000000328873 37.925000000086584 33.44999999967513
7 5 38.499999999885404 36.25000000079126 40.77500000039436 45.37500000014916 39.524999999912325
8 6 44.67500000032487 42.07500000006803 46.55000000002474 49.95000000008076 48.62500000012915
9 7 50.700000000006185 48.150000000305226 52.64999999963038 59.0000000006512 53.24999999970714
10 8 58.0000000002201 54.15000000061809 61.674999999922875 64.82500000083746 62.050000000226646
11 9 65.67500000005566 63.10000000007676 72.19999999961146 75.42500000045038 72.6750000001175
12 10 73.2250000003205 69.17500000031396 79.62500000030559 77.12500000025102 78.69999999979882
13 11 82.09999999985484 75.22500000027321 85.72499999991123 87.60000000029322 87.6000000005206
14 12 88.25000000001637 81.15000000066175 94.62499999972351 95.0000000007094 90.75000000007094
15 13 95.87500000020555 93.05000000017571 99.79999999995925 101.05000000066866 96.7500000003838
16 14 104.67499999981555 96.27500000055988 106.87500000040018 107.25000000047658 108.67500000017571
17 15 106.3749999996162 105.12500000072578 115.67500000001019 115.97500000016225 111.65000000050895
18 16 115.27500000033797 111.32500000053369 117.57500000021537 122.02500000012151 120.67499999989195
19 17 121.27499999974134 120.22500000034597 127.87500000013097 131.02500000013606 126.7249999998512
20 18 130.59999999973115 126.32499999995161 133.74999999996362 137.02500000044893 132.8000000000884
21 19 136.39999999963948 133.9500000001408 142.74999999997817 143.07500000040818 138.95000000024993
22 20 142.549999999801 136.77500000062537 146.09999999993306 149.15000000064538 147.87500000034015
23 21 149.77500000009059 145.72500000008404 156.45000000040454 158.32500000078653 155.50000000052933
24 22 160.600000000386 156.09999999992397 160.874999999578 167.1000000001186 161.4999999999327
25 23 169.37499999971806 162.17500000016116 171.62499999994907 173.15000000007785 169.09999999984393
26 24 172.60000000010223 169.9000000005526 177.47500000041327 179.2000000000371 179.42500000003747
27 25 181.42499999999018 174.22500000043328 182.24999999983993 185.15000000070359 183.97499999969114
28 26 186.22499999969477 180.30000000067048 188.17500000022847 191.5250000006381 191.74999999972897
29 27 193.44999999998436 189.25000000012915 197.1000000003187 203.07500000080836 198.97500000001855
30 28 202.40000000035252 195.27500000071996 206.0750000000553 209.10000000048967 207.9750000000331
31 29 208.5250000002361 203.0000000002019 212.12500000001455 216.67500000012296 211.04999999965912
32 30 215.97500000029868 210.7499999999618 218.10000000004948 224.1000000008171 223.0749999996533
33 31 222.32499999995525 219.27500000015243 230.0999999997657 230.02500000029613 229.00000000004184
34 32 231.07499999991887 225.57500000016262 233.17500000030122 233.3000000003267 235.0500000000011
35 33 235.7249999997748 234.27500000047985 242.1249999997599 242.2750000000633 241.0749999996824
36 34 241.72500000008768 240.30000000016116 245.2499999999418 249.8500000006061 250.07499999969696
37 35 250.599999999622 246.32500000075197 254.37499999952706 255.72500000043874 256.32500000006075
38 36 253.92500000020846 252.4250000003576 263.1499999997686 266.25000000012733 265.2000000005046
39 37 265.800000000354 258.5000000005948 264.9250000004031 275.22500000077343 271.2250000001859
40 38 272.0750000000862 267.4750000003314 275.3999999995358 278.2250000004751 280.17499999964457
41 39 277.8499999997166 276.475000000346 279.9750000003769 284.3000000007123 287.900000000036
42 40 285.3749999997035 282.5749999999516 291.7749999996886 290.4750000002423 296.699999999646
43 41 290.15000000003965 288.4250000004158 293.4750000003987 297.8250000001026 298.3250000004318
44 42 296.0249999998723 294.5500000002994 299.4749999998021 308.32500000042273 307.3250000004464
45 43 306.7750000002434 303.3499999999094 308.324999999968 311.5500000008069 313.27500000020336
46 44 316.850000000386 306.45000000072287 315.87500000023283 317.225000000235 322.4999999999909
47 45 320.1000000001386 315.5500000000302 323.4499999998661 329.4250000003558 331.3999999998032
48 46 328.9500000003045 324.5750000003227 329.47499999954744 334.0000000002874 337.425000000394
49 47 335.09999999955653 330.7000000002063 335.62499999970896 339.8500000007516 343.47500000035325
50 48 344.124999999849 338.1750000005468 346.3000000001557 344.4250000006832 352.6500000004944
51 49 352.949999999737 344.05000000037944 350.8249999995314 354.9500000003718 358.4250000001248
52 50 360.69999999949687 351.52500000071996 359.69999999997526 362.4250000007123 361.70000000015534
53 51 365.19999999950414 357.6250000003256 367.2500000002401 371.375000000171 372.12499999964166
54 52 374.2750000003525 366.4750000004915 371.6500000000451 376.0750000005828 379.70000000018445
55 53 381.8000000003394 368.2750000004944 382.09999999980937 383.40000000016516 387.34999999974207
56 54 389.0750000002754 378.6250000000564 386.55000000017026 389.6750000008069 394.62499999967804
57 55 395.17499999988104 387.6500000003489 392.57499999985157 397.00000000038926 405.05000000007385
58 56 404.1250000002492 393.6750000000302 398.92499999950815 407.47500000043146 406.5749999997479
59 57 413.17499999991014 399.7500000002674 409.1500000004089 410.65000000025975 412.7249999999094
60 58 419.175000000223 411.4999999999327 415.29999999966094 419.45000000077926 418.82500000042455
61 59 426.77500000013424 413.2250000000113 422.82499999964784 422.8250000001026 427.67499999968095
62 60 435.6749999999465 423.5500000002048 431.775000000016 433.05000000009386 436.92499999974643
63 61 437.4000000000251 426.6750000003867 437.8999999998996 434.95000000029904 445.97500000031687
64 62 447.8750000000673 435.6250000007549 445.34999999996217 446.5000000004693 454.7749999999269
65 63 455.37499999977626 446.20000000008986 452.8250000003027 449.7000000005755 461.29999999971005
66 64 461.67499999978645 451.200000000199 461.9750000001659 458.57500000010987 468.4500000000753
67 65 470.34999999982574 459.6500000004653 470.97500000018044 464.7250000002714 475.87499999985994
68 66 476.37499999950705 462.75000000036925 475.4499999999098 473.45000000086657 482.0999999999458
69 67 482.32500000017353 471.8500000005861 481.4249999999447 479.6500000006745 489.72500000013497
70 68 488.52499999998145 479.5000000001437 487.5499999998283 485.7250000000022 496.95000000042455
71 69 496.09999999961474 485.4000000002543 497.90000000029977 494.85000000049695
72 70 492.7500000001146

View File

@ -1,79 +1,76 @@
,1,0,2
0,0.9749999995259713,5.37499999973079,6.675000000271757
1,6.624999999585635,6.87500000003638,12.875000000079671
2,14.17499999985048,13.200000000324508,14.525000000233922
3,15.949999999575448,20.599999999831198,21.774999999891953
4,21.650000000190992,22.149999999783176,29.40000000008113
5,29.575000000077488,31.124999999519787,36.77500000021937
6,38.50000000016771,37.04999999990832,43.17500000043183
7,44.59999999977335,44.574999999895226,51.82500000019318
8,51.899999999987266,52.05000000023574,53.574999999640205
9,59.299999999493956,58.2750000003216,59.6499999998774
10,61.15000000005275,67.00000000000728,67.12500000021791
11,68.89999999981265,73.44999999986612,74.5249999997246
12,80.52499999990724,80.87499999965075,81.89999999986284
13,81.97499999965694,89.5250000003216,88.02499999974643
14,89.42499999971952,91.34999999969295,89.74999999982501
15,90.99999999994944,97.22499999952561,97.65000000034306
16,97.37499999988395,103.5249999995358,104.60000000030377
17,104.72499999974426,112.19999999957508,112.05000000036634
18,112.05000000023611,118.37500000001455,113.8749999997377
19,119.50000000029868,127.1999999999025,125.74999999988322
20,121.24999999974571,133.37500000034197,127.2500000001888
21,133.37499999994216,135.00000000021828,134.6000000000491
22,136.19999999951725,142.39999999972497,136.40000000005202
23,142.250000000386,148.44999999968422,149.77500000050313
24,149.67500000017063,157.4000000000524,157.17500000000982
25,151.34999999969332,164.9250000000393,158.9000000000884
26,157.42499999993052,172.37500000010186,164.82500000047693
27,166.47499999959146,179.87499999981083,172.19999999970568
28,172.25000000013134,181.57499999961146,179.87500000045074
29,179.7000000001939,187.64999999984866,187.3750000001597
30,181.50000000019682,196.6499999998632,193.29999999963874
31,194.77499999953616,202.52499999969586,194.97500000007093
32,196.49999999961474,210.17500000016298,202.45000000041145
33,202.324999999801,217.49999999974534,210.15000000052495
34,208.5750000001648,225.09999999965657,217.40000000018298
35,217.29999999985048,226.92499999993743,225.07500000001855
36,224.775000000191,232.60000000027503,232.37500000023246
37,226.77499999968896,240.37500000031287,234.1249999996795
38,238.5499999996322,247.6249999999709,241.72500000050022
39,240.17499999950851,255.3250000000844,247.5000000001306
40,247.45000000035398,262.775000000147,253.8750000000651
41,253.67499999953034,268.72499999990396,262.5249999998265
42,262.42499999949393,270.34999999978027,270.22499999994
43,268.62500000021134,277.75000000019645,277.5749999998003
44,277.42499999982135,285.2999999995518,279.27500000051043
45,279.124999999622,292.699999999968,292.5250000004813
46,286.57499999968456,298.82499999985157,294.3000000002063
47,292.6249999996438,300.50000000028376,300.22499999968534
48,300.17499999990866,314.2250000000786,307.74999999967224
49,307.57500000032485,322.82500000019354,315.325000000215
50,315.19999999960453,328.84999999987485,322.7249999997217
51,321.3250000003976,330.5000000000291,330.3499999999109
52,329.0750000001575,337.8999999995358,336.4250000001481
53,337.60000000034813,345.7250000001295,337.97500000010007
54,339.30000000014877,352.8500000002168,351.5500000000462
55,346.7749999995798,359.0750000003027,353.0999999999982
56,352.87500000009493,368.02499999976135,360.47500000013645
57,360.34999999952595,369.8500000000422,367.8500000002747
58,367.7249999996642,381.67499999963184,374.07500000036055
59,375.3249999995754,383.20000000021537,377.0499999997843
60,382.79999999991594,389.3500000003769,383.1500000002994
61,390.4250000001051,398.0249999995067,390.8749999997814
62,397.8249999996118,404.1749999996682,397.92499999994436
63,399.6249999996147,406.04999999959546,405.9249999997552
64,405.4750000000789,413.1250000000364,413.15000000004477
65,407.3750000002841,420.7249999999476,420.525000000183
66,419.075000000303,428.14999999973224,428.0500000001699
67,427.94999999983736,435.6999999999971,434.24999999997783
68,429.649999999638,437.4500000003536,435.9000000001321
69,435.7249999998752,449.39999999951397,443.2499999999924
70,443.1499999996598,456.9000000001324,450.8000000002572
71,450.774999999849,458.34999999988213,458.1249999998396
72,458.02499999950703,465.82500000022264,465.75000000002876
73,465.5749999997719,473.2750000002852,473.20000000009134
74,473.15000000031466,480.92499999984284,480.7749999997246
75,479.4250000000469,488.27499999970314,482.6000000000055
76,488.1000000000862,494.4500000001426,488.3999999999138
77,489.87499999981117,,
,0,1
0,3.7000000006628397,0.8999999999021384
1,6.925000000137516,8.125000000191722
2,14.3250000005537,12.849999999971988
3,20.250000000032742,18.875000000562796
4,26.27500000062355,26.17500000077671
5,36.87500000023647,30.800000000354704
6,42.650000000776345,38.575000000392535
7,44.35000000057698,48.825000000661746
8,54.70000000013897,54.89999999998945
9,60.825000000022555,60.75000000045365
10,68.10000000086802,66.82500000069085
11,73.05000000042128,73.17500000034742
12,80.17500000050859,80.35000000008112
13,84.95000000084474,86.37500000067193
14,92.17500000022483,96.87500000008258
15,100.00000000081855,102.8500000001175
16,108.92499999999927,109.1000000004813
17,115.05000000079235,116.37500000041727
18,122.37500000037471,118.07500000021791
19,130.07500000048822,128.37500000013353
20,134.30000000016662,134.65000000077526
21,140.30000000047949,140.4500000006836
22,146.25000000023647,150.95000000009424
23,152.37500000012005,152.92500000022375
24,162.8250000007938,163.05000000001274
25,164.57500000024083,170.57499999999965
26,170.4000000004271,175.10000000028487
27,176.40000000073996,182.5250000000695
28,186.85000000050422,193.3000000007185
29,188.60000000086075,199.00000000042456
30,199.00000000006912,205.07500000066176
31,205.02500000065993,211.14999999998946
32,212.4750000007225,218.65000000060792
33,218.42500000047949,224.70000000056717
34,224.65000000056534,230.87500000009715
35,234.95000000048094,241.10000000008841
36,241.0000000004402,242.87500000072288
37,248.42500000022483,253.1250000000826
38,253.02500000043437,259.1500000006734
39,259.2250000002423,265.1250000007083
40,265.2000000002772,271.27499999996036
41,272.4750000002132,283.1000000004595
42,278.500000000804,284.75000000061374
43,284.7500000002583,289.62500000024266
44,290.6000000007225,295.52500000035326
45,302.50000000023647,307.1750000007258
46,307.12500000072396,309.12500000057736
47,313.20000000005166,319.20000000071997
48,320.65000000011423,320.80000000031833
49,331.12500000015643,331.5500000006894
50,332.625000000462,337.35000000059773
51,340.45000000014625,343.32500000063266
52,343.22500000007494,349.6500000000113
53,352.4000000002161,355.5000000004755
54,361.2000000007356,367.27500000041874
55,368.80000000064683,368.94999999994144
56,373.4000000008564,379.4500000002616
57,379.27500000068903,385.4250000002965
58,386.7250000007516,391.3750000000535
59,397.35000000064247,397.525000000215
60,403.35000000004584,403.57500000017427
61,410.77500000073996,409.6250000001335
62,416.7500000007749,415.6250000004464
63,421.5000000008331,424.62500000046094
64,428.8000000001375,433.4999999999953
65,433.4750000002714,439.72500000008114
66,440.75000000020736,445.70000000011606
67,446.8500000007225,451.5250000003023
68,457.4999999999818,459.2000000001379
69,466.4750000006279,469.4500000004071
70,470.8750000004329,475.45000000071997
71,478.60000000082437,477.12500000024266
72,481.47500000004584,487.4500000004362
73,493.35000000019136,493.77500000072433
74,494.9250000004213,

1 0 1 2
2 0 5.37499999973079 3.7000000006628397 0.9749999995259713 0.8999999999021384 6.675000000271757
3 1 6.87500000003638 6.925000000137516 6.624999999585635 8.125000000191722 12.875000000079671
4 2 13.200000000324508 14.3250000005537 14.17499999985048 12.849999999971988 14.525000000233922
5 3 20.599999999831198 20.250000000032742 15.949999999575448 18.875000000562796 21.774999999891953
6 4 22.149999999783176 26.27500000062355 21.650000000190992 26.17500000077671 29.40000000008113
7 5 31.124999999519787 36.87500000023647 29.575000000077488 30.800000000354704 36.77500000021937
8 6 37.04999999990832 42.650000000776345 38.50000000016771 38.575000000392535 43.17500000043183
9 7 44.574999999895226 44.35000000057698 44.59999999977335 48.825000000661746 51.82500000019318
10 8 52.05000000023574 54.70000000013897 51.899999999987266 54.89999999998945 53.574999999640205
11 9 58.2750000003216 60.825000000022555 59.299999999493956 60.75000000045365 59.6499999998774
12 10 67.00000000000728 68.10000000086802 61.15000000005275 66.82500000069085 67.12500000021791
13 11 73.44999999986612 73.05000000042128 68.89999999981265 73.17500000034742 74.5249999997246
14 12 80.87499999965075 80.17500000050859 80.52499999990724 80.35000000008112 81.89999999986284
15 13 89.5250000003216 84.95000000084474 81.97499999965694 86.37500000067193 88.02499999974643
16 14 91.34999999969295 92.17500000022483 89.42499999971952 96.87500000008258 89.74999999982501
17 15 97.22499999952561 100.00000000081855 90.99999999994944 102.8500000001175 97.65000000034306
18 16 103.5249999995358 108.92499999999927 97.37499999988395 109.1000000004813 104.60000000030377
19 17 112.19999999957508 115.05000000079235 104.72499999974426 116.37500000041727 112.05000000036634
20 18 118.37500000001455 122.37500000037471 112.05000000023611 118.07500000021791 113.8749999997377
21 19 127.1999999999025 130.07500000048822 119.50000000029868 128.37500000013353 125.74999999988322
22 20 133.37500000034197 134.30000000016662 121.24999999974571 134.65000000077526 127.2500000001888
23 21 135.00000000021828 140.30000000047949 133.37499999994216 140.4500000006836 134.6000000000491
24 22 142.39999999972497 146.25000000023647 136.19999999951725 150.95000000009424 136.40000000005202
25 23 148.44999999968422 152.37500000012005 142.250000000386 152.92500000022375 149.77500000050313
26 24 157.4000000000524 162.8250000007938 149.67500000017063 163.05000000001274 157.17500000000982
27 25 164.9250000000393 164.57500000024083 151.34999999969332 170.57499999999965 158.9000000000884
28 26 172.37500000010186 170.4000000004271 157.42499999993052 175.10000000028487 164.82500000047693
29 27 179.87499999981083 176.40000000073996 166.47499999959146 182.5250000000695 172.19999999970568
30 28 181.57499999961146 186.85000000050422 172.25000000013134 193.3000000007185 179.87500000045074
31 29 187.64999999984866 188.60000000086075 179.7000000001939 199.00000000042456 187.3750000001597
32 30 196.6499999998632 199.00000000006912 181.50000000019682 205.07500000066176 193.29999999963874
33 31 202.52499999969586 205.02500000065993 194.77499999953616 211.14999999998946 194.97500000007093
34 32 210.17500000016298 212.4750000007225 196.49999999961474 218.65000000060792 202.45000000041145
35 33 217.49999999974534 218.42500000047949 202.324999999801 224.70000000056717 210.15000000052495
36 34 225.09999999965657 224.65000000056534 208.5750000001648 230.87500000009715 217.40000000018298
37 35 226.92499999993743 234.95000000048094 217.29999999985048 241.10000000008841 225.07500000001855
38 36 232.60000000027503 241.0000000004402 224.775000000191 242.87500000072288 232.37500000023246
39 37 240.37500000031287 248.42500000022483 226.77499999968896 253.1250000000826 234.1249999996795
40 38 247.6249999999709 253.02500000043437 238.5499999996322 259.1500000006734 241.72500000050022
41 39 255.3250000000844 259.2250000002423 240.17499999950851 265.1250000007083 247.5000000001306
42 40 262.775000000147 265.2000000002772 247.45000000035398 271.27499999996036 253.8750000000651
43 41 268.72499999990396 272.4750000002132 253.67499999953034 283.1000000004595 262.5249999998265
44 42 270.34999999978027 278.500000000804 262.42499999949393 284.75000000061374 270.22499999994
45 43 277.75000000019645 284.7500000002583 268.62500000021134 289.62500000024266 277.5749999998003
46 44 285.2999999995518 290.6000000007225 277.42499999982135 295.52500000035326 279.27500000051043
47 45 292.699999999968 302.50000000023647 279.124999999622 307.1750000007258 292.5250000004813
48 46 298.82499999985157 307.12500000072396 286.57499999968456 309.12500000057736 294.3000000002063
49 47 300.50000000028376 313.20000000005166 292.6249999996438 319.20000000071997 300.22499999968534
50 48 314.2250000000786 320.65000000011423 300.17499999990866 320.80000000031833 307.74999999967224
51 49 322.82500000019354 331.12500000015643 307.57500000032485 331.5500000006894 315.325000000215
52 50 328.84999999987485 332.625000000462 315.19999999960453 337.35000000059773 322.7249999997217
53 51 330.5000000000291 340.45000000014625 321.3250000003976 343.32500000063266 330.3499999999109
54 52 337.8999999995358 343.22500000007494 329.0750000001575 349.6500000000113 336.4250000001481
55 53 345.7250000001295 352.4000000002161 337.60000000034813 355.5000000004755 337.97500000010007
56 54 352.8500000002168 361.2000000007356 339.30000000014877 367.27500000041874 351.5500000000462
57 55 359.0750000003027 368.80000000064683 346.7749999995798 368.94999999994144 353.0999999999982
58 56 368.02499999976135 373.4000000008564 352.87500000009493 379.4500000002616 360.47500000013645
59 57 369.8500000000422 379.27500000068903 360.34999999952595 385.4250000002965 367.8500000002747
60 58 381.67499999963184 386.7250000007516 367.7249999996642 391.3750000000535 374.07500000036055
61 59 383.20000000021537 397.35000000064247 375.3249999995754 397.525000000215 377.0499999997843
62 60 389.3500000003769 403.35000000004584 382.79999999991594 403.57500000017427 383.1500000002994
63 61 398.0249999995067 410.77500000073996 390.4250000001051 409.6250000001335 390.8749999997814
64 62 404.1749999996682 416.7500000007749 397.8249999996118 415.6250000004464 397.92499999994436
65 63 406.04999999959546 421.5000000008331 399.6249999996147 424.62500000046094 405.9249999997552
66 64 413.1250000000364 428.8000000001375 405.4750000000789 433.4999999999953 413.15000000004477
67 65 420.7249999999476 433.4750000002714 407.3750000002841 439.72500000008114 420.525000000183
68 66 428.14999999973224 440.75000000020736 419.075000000303 445.70000000011606 428.0500000001699
69 67 435.6999999999971 446.8500000007225 427.94999999983736 451.5250000003023 434.24999999997783
70 68 437.4500000003536 457.4999999999818 429.649999999638 459.2000000001379 435.9000000001321
71 69 449.39999999951397 466.4750000006279 435.7249999998752 469.4500000004071 443.2499999999924
72 70 456.9000000001324 470.8750000004329 443.1499999996598 475.45000000071997 450.8000000002572
73 71 458.34999999988213 478.60000000082437 450.774999999849 477.12500000024266 458.1249999998396
74 72 465.82500000022264 481.47500000004584 458.02499999950703 487.4500000004362 465.75000000002876
75 73 473.2750000002852 493.35000000019136 465.5749999997719 493.77500000072433 473.20000000009134
76 74 480.92499999984284 494.9250000004213 473.15000000031466 480.7749999997246
75 488.27499999970314 479.4250000000469 482.6000000000055
76 494.4500000001426 488.1000000000862 488.3999999999138
77 489.87499999981117

View File

@ -1,88 +1,90 @@
,0,1,2
0,18.92999999987338,2.57499999995375,20.395000000194614
1,20.47999999982536,20.775000000387397,21.99499999979298
2,22.05500000005528,23.249999999709278,23.595000000300843
3,24.930000000186247,25.04999999971219,26.494999999800257
4,26.655000000264828,28.474999999591407,29.519999999779884
5,29.77999999953723,32.59999999997703,50.52000000042017
6,49.204999999947596,50.474999999525934,52.120000000018536
7,52.330000000129495,52.374999999731116,55.09500000035177
8,55.07999999978025,55.100000000013424,56.645000000303746
9,56.97999999998543,58.12499999999305,59.64500000000543
10,61.27999999958816,80.59999999975149,80.6950000002921
11,80.73000000027648,82.17499999998141,83.4700000002208
12,82.3049999995969,85.1250000000367,85.14499999974349
13,85.15500000035942,86.70000000026663,86.67000000032702
14,86.85500000016006,88.57500000019387,89.56999999982644
15,89.80500000021536,110.59999999949683,110.6699999997595
16,110.90500000014842,112.24999999965108,112.31999999991375
17,112.50499999974679,113.89999999980533,113.89500000014367
18,115.20499999975115,116.65000000036558,116.7449999999967
19,116.88000000018334,119.67500000034521,119.72000000032995
20,118.45500000041326,140.77500000027825,140.74500000033868
21,139.35499999994178,142.44999999980095,142.27000000001271
22,142.30499999999708,143.95000000010654,143.84500000024263
23,145.3299999999767,146.77499999968163,146.69500000009566
24,147.0050000004089,149.67500000009053,149.844999999646
25,150.22999999988357,152.99999999976748,171.04499999978134
26,171.2549999998923,173.69999999980095,173.7950000003416
27,173.90500000025028,175.3000000003088,175.369999999662
28,175.50499999984865,176.92500000018512,177.16999999966492
29,177.25500000020517,179.87500000024042,179.92000000022517
30,181.52999999952996,183.24999999956376,200.9949999998803
31,202.47999999961436,202.3750000002768,202.59500000038815
32,204.0050000001979,203.97499999987517,205.41999999996324
33,205.60499999979626,205.80000000015602,207.09500000039543
34,207.40499999979917,208.47499999988244,209.99499999989484
35,211.7050000003114,213.12499999973838,231.01999999990358
36,229.9300000001135,231.15000000004542,232.67000000005783
37,232.7050000000422,233.99999999989845,235.7200000003154
38,235.6049999995416,235.75000000025497,237.37000000046964
39,237.30500000025174,239.9499999996554,241.77000000027465
40,238.9049999998501,241.89999999950697,261.22000000005346
41,261.22999999975985,261.249999999993,262.89500000048565
42,262.73000000006544,264.2000000000483,265.8699999999094
43,265.6050000001964,267.04999999990133,267.6699999999123
44,267.2300000000727,268.89999999955063,270.3200000002703
45,268.9049999995954,290.09999999968596,291.1700000001524
46,290.23000000021096,292.92500000017054,292.7200000001044
47,292.70499999953284,295.7250000003772,294.2950000003343
48,294.405000000243,297.3500000002535,297.26999999975806
49,297.50500000014694,300.3000000003088,299.12000000031685
50,299.42999999972056,321.52499999981256,321.39499999967074
51,320.1050000003856,324.39999999994353,323.1199999997493
52,322.92999999996067,326.0750000003757,325.79500000038524
53,325.854999999738,329.0249999995215,327.5200000004638
54,327.55499999953867,330.6749999996758,330.3450000000389
55,329.22999999997086,351.67500000031606,351.3950000003256
56,332.35500000015276,354.27500000011815,352.99499999992395
57,352.95499999998395,355.94999999964085,354.6450000000782
58,354.5549999995823,358.95000000025203,357.4200000000069
59,356.12999999981224,361.09999999959865,359.1450000000855
60,359.07999999986754,381.47499999965686,381.64500000012185
61,362.20500000004944,383.09999999953317,383.14500000042744
62,381.9799999998035,384.7499999996874,384.89499999987447
63,384.5799999996056,387.5249999996161,387.6200000001568
64,386.28000000031574,390.6000000001516,390.5199999996562
65,389.13000000016876,411.5749999996045,392.47000000041726
66,392.330000000275,413.100000000188,413.2200000000971
67,413.1800000001571,414.69999999978637,414.69500000012476
68,414.7799999997555,417.57499999991734,417.5449999999778
69,416.2800000000611,420.6250000001749,419.27000000005637
70,417.9799999998617,441.90000000023457,421.04499999978134
71,422.22999999981806,444.6249999996074,441.7950000003707
72,441.8800000000014,446.3000000000396,444.6199999999458
73,443.380000000307,447.8249999997136,446.3700000003023
74,446.23000000016003,450.84999999969324,448.14500000002727
75,449.2299999998617,471.7749999994997,453.8950000002892
76,451.10499999978896,473.4999999995783,471.8950000003183
77,471.93000000030264,476.2999999997849,474.7949999998177
78,473.42999999969874,477.99999999958555,476.4700000002499
79,476.37999999975403,481.00000000019674,478.12000000040416
80,478.00499999963034,,481.07000000045946
81,482.45499999999123,,501.89500000006365
82,500.6549999995153,,
83,503.4799999999999,,
84,505.35499999992714,,
85,508.1550000001338,,
86,509.88000000021236,,
,0,1
0,2.21500000002689,0.6200000005089019
1,12.515000000851984,13.89500000075774
2,14.09000000017241,15.445000000709719
3,15.66500000040233,17.020000000030144
4,18.79000000058423,32.02000000035756
5,32.16500000012584,33.52000000066315
6,33.690000000709375,35.02000000005925
7,36.59000000020879,37.970000000114545
8,51.59000000053621,53.070000000644235
9,53.16500000076613,54.57000000004033
10,54.715000000718106,56.11999999999231
11,57.61500000021752,59.34500000037648
12,72.7650000003936,73.09500000044923
13,75.56500000060024,75.54500000040267
14,77.3899999999716,77.21999999992536
15,92.36500000002107,92.42000000065732
16,93.84000000004872,95.02000000045942
17,96.6650000005333,96.64500000033573
18,111.69000000022916,98.47000000061658
19,113.29000000073702,113.19500000061512
20,114.81500000041106,114.69500000001122
21,117.76500000046636,116.29500000051908
22,132.81500000044016,119.67000000075191
23,134.31500000074575,134.170000000068
24,135.86500000069773,135.72000000001998
25,150.99000000059587,137.37000000017423
26,153.6650000003223,152.3950000007796
27,155.36500000012293,154.39500000027755
28,157.16500000012584,156.72000000066026
29,173.26500000085926,158.44500000073884
30,174.7900000005333,173.42000000078832
31,176.53999999998032,174.9700000007403
32,192.8400000002088,176.52000000069228
33,194.34000000051438,192.7950000006428
34,195.81500000054203,194.2950000000389
35,197.81500000004,195.87000000026882
36,212.79000000008946,197.5950000003474
37,215.31499999996723,212.44499999991666
38,217.01500000067736,215.22000000075485
39,232.09000000001961,216.94499999992394
40,234.84000000057986,233.32000000007673
41,236.4900000007341,234.84500000066026
42,238.29000000073702,236.39500000061224
43,252.99000000045763,251.5950000004347
44,254.5400000004096,254.34500000008546
45,256.26500000048816,256.07000000016404
46,271.290000000184,258.0200000000156
47,273.91500000026406,272.44500000031684
48,275.6650000006206,274.0449999999152
49,279.99000000050125,275.5950000007767
50,293.5650000004474,278.42000000035176
51,295.0150000001971,293.4200000006792
52,296.6900000006293,294.97000000063116
53,312.96500000057983,296.52000000058314
54,314.4900000002539,311.8449999999763
55,316.09000000076173,314.39500000013203
56,317.76500000028443,316.0700000005642
57,332.6650000004096,320.77000000006655
58,334.16500000071517,332.5950000005657
59,335.7900000005915,334.37000000029064
60,340.0400000005478,338.5200000000447
61,353.615000000494,353.4950000000942
62,355.11500000079957,355.0200000006777
63,356.9150000008025,356.59499999999815
64,373.09000000055073,359.77000000073593
65,374.61500000022477,373.14500000027755
66,376.1900000004547,374.6950000002295
67,391.61500000005014,376.5200000005104
68,394.16500000020585,392.59500000005636
69,395.8650000000065,394.1950000005642
70,397.41500000086796,395.76999999988465
71,412.3650000006395,400.39500000037214
72,415.1400000005682,413.6200000000651
73,416.79000000072244,415.195000000295
74,433.16499999996574,416.8200000001713
75,434.7150000008272,431.8700000001451
76,436.2650000007792,433.44500000037505
77,438.1150000004285,436.1950000000258
78,452.865000000705,437.9450000003823
79,454.34000000073263,452.7949999999516
80,456.0150000002553,454.2950000002572
81,472.3900000004081,455.79500000056277
82,473.86500000043577,458.84499999991084
83,475.3900000001098,473.8700000005162
84,478.31500000079666,475.4200000004682
85,493.2650000005682,476.9950000006981
86,494.8400000007981,492.12000000059624
87,496.4400000003965,494.72000000039833
88,499.44000000009817,496.4450000004769

1 0 1 2
2 0 18.92999999987338 2.21500000002689 2.57499999995375 0.6200000005089019 20.395000000194614
3 1 20.47999999982536 12.515000000851984 20.775000000387397 13.89500000075774 21.99499999979298
4 2 22.05500000005528 14.09000000017241 23.249999999709278 15.445000000709719 23.595000000300843
5 3 24.930000000186247 15.66500000040233 25.04999999971219 17.020000000030144 26.494999999800257
6 4 26.655000000264828 18.79000000058423 28.474999999591407 32.02000000035756 29.519999999779884
7 5 29.77999999953723 32.16500000012584 32.59999999997703 33.52000000066315 50.52000000042017
8 6 49.204999999947596 33.690000000709375 50.474999999525934 35.02000000005925 52.120000000018536
9 7 52.330000000129495 36.59000000020879 52.374999999731116 37.970000000114545 55.09500000035177
10 8 55.07999999978025 51.59000000053621 55.100000000013424 53.070000000644235 56.645000000303746
11 9 56.97999999998543 53.16500000076613 58.12499999999305 54.57000000004033 59.64500000000543
12 10 61.27999999958816 54.715000000718106 80.59999999975149 56.11999999999231 80.6950000002921
13 11 80.73000000027648 57.61500000021752 82.17499999998141 59.34500000037648 83.4700000002208
14 12 82.3049999995969 72.7650000003936 85.1250000000367 73.09500000044923 85.14499999974349
15 13 85.15500000035942 75.56500000060024 86.70000000026663 75.54500000040267 86.67000000032702
16 14 86.85500000016006 77.3899999999716 88.57500000019387 77.21999999992536 89.56999999982644
17 15 89.80500000021536 92.36500000002107 110.59999999949683 92.42000000065732 110.6699999997595
18 16 110.90500000014842 93.84000000004872 112.24999999965108 95.02000000045942 112.31999999991375
19 17 112.50499999974679 96.6650000005333 113.89999999980533 96.64500000033573 113.89500000014367
20 18 115.20499999975115 111.69000000022916 116.65000000036558 98.47000000061658 116.7449999999967
21 19 116.88000000018334 113.29000000073702 119.67500000034521 113.19500000061512 119.72000000032995
22 20 118.45500000041326 114.81500000041106 140.77500000027825 114.69500000001122 140.74500000033868
23 21 139.35499999994178 117.76500000046636 142.44999999980095 116.29500000051908 142.27000000001271
24 22 142.30499999999708 132.81500000044016 143.95000000010654 119.67000000075191 143.84500000024263
25 23 145.3299999999767 134.31500000074575 146.77499999968163 134.170000000068 146.69500000009566
26 24 147.0050000004089 135.86500000069773 149.67500000009053 135.72000000001998 149.844999999646
27 25 150.22999999988357 150.99000000059587 152.99999999976748 137.37000000017423 171.04499999978134
28 26 171.2549999998923 153.6650000003223 173.69999999980095 152.3950000007796 173.7950000003416
29 27 173.90500000025028 155.36500000012293 175.3000000003088 154.39500000027755 175.369999999662
30 28 175.50499999984865 157.16500000012584 176.92500000018512 156.72000000066026 177.16999999966492
31 29 177.25500000020517 173.26500000085926 179.87500000024042 158.44500000073884 179.92000000022517
32 30 181.52999999952996 174.7900000005333 183.24999999956376 173.42000000078832 200.9949999998803
33 31 202.47999999961436 176.53999999998032 202.3750000002768 174.9700000007403 202.59500000038815
34 32 204.0050000001979 192.8400000002088 203.97499999987517 176.52000000069228 205.41999999996324
35 33 205.60499999979626 194.34000000051438 205.80000000015602 192.7950000006428 207.09500000039543
36 34 207.40499999979917 195.81500000054203 208.47499999988244 194.2950000000389 209.99499999989484
37 35 211.7050000003114 197.81500000004 213.12499999973838 195.87000000026882 231.01999999990358
38 36 229.9300000001135 212.79000000008946 231.15000000004542 197.5950000003474 232.67000000005783
39 37 232.7050000000422 215.31499999996723 233.99999999989845 212.44499999991666 235.7200000003154
40 38 235.6049999995416 217.01500000067736 235.75000000025497 215.22000000075485 237.37000000046964
41 39 237.30500000025174 232.09000000001961 239.9499999996554 216.94499999992394 241.77000000027465
42 40 238.9049999998501 234.84000000057986 241.89999999950697 233.32000000007673 261.22000000005346
43 41 261.22999999975985 236.4900000007341 261.249999999993 234.84500000066026 262.89500000048565
44 42 262.73000000006544 238.29000000073702 264.2000000000483 236.39500000061224 265.8699999999094
45 43 265.6050000001964 252.99000000045763 267.04999999990133 251.5950000004347 267.6699999999123
46 44 267.2300000000727 254.5400000004096 268.89999999955063 254.34500000008546 270.3200000002703
47 45 268.9049999995954 256.26500000048816 290.09999999968596 256.07000000016404 291.1700000001524
48 46 290.23000000021096 271.290000000184 292.92500000017054 258.0200000000156 292.7200000001044
49 47 292.70499999953284 273.91500000026406 295.7250000003772 272.44500000031684 294.2950000003343
50 48 294.405000000243 275.6650000006206 297.3500000002535 274.0449999999152 297.26999999975806
51 49 297.50500000014694 279.99000000050125 300.3000000003088 275.5950000007767 299.12000000031685
52 50 299.42999999972056 293.5650000004474 321.52499999981256 278.42000000035176 321.39499999967074
53 51 320.1050000003856 295.0150000001971 324.39999999994353 293.4200000006792 323.1199999997493
54 52 322.92999999996067 296.6900000006293 326.0750000003757 294.97000000063116 325.79500000038524
55 53 325.854999999738 312.96500000057983 329.0249999995215 296.52000000058314 327.5200000004638
56 54 327.55499999953867 314.4900000002539 330.6749999996758 311.8449999999763 330.3450000000389
57 55 329.22999999997086 316.09000000076173 351.67500000031606 314.39500000013203 351.3950000003256
58 56 332.35500000015276 317.76500000028443 354.27500000011815 316.0700000005642 352.99499999992395
59 57 352.95499999998395 332.6650000004096 355.94999999964085 320.77000000006655 354.6450000000782
60 58 354.5549999995823 334.16500000071517 358.95000000025203 332.5950000005657 357.4200000000069
61 59 356.12999999981224 335.7900000005915 361.09999999959865 334.37000000029064 359.1450000000855
62 60 359.07999999986754 340.0400000005478 381.47499999965686 338.5200000000447 381.64500000012185
63 61 362.20500000004944 353.615000000494 383.09999999953317 353.4950000000942 383.14500000042744
64 62 381.9799999998035 355.11500000079957 384.7499999996874 355.0200000006777 384.89499999987447
65 63 384.5799999996056 356.9150000008025 387.5249999996161 356.59499999999815 387.6200000001568
66 64 386.28000000031574 373.09000000055073 390.6000000001516 359.77000000073593 390.5199999996562
67 65 389.13000000016876 374.61500000022477 411.5749999996045 373.14500000027755 392.47000000041726
68 66 392.330000000275 376.1900000004547 413.100000000188 374.6950000002295 413.2200000000971
69 67 413.1800000001571 391.61500000005014 414.69999999978637 376.5200000005104 414.69500000012476
70 68 414.7799999997555 394.16500000020585 417.57499999991734 392.59500000005636 417.5449999999778
71 69 416.2800000000611 395.8650000000065 420.6250000001749 394.1950000005642 419.27000000005637
72 70 417.9799999998617 397.41500000086796 441.90000000023457 395.76999999988465 421.04499999978134
73 71 422.22999999981806 412.3650000006395 444.6249999996074 400.39500000037214 441.7950000003707
74 72 441.8800000000014 415.1400000005682 446.3000000000396 413.6200000000651 444.6199999999458
75 73 443.380000000307 416.79000000072244 447.8249999997136 415.195000000295 446.3700000003023
76 74 446.23000000016003 433.16499999996574 450.84999999969324 416.8200000001713 448.14500000002727
77 75 449.2299999998617 434.7150000008272 471.7749999994997 431.8700000001451 453.8950000002892
78 76 451.10499999978896 436.2650000007792 473.4999999995783 433.44500000037505 471.8950000003183
79 77 471.93000000030264 438.1150000004285 476.2999999997849 436.1950000000258 474.7949999998177
80 78 473.42999999969874 452.865000000705 477.99999999958555 437.9450000003823 476.4700000002499
81 79 476.37999999975403 454.34000000073263 481.00000000019674 452.7949999999516 478.12000000040416
82 80 478.00499999963034 456.0150000002553 454.2950000002572 481.07000000045946
83 81 482.45499999999123 472.3900000004081 455.79500000056277 501.89500000006365
84 82 500.6549999995153 473.86500000043577 458.84499999991084
85 83 503.4799999999999 475.3900000001098 473.8700000005162
86 84 505.35499999992714 478.31500000079666 475.4200000004682
87 85 508.1550000001338 493.2650000005682 476.9950000006981
88 86 509.88000000021236 494.8400000007981 492.12000000059624
89 87 496.4400000003965 494.72000000039833
90 88 499.44000000009817 496.4450000004769

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 49 KiB

View File

@ -18,10 +18,9 @@ from utils_suseptibility import *
def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type='_multsorted2_', top=0.94, devs=['2'],
figsize=None, redo=False, save=True, end='0', cut_matrix='malefemale', chose_score='mean_nrs',
a_fr=1, restrict='modulation', adapt='adaptoffsetallall2', step=str(30),
detections=['AllTrialsIndex'], variant='no', sorted_on='LocalReconst0.2Norm'):
def motivation_all_small(dev_desired = '1', ylim=[-1.25, 1.25], c1=10, dfs=['m1', 'm2'], mult_type='_multsorted2_', top=0.94, devs=['2'],
figsize=None, save=True, end='0', chose_score='mean_nrs',
detections=['AllTrialsIndex'], sorted_on='LocalReconst0.2Norm'):
autodefines = [
'triangle_diagonal_fr'] # ['triangle_fr', 'triangle_diagonal_fr', 'triangle_df2_fr','triangle_df2_eodf''triangle_df1_eodf', ] # ,'triangle_df2_fr''triangle_df1_fr','_triangle_diagonal__fr',]
cells = ['2021-08-03-ac-invivo-1'] ##'2021-08-03-ad-invivo-1',,[10, ][5 ]
@ -29,7 +28,7 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
c2s = [10]
plot_style()
default_figsize(column=2, length=3.3) #6.7 ts=12, ls=12, fs=12
default_figsize(column=2, length=4.3) #6.7 ts=12, ls=12, fs=12
show = True
DF2_desired = [0.8]
DF1_desired = [0.87]
@ -188,9 +187,9 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
fig = plt.figure(figsize=figsize)
else:
fig = plt.figure()
grid = gridspec.GridSpec(1, 1, wspace=0.7, hspace=0.35, left=0.055, top=top,
grid = gridspec.GridSpec(2, 1, wspace=0.7, hspace=0.35, left=0.055, top=top,
bottom=0.15,
right=0.935) # height_ratios=[1, 2], height_ratios = [1,6]bottom=0.25, top=0.8,
right=0.935, height_ratios=[1, 5.3]) # height_ratios=[1, 2], height_ratios = [1,6]bottom=0.25, top=0.8,
hr = [1, 0.35, 1.2, 0, 3, ] # 1
##########################################################################
# several coherence plot
@ -204,10 +203,17 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
# ax_cohs = plt.subplot(grid[0,1])
##########################################################################
# shemes
##########################################################################
# part with the power spectra
grid00 = gridspec.GridSpecFromSubplotSpec(1, 4, wspace=0.15, hspace=0.35,
subplot_spec=grid[0, :])
##########################################################################
# part with the power spectra
grid0 = gridspec.GridSpecFromSubplotSpec(5, 4, wspace=0.15, hspace=0.35,
subplot_spec=grid[:, :],
subplot_spec=grid[1, :],
height_ratios=hr)
xlim = [0, 100]
@ -366,6 +372,5 @@ def motivation_all_small(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=['m1',
if __name__ == '__main__':#2.5
motivation_all_small(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
cut_matrix='malefemale', chose_score='mean_nrs', restrict='modulation_no_classes', step='50',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#
motivation_all_small(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], save=True, end='all',
chose_score='mean_nrs', detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#

View File

@ -365,7 +365,7 @@ def motivation_all_small_stim(dev_desired = '1',ylim=[-1.25, 1.25], c1=10, dfs=[
# plt.show()
if __name__ == '__main__':#2.5
motivation_all_small_stim(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
cut_matrix='malefemale', chose_score='mean_nrs', restrict='modulation_no_classes', step='50',
detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#
#if __name__ == '__main__':#2.5
# motivation_all_small_stim(dev_desired = '1', c1=10, mult_type='_multsorted2_', devs=['05'], redo=True, save=True, end='all',
# cut_matrix='malefemale', chose_score='mean_nrs', restrict='modulation_no_classes', step='50',
# detections=['MeanTrialsIndexPhaseSort'], sorted_on='LocalReconst0.2NormAm')#

View File

@ -4022,6 +4022,16 @@ We collected weakly electric gymnotoid fish in the vicinity of Manaus, Amazonas,
Volume = {21}
}
@article{Longtin1993,
title={Stochastic resonance in neuron models},
author={Longtin, Andr{\'e}},
journal={Journal of statistical physics},
volume={70},
pages={309--327},
year={1993},
publisher={Springer}
}
@Article{Longtin1996,
title={Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors},
author={Longtin, Andre and Hinzer, Karin},

View File

@ -36,7 +36,10 @@ diff:
copy:
cp $(file).sty ../
# python #########################################################
plots: $(PYTHONPDFFILES)
$(PYTHONPDFFILES): %.pdf: %.py plotstyle.py
python3 $<

197
removed2/Makefile Normal file
View File

@ -0,0 +1,197 @@
TEXBASE=susceptibility1
BIBFILE=references.bib
REBUTTALBASE=
TEXFILE=$(TEXBASE).tex
PDFFILE=$(TEXBASE).pdf
TXTFILE=$(TEXBASE).txt
REVISION=
PYTHONFILES=$(filter-out plotstyle.py myfunctions.py numerical_compar_both.py, $(PT))
PYTHONPDFFILES=$(PYTHONFILES:.py=.pdf)
ifdef REBUTTALBASE
REBUTTALTEXFILE=$(REBUTTALBASE).tex
REBUTTALPDFFILE=$(REBUTTALBASE).pdf
endif
REBUTTALREVISION=
# all ###########################################################
ifdef REBUTTALBASE
all: bib rebuttalbib
else
all: bib
endif
# python #########################################################
plots: $(PYTHONPDFFILES)
$(PYTHONPDFFILES): %.pdf: %.py plotstyle.py
python3 $<
watchplots :
while true; do ! make -q plots && make plots; sleep 0.5; done
# rescue_local_eod manuscript #################################################
bib: $(TEXBASE).bbl
$(TEXBASE).bbl: $(TEXFILE) $(BIBFILE)
lualatex $(TEXFILE)
bibtex $(TEXBASE)
lualatex $(TEXFILE)
lualatex $(TEXFILE)
lualatex $(TEXFILE)
@echo
@echo "BibTeX log:"
@sed -n -e '1,/You.ve used/p' $(TEXBASE).blg
pdf: $(PDFFILE)
$(PDFFILE) : $(TEXFILE)
lualatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && lualatex -interaction=scrollmode $< || true
again :
lualatex $(TEXFILE)
# watch files #######################################################
watchpdf :
while true; do ! make -s -q pdf && make pdf; sleep 0.5; done
# make diffs ########################################################
diff :
#latexdiff-git -r $(REVISION) --pdf $(TEXFILE)
latexdiff-git -r $(REVISION) $(TEXFILE)
-lualatex $(TEXBASE)-diff$(REVISION)
-bibtex $(TEXBASE)-diff$(REVISION)
-lualatex $(TEXBASE)-diff$(REVISION)
-lualatex $(TEXBASE)-diff$(REVISION)
-lualatex $(TEXBASE)-diff$(REVISION)
mv $(TEXBASE)-diff$(REVISION).pdf $(TEXBASE)-diff.pdf
mv $(TEXBASE)-diff$(REVISION).tex $(TEXBASE)-diff.tex
mv $(TEXBASE)-diff$(REVISION).bbl $(TEXBASE)-diff.bbl
rm $(TEXBASE)-diff$(REVISION).*
# convert to txt file ################################################
txt: $(PDFFILE)
#dvi2tty -w 132 -v 500000 -e-60 -q $(DVIFILE) | sed -n -e '/\cL/,+2!p' > $(TXTFILE)
pdftotext -nopgbrk $(PDFFILE) - | fold -s > $(TXTFILE)
# convert to rtf file ################################################
rtf :
latex2rtf $(TEXFILE)
# remove all fancy commands from the tex file:
simplify :
sed -e '/overall style/,/page style/d; /setdoublespacing/,+1d; /usepackage.*caption/s/{\(.*\)}/\1/; /figure placement/,/^%/d; /ifthenelse.*nofigs/,/#1/d; /begin{multicols}/d; /end{multicols}/d; /begin{keywords}/,/end{keywords}/d; /begin{contributions}/,/end{contributions}/d; /figurecaptions/d; /linenomath/d; s/captionc/caption/' $(TEXFILE) | perl -00 -lpe 's/\\showfigure{((\s|.)*?)}/$$1/' > $(TEXBASE)-simplified.tex
# statistics #########################################################
stats: $(PDFFILE)
# use \pagestyle{empty} and don't include any pictures!
pdftotext -nopgbrk $(PDFFILE) - | fold -s > tmp.txt
@echo
@echo " words: " `wc -w tmp.txt 2> /dev/null | cut -d ' ' -f 1`
@echo "characters: " `wc -c tmp.txt 2> /dev/null | cut -d ' ' -f 1`
rm tmp.txt
# rebuttal ##########################################################
ifdef REBUTTALBASE
rebuttalbib: $(REBUTTALBASE).bbl
$(REBUTTALBASE).bbl: $(REBUTTALTEXFILE) $(BIBFILE)
lualatex $(REBUTTALTEXFILE)
bibtex $(REBUTTALBASE)
lualatex $(REBUTTALTEXFILE)
lualatex $(REBUTTALTEXFILE)
lualatex $(REBUTTALTEXFILE)
@echo
@echo "BibTeX log:"
@sed -n -e '1,/You.ve used/p' $(REBUTTALBASE).blg
rebuttal: $(REBUTTALPDFFILE)
$(REBUTTALPDFFILE) : $(REBUTTALTEXFILE)
lualatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && lualatex -interaction=scrollmode $< || true
watchrebuttal :
while true; do ! make -q rebuttal && make rebuttal; sleep 0.5; done
rebuttaldiff :
latexdiff-git -r $(REBUTTALREVISION) --append-textcmd="response,issue" --pdf $(REBUTTALTEXFILE)
mv $(REBUTTALBASE)-diff$(REBUTTALREVISION).pdf $(REBUTTALBASE)-diff.pdf
rm $(REBUTTALBASE)-diff$(REBUTTALREVISION).*
endif
# git ##############################################################
pull :
git pull origin master
ifdef REBUTTALBASE
edit : pull
emacs $(TEXFILE) $(BIBFILE) $(REBUTTALTEXFILE) Makefile &
sleep 1
okular $(REBUTTALPDFFILE) $(PDFFILE) &
prepare : pull bib diffrev rebuttalbib rebuttaldiff
else
edit : pull
emacs $(TEXFILE) $(BIBFILE) Makefile &
sleep 1
okular $(PDFFILE) &
prepare : pull bib diffrev
endif
push : prepare
git commit -a
git push origin master
# convert figures to png files #######################################
figures:
./latexfigures2png $(TEXFILE)
# convert pdf figures to eps #########################################
epsfigures:
#for i in $(PDFFIGURES); do echo $$i; rm -f $${i%.pdf}.eps; pdftops -level3 -eps $$i $${i%.pdf}.eps; done
for i in $(PDFFIGURES); do echo $$i; rm -f $${i%.pdf}.eps; gs -q -dNOCACHE -dNOPAUSE -dBATCH -dSAFER -sDEVICE=epswrite -sOutputFile=$${i%.pdf}.eps $$i; done
# clean up ############################################################
clean:
rm -rf auto *~ *.aux *.blg *.bbl *.dvi *.log *.out *.fff *.ttt $(PDFFIGURES) __pycache__
cleanall: clean
rm -f $(PDFFILE) figure-??.png
# help ################################################################
help :
@echo -e \
"make pdf: make the pdf file of the paper.\n"\
"make bib: run bibtex and make the pdf file of the paper.\n"\
"make again: run pdflatex and make the pdf file of the paper,\n"\
" no matter whether you changed the .tex file or not.\n"\
"make watchpdf: make the pdf file of the paper\n"\
" whenever the tex file is modified.\n"\
"make diff: make a diff file against the specified revision (REVISION variable)\n"\
"make txt: make a plain text version of the paper ($(TXTFILE)).\n"\
"make rtf: convert the paper ($(TXTFILE)) to rtf format.\n"\
"make simplify: strip all fancy commands from the paper ($(TXTFILE))\n"\
"make stats: print number of words and characters.\n"\
"make rebuttalbib: run bibtex and make the pdf file of the rebuttal.\n"\
"make rebuttal: make the pdf file of the rebuttal.\n"\
"make watchrebuttal: make the pdf file of the rebuttal\n"\
" whenever the tex file is modified.\n"\
"make rebuttaldiff: make a diff file of the rebuttal against the specified revision\n"\
" (REBUTTALREVISION variable).\n"\
"make pull: pull from the git repository.\n"\
"make edit: pull and open emacs and okular with te relevant files.\n"\
"make prepare: pull and make the pdfs and diffs of the manuscript and the rebuttal.\n"\
"make push: prepare, commit, and push to the git repository.\n"\
"make figures : convert all figures to png files.\n"\
"make epsfigures: convert all included pdf figures to eps files.\n"\
"make clean: remove all intermediate files,\n"\
" just leave the source files and the final .pdf files.\n"\
"make cleanup: remove all intermediate files as well as\n"\
" the final .pdf files.\n"\

View File

@ -251,11 +251,11 @@
{\protect\marginpar{\small\textbf{changed\ifthenelse{\equal{#1}{}}{}{ [#1]}}}{\bfseries #2}}}}% 3
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\fstim}{\ensuremath{f_{stim}}}
\newcommand{\feod}{\ensuremath{f_{EOD}}}
\newcommand{\fstim}{\ensuremath{f_{\rm{stim}}}}
\newcommand{\feod}{\ensuremath{f_{\rm{EOD}}}}
\newcommand{\feodsolid}{\ensuremath{f_{\rm{EOD}}}}
\newcommand{\feodhalf}{\ensuremath{f_{EOD}/2}}
\newcommand{\fbase}{\ensuremath{f_{base}}}
\newcommand{\feodhalf}{\ensuremath{f_{\rm{EOD}}/2}}
\newcommand{\fbase}{\ensuremath{f_{\rm{base}}}}
\newcommand{\fbasesolid}{\ensuremath{f_{\rm{base}}}}
\newcommand{\fstimintro}{\ensuremath{\rm{EOD}_{2}}}
\newcommand{\feodintro}{\ensuremath{\rm{EOD}_{1}}}
@ -284,12 +284,12 @@
\newcommand{\cstable}{\ensuremath{c_{2}}}
\newcommand{\fstable}{\ensuremath{f_{2}}}
\newcommand{\aeod}{\ensuremath{A(f_{EOD})}}
\newcommand{\aeod}{\ensuremath{A(f_{\rm{EOD}})}}
\newcommand{\fbasecorrsolid}{\ensuremath{f_{\rm{BaseCorrected}}}}
\newcommand{\fbasecorr}{\ensuremath{f_{BaseCorrected}}}
\newcommand{\ffall}{$f_{EOD}$\&$f_{1}$\&$f_{2}$}
\newcommand{\ffvary}{$f_{EOD}$\&$f_{1}$}%sum
\newcommand{\ffstable}{$f_{EOD}$\&$f_{2}$}%sum
\newcommand{\fbasecorr}{\ensuremath{f_{\rm{BaseCorrected}}}}
\newcommand{\ffall}{$f_{\rm{EOD}}$\&$f_{1}$\&$f_{2}$}
\newcommand{\ffvary}{$f_{\rm{EOD}}$\&$f_{1}$}%sum
\newcommand{\ffstable}{$f_{\rm{EOD}}$\&$f_{2}$}%sum
\newcommand{\colstableone}{blue}%sum
\newcommand{\colstabletwo}{cyan}%sum
\newcommand{\colvaryone}{brown}%sum
@ -316,12 +316,12 @@
\newcommand{\boneb}{$\Delta f_{1}=\fbase{}$}%sum
\newcommand{\bsumbtwo}{$\bsum{}=2 \fbase{}$}%sum
\newcommand{\bsumbc}{$\bsum{}=\fbasecorr{}$}%sum
\newcommand{\bsume}{$\bsum{}=f_{EOD}$}%sum
\newcommand{\bsumehalf}{$\bsum{}=f_{EOD}/2$}%sum
\newcommand{\bsume}{$\bsum{}=\feod{}$}%sum
\newcommand{\bsumehalf}{$\bsum{}=\feod{}/2$}%sum
\newcommand{\bdiffb}{$\bdiff{}=\fbase{}$}%diff of both beat frequencies
\newcommand{\bdiffbc}{$\bdiff{}=\fbasecorr{}$}%diff of both beat frequencies
\newcommand{\bdiffe}{$\bdiff{}=f_{EOD}$}%diff of both
\newcommand{\bdiffehalf}{$\bdiff{}=f_{EOD}/2$}%diff of both
\newcommand{\bdiffe}{$\bdiff{}=\feod{}$}%diff of both
\newcommand{\bdiffehalf}{$\bdiff{}=\feod{}/2$}%diff of both
%beat frequencies
%%%%% tables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -353,12 +353,12 @@
\newcommand{\fonebc}{$f_{1}=\fbasecorr{}$}%sum
\newcommand{\fsumbtwo}{$\fsum{}=2 \fbase{}$}%sum
\newcommand{\fsumbc}{$\fsum{}=\fbasecorr{}$}%sum
\newcommand{\fsume}{$\fsum{}=f_{EOD}$}%sum
\newcommand{\fsumehalf}{$\fsum{}=f_{EOD}/2$}%sum
\newcommand{\fsume}{$\fsum{}=\feod{}$}%sum
\newcommand{\fsumehalf}{$\fsum{}=\feod{}/2$}%sum
\newcommand{\fdiffb}{$\fdiff{}=\fbase{}$}%diff of both beat frequencies
\newcommand{\fdiffbc}{$\fdiff{}=\fbasecorr{}$}%diff of both beat frequencies
\newcommand{\fdiffe}{$\fdiff{}=f_{EOD}$}%diff of both
\newcommand{\fdiffehalf}{$\fdiff{}=f_{EOD}/2$}%diff of both
\newcommand{\fdiffe}{$\fdiff{}=\feod{}$}%diff of both
\newcommand{\fdiffehalf}{$\fdiff{}=\feod{}/2$}%diff of both
\newcommand{\fctwo}{\ensuremath{f_{\rm{Female}}}}%sum
\newcommand{\fcone}{\ensuremath{f_{\rm{Intruder}}}}%sum
@ -507,7 +507,7 @@
Nonlinear processes are fundamental in neuronal information processing. On the systemic level: deciding to take one or another action is a nonlinear process. On a finer scale, neurons are inherently nonlinear: whether an action potential is elicited depends on the membrane potential to exceed a certain threshold\cite{Brincat2004, Chacron2000, Chacron2001, Nelson1997, Gussin2007, Middleton2007, Longtin2008}. In conjunction with neuronal noise, nonlinear mechanism facilitate the encoding of weak stimuli via stochastic resonance\cite{Wiesenfeld1995, Stocks2000,Neiman2011fish}. We can find nonlinearities in many sensory systems such as rectification in the transduction machinery of inner hair cells \cite{Peterson2019}, signal rectification in electroreceptor cells \cite{Chacron2000, Chacron2001}, or in complex cells of the visual system \cite{Adelson1985}. In the auditory or the active electric sense, for example, nonlinear processes are needed to extract envelopes, i.e. amplitude modulations of a carrier signal\cite{Joris2004, Barayeu2023} called beats. Beats are common stimuli in different sensory modalities enabling rhythm and pitch perception in human hearing \cite{Roeber1834, Plomp1967, Joris2004, Grahn2012} and providing context for electrocommunication in weakly electric fish \cite{Engler2001, Hupe2008, Henninger2018, Benda2020}.%Adelson1985,
While the sensory periphery can often be well described by linear models, this is not true for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\cite{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\cite{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\cite{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\cite{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$)\cite{Barayeu2023}. Cutaneous electroreceptor organs that are distributed over the bodies of these fish \cite{Carr1982} are tuned to the own field\cite{Hopkins1976,Viancour1979}. P-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\cite{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\cite{Krahe2014}. The P-units ot the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\cite{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike-interval distribution. Even though the extraction of the AM itself requires a nonlinearity\cite{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\cite{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\cite{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\cite{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\cite{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\cite{Nelson1997,Chacron2004}.
While the sensory periphery can often be well described by linear models, this is not true for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\cite{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\cite{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\cite{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\cite{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$)\cite{Barayeu2023}. Cutaneous electroreceptor organs that are distributed over the bodies of these fish \cite{Carr1982} are tuned to the own field\cite{Hopkins1976,Viancour1979}. Probability-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\cite{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\cite{Krahe2014}. The P-units of the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\cite{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike-interval distribution. Even though the extraction of the AM itself requires a nonlinearity\cite{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\cite{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\cite{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\cite{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\cite{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\cite{Nelson1997,Chacron2004}.
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{motivation}
@ -517,15 +517,16 @@ While the sensory periphery can often be well described by linear models, this i
Recent theoretical and modelling work on leaky integrate-and-fire (LIF) model neurons revealed specific pattern of nonlinear interactions when driven with weak sinewaves\cite{Voronenko2017}. This situation is reminiscent of the real fish's situation in which three electric fish interact. The active electrosensory system is then exposed to the two AMs arising from the interactions with either foreign fish's field. Previous recordings in the natural habitat showed interactions of three animals in which two animals interacted closely (strong signals) and were interrupted by an intruding animal (weak signal). The intruder was detected at spatial distances that led to an extremely faint intruder signal while the strong signal of the other animal is present\cite{Henninger2018}. When the receiver fish with EOD frequency \feod{} is alone, the P-unit fire action potentials at a spontaneous baseline rate. Accordingly, a peak at \fbase{} is present in the power spectrum of the neuronal response (\subfigrefb{fig:motivation}{A}, bottom).\notejg{more baseline trials, working on it}. Phase-locking to the own field also leads to a representation of \feod{} in their firing rate (see \figref{fig:cells_suscept}\panel{B})\cite{Sinz2020}. The beat frequency when two fish interact is also represented in the respective responses and accordingly, there is a peak in power spectrum at $\Delta f_1$ or $\Delta f_2$ (\subfigrefb{fig:motivation}{B, C}, respectively). When three fish encounter, all their waveforms interfere with both beat frequencies being present in the superimposed signal (\subfigrefb{fig:motivation}{D}, top). The power spectrum of the neuronal activity contains both previously seen peaks, but also nonlinear interaction peaks at the sum frequency \bsum{} and the difference frequency \bdiff{} (\subfigrefb{fig:motivation}{D}, bottom). The latter is known as the social envelope\cite{Stamper2012Envelope, Savard2011}. The neuron shown here, clearly encodes the envelope. Whether P-units in general encode envelopes has been subject of controversy, some works do not consider P-units as envelope encoders\cite{Middleton2006}, while others identify some P-units as envelope encoders\cite{Savard2011}.
The P-unit responses can be partially explained by simple linear filters. The linear relation of the cellular response and the stimulus can be captured by the first-order susceptibility (or transfer function). As in Volterra series, higher-order terms describe the nonlinear interactions. We quantify the nonlinearity of P-unit encoding by estimating the second-order susceptibility from white-noise responses\cite{Voronenko2017,Neiman2011fish,Nikias1993}. We address whether the theory still holds for neurons that do not encode the foreign signals directly but respond to the AM of a carrier. For this study we re-use a large set of recordings of afferents of both the active (P-units) and the passive electrosensory (ampullary cells) to work out which cellular features determine which cells show nonlinear encoding.
The P-unit responses can be partially explained by simple linear filters. The linear relation of the cellular response and the stimulus can be captured by the first-order susceptibility (or transfer function). As in Volterra series, higher-order terms describe the nonlinear interactions. We quantify the nonlinearity of P-unit encoding by estimating the second-order susceptibility from white-noise responses\cite{Nikias1993,Neiman2011fish, Voronenko2017,Egerland2020}. We address whether the theory still holds for neurons that do not encode the foreign signals directly but respond to the AM of a carrier. For this study we re-use a large set of recordings of afferents of both the active (P-units) and the passive electrosensory (ampullary cells) to work out which cellular features determine which cells show nonlinear encoding.
\section*{Results}
Theoretical work \cite{Voronenko2017} shows that stochastic leaky integrate-and-fire (LIF) model neurons may show nonlinear stimulus encoding when the model is driven by two cosine signals with specific frequencies. In the context of weakly electric fish, such a setting is part of the animal's everyday life. The sinusoidal electric-organ discharges (EODs) of neighboring animals interfere and lead to amplitude modulations (AMs) that are called beats (two-fish interaction) and envelopes (multiple-fish interaction) \cite{Middleton2006, Savard2011,Stamper2012Envelope}. The p-type electroreceptor afferents of the tuberous electrosensory system, i.e. the P-units encode such AMs of the underlying EOD carrier in their time-dependent firing rates \cite{Bastian1981a,Walz2014}. We here explore nonlinear responses of different cells that exhibit distinctly different levels of output variability, quantified by the coefficient of variation (CV) of their interspike intervals (ISI). Low-CV P-units have a less noisy firing pattern that is closer to pacemaker firing, whereas high-CV P-units show a more irregular firing pattern that is closer to a Poisson process.
Theoretical work \cite{Voronenko2017} shows that stochastic leaky integrate-and-fire (LIF) model neurons may show nonlinear stimulus encoding when the model is driven by two cosine signals with specific frequencies. In the context of weakly electric fish, such a setting is part of the animal's everyday life. The sinusoidal electric-organ discharges (EODs) of neighboring animals interfere and lead to amplitude modulations (AMs) that are called beats (two-fish interaction) and envelopes (multiple-fish interaction) \cite{Middleton2006, Savard2011,Stamper2012Envelope}. The p-type electroreceptor afferents of the tuberous electrosensory system, i.e. the P-units encode such AMs of the underlying EOD carrier in their time-dependent firing rates \cite{Bastian1981a,Walz2014}. We here explore the nonlinear mechanism in different cells that exhibit distinctly different levels of noise, i.e. differences in the coefficient of variation (CV) of the interspike intervals (ISI). Low-CV P-units have a less noisy firing pattern that is closer to pacemaker firing, whereas high-CV P-units show a more irregular firing pattern that is closer to a Poisson process.
%P-units are heterogeneous in their baseline firing properties \cite{Grewe2017, Hladnik2023} and differ with respect to their baseline firing rates, the sensitivity and their noisiness.
\subsection*{Nonlinear signal transmission in low-CV P-units} %frequency combinations withappearing when the input frequencies are related to \fbase{} are
Second-order susceptibility is expected to be especially pronounced for low-CV cells \cite{Voronenko2017}. P-units fire action potentials probabilistically phase-locked to the self-generated EOD. Skipping of EOD cycles leads to the characteristic multimodal ISI distribution with maxima at integer multiples of the EOD period (\subfigrefb{fig:cells_suscept}{A}). In this example the ISI distribution has a CV of 0.2 which can be considered low among P-units\cite{Hladnik2023}. Spectral analysis of the baseline activity shows two major peaks, the first is located at the baseline firing rate (\fbase), the second is located at the discharge frequency of the electric organ (\feod{}) and is flanked by two smaller peaks at $\feod \pm \fbase{}$ (\subfigref{fig:cells_suscept}{B}).
@ -538,7 +539,8 @@ Second-order susceptibility is expected to be especially pronounced for low-CV c
Noise stimuli, the random amplitude modulations (RAM, \subfigref{fig:cells_suscept}{C}, top trace, red line) of the EOD, are commonly used to characterize the stimulus driven responses of P-units by means of the transfer function (first-order susceptibility), the spike-triggered average, or the stimulus-response coherence. Here, we additionally estimate the second-order susceptibility to capture nonlinear encoding. Depending on the stimulus intensity which is given as the contrast, i.e. the amplitude of the noise stimulus in relation to the EOD amplitude (see methods), the spikes align more or less clearly to AMs of the stimulus (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). The linear encoding (see \Eqnref{linearencoding_methods}) is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}). First-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again.
Theory predicts a pattern of nonlinear susceptibility for the interaction of two cosine stimuli when \fone{}, \ftwo{} or \fsum{} are equal to \fbase{} (pink triangle in \subfigsref{fig:cells_suscept}{E, F}). To estimate the second-order susceptibility from the P-unit responses to RAM stimuli, the noise stimulus was set in relation to the corresponding neuronal response in the Fourier domain, resulting in a matrix in which the nonlinearity at the sum frequency \fsum{} in the firing rate is depicted for two noise frequencies \fone{} and \ftwo{} (\Eqnref{eq:susceptibility}, \subfigrefb{fig:cells_suscept}{E--F}). The decomposition of the RAM stimulus into the frequency components allows us to approximate the beat frequencies $\Delta f$, occurring in case of pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}). Thus, the nonlinearity accessed with the RAM stimulation at \fsum{} (\subfigrefb{fig:cells_suscept}{E}) is similar to the nonlinearity appearing during pure sine-wave stimulation at \bsum{} (orange peak, \subfigrefb{fig:motivation}{D}). A band of elevated nonlinearity appears for the low RAM contrast when \fsumb{} (yellow anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}) but vanishes for the stronger stimulus (20\% contrast, \subfigref{fig:cells_suscept}{F}). Further, the overall level of nonlinearity changes with the stimulus strength. To compare the structural changes in the matrices we calculated the mean of the anti-diagonals, resulting in the projected diagonal (\subfigrefb{fig:cells_suscept}{G}). For a low RAM contrast the second-order susceptibility at \fbase{} is slightly enhanced (\subfigrefb{fig:cells_suscept}{G}, gray dot on light purple line). For the higher RAM contrast, however, this is not visible and the overall second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}, compare light and dark purple lines).
Theory predicts a pattern of nonlinear susceptibility for the interaction of two cosine stimuli when \fone{}, \ftwo{} or \fsum{} are equal to \fbase{} (pink triangle in \subfigsref{fig:cells_suscept}{E, F}). To estimate the second-order susceptibility from the P-unit responses to RAM stimuli, the noise stimulus was set in relation to the corresponding neuronal response in the Fourier domain, resulting in a matrix in which the nonlinearity at the sum frequency \fsum{} in the firing rate is depicted for two noise frequencies \fone{} and \ftwo{} (\Eqnref{eq:susceptibility}, \subfigrefb{fig:cells_suscept}{E--F}). The decomposition of the RAM stimulus into the frequency components allows us to approximate the beat frequencies $\Delta f$, occurring in case of pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}). Thus, the nonlinearity accessed with the RAM stimulation at \fsum{} (\subfigrefb{fig:cells_suscept}{E}) is similar to the nonlinearity appearing during pure sine-wave stimulation at \bsum{} (orange peak, \subfigrefb{fig:motivation}{D}). A band of elevated nonlinearity appears for the low RAM contrast when \fsumb{} (yellow anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}) but vanishes for the stronger stimulus (20\% contrast, \subfigref{fig:cells_suscept}{F}). Further, the overall level of nonlinearity changes with the stimulus strength. To compare the structural changes in the matrices we calculated the mean of the anti-diagonals, resulting in the projected diagonal (\subfigrefb{fig:cells_suscept}{G}). For a low RAM contrast the second-order susceptibility at \fbase{} is slightly enhanced (\subfigrefb{fig:cells_suscept}{G}, gray dot on light purple line). For the higher RAM contrast, however, this is not visible and the overall second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}, compare light and dark purple lines). The reason behind this decrease is that with the higher RAM contrast is associated with a simultaneously increase of the stimulus amplitude but also of the total noise in the system. This is important since increased noise is known to linearize the signal
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}.
High-CV P-units do not exhibit pronounced nonlinearities even at low stimulus contrasts (for more details see supplementary information: \nameref*{S1:highcvpunit}).
@ -553,12 +555,12 @@ Irrespective of the CV, neither cell shows the complete proposed structure of no
\end{figure*}
\subsection*{Model-based estimation of the nonlinear structure}
Traces of the expected structure of second-order susceptibility are found in both ampullary and p-type electrosensory afferents. In the recordings shown above (\figrefb{fig:cells_suscept}, \figrefb{fig:ampullary}), the nonlinear response is strong whenever the two frequencies (\fone{}, \ftwo{}) fall onto the antidiagonal \fsumb{}, which is in line with theoretical expec\-tations\cite{Voronenko2017}. However, a pronounced nonlinear response for frequencies with \foneb{} or \ftwob{}, although predicted by theory, cannot be observed. Here we investigate how these discrepancies can be understood.
Traces of the expected structure of second-order susceptibility are found in both ampullary and p-type electrosensory afferents. In the recordings shown above (\figrefb{fig:cells_suscept}, \figrefb{fig:ampullary}), the nonlinear response is strong whenever the two frequencies (\fone{}, \ftwo{}) fall onto the antidiagonal \fsumb{}, which is in line with theoretical expectations\cite{Voronenko2017}. However, a pronounced nonlinear response for frequencies with \foneb{} or \ftwob{}, although predicted by theory, cannot be observed. Here we investigate how these discrepancies can be understood.
In the electrophysiological experiments, we only have a limited number of trials and this insufficient averaging may occlude the full nonlinear structure. This limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, with parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \cite{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of repetitions ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).
In the model we can increase the number of repetitions substantially but still do not observe the full nonlinear structure ($\n{}=10^6$, \subfigrefb{model_and_data}\,\panel[iii]{B}). A possible reason for this could be that by applying a broadband stimulus the effective input-noise level is increased and this may linearize the signal
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full nonlinear structure should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \cite{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility according to $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods, equations \eqref{eq:crosshigh} and \eqref{eq:susceptibility}) \cite{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \cite{Lindner2022}, we can split the total noise and consider a fraction of it as stimulus. This allows to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_\xi(t)$ and a weak remaining intrinsic noise $\sqrt{2D \, c_{noise}} \cdot \xi(t)$ with $c_\text{noise} = 0.1$ (see methods, equations \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{model_and_data}\,\panel[i]{C}). We tune the amplitude of the RAM stimulus $s_\xi(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\xi(t)$ in the voltage equation but no RAM) and compute the second- and third-order cross-spectra between the RAM part of the noise $s_\xi(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and $s_\xi(t)$, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of trials (\subfigrefb{model_and_data}\,\panel[iii]{B}), but not for a number of trials comparable to the experiment (\subfigrefb{model_and_data}\,\panel[ii]{B}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{model_and_data}\,\panel[iii]{C}).
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full nonlinear structure should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \cite{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility according to $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods, equations \eqref{eq:crosshigh} and \eqref{eq:susceptibility}) \cite{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \cite{Lindner2022}, we can split the total noise and consider a fraction of it as stimulus. This allows to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_\xi(t)$ and a weak remaining intrinsic noise $\sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)$ with $c_\text{noise} = 0.1$ (see methods, equations \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{model_and_data}\,\panel[i]{C}). We tune the amplitude of the RAM stimulus $s_\xi(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\xi(t)$ in the voltage equation but no RAM) and compute the second- and third-order cross-spectra between the RAM part of the noise $s_\xi(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and $s_\xi(t)$, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of trials (\subfigrefb{model_and_data}\,\panel[iii]{B}), but not for a number of trials comparable to the experiment (\subfigrefb{model_and_data}\,\panel[ii]{B}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{model_and_data}\,\panel[iii]{C}).
Note, that the increased number of repetitions goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{model_and_data}\,\panel[iii]{B}), that saturate in its peak values for $N>10^5$ (\figrefb{fig:trialnr}). This demonstrates the limited reliability of a statistical estimate that is based on 11 trials only. However, we would like to point out that already the limited number of trials as used in the experiments reveals key features of the nonlinear response.
@ -566,19 +568,19 @@ With high levels of intrinsic noise, we would not expect the nonlinear response
\begin{figure*}[!hb]
\includegraphics[width=\columnwidth]{model_and_data}
\caption{\label{model_and_data} High trial numbers and a reduced internal noise reveal the nonlinear structure in a LIF model with carrier. \figitem{A} \suscept{} surface of the electrophysiologically recorded low-CV P-unit (cell 2012-07-03-ak) driven with a weak stimulus with 1\% contrast. The plot shows that average \suscept{} surface ($N=11$). Pink edges mark the expected structure of enhanced nonlinearity. \figitem[i]{B} \textit{Standard condition} of the model simulation. The model is driven by a RAM stimulus (red trace). $\xi_{signal}$ and $\xi_{noise}$ components of the total intrinsic noise ($\xi$) are shown in the center and bottom. In this condition, $\xi_{noise} = \xi$. \figitem[ii]{B} \suscept{} surface of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) averaged over the same number of stimulus repetitions. \figitem[iii]{B} Same as \panel[ii]{B} but 1 million stimulus repetitions. \figitem[i - iii]{C} Same as in \panel[i - iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Parts (90\%) of the total intrinsic noise ($\xi$) are treated as signal (center trace, $\xi_{signal}$) while the remaining part is treated as $\xi_{noise}$ (see methods for details). Note that the signal component ($\xi_{signal}$) is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the noise component ($\xi_{noise}$). Adding the discarded high frequency components to $\xi_{noise}$ does not affect the results shown here.
\caption{\label{model_and_data} High trial numbers and a reduced internal noise reveal the nonlinear structure in a LIF model with carrier. \figitem{A} \suscept{} surface of the electrophysiologically recorded low-CV P-unit (cell 2012-07-03-ak) driven with a weak stimulus with 1\% contrast. The plot shows that average \suscept{} surface ($N=11$). Pink edges mark the expected structure of enhanced nonlinearity. \figitem[i]{B} \textit{Standard condition} of the model simulation. The model is driven by a RAM stimulus (red trace). $\xi_{\rm{noise}}$ and $\xi_{\rm{noise}}$ components of the total intrinsic noise ($\xi$) are shown in the center and bottom. In this condition, $\xi_{\rm{noise}} = \xi$. \figitem[ii]{B} \suscept{} surface of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) averaged over the same number of stimulus repetitions. \figitem[iii]{B} Same as \panel[ii]{B} but 1 million stimulus repetitions. \figitem[i - iii]{C} Same as in \panel[i - iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Parts (90\%) of the total intrinsic noise ($\xi$) are treated as signal (center trace, $\xi_{\rm{noise}}$) while the remaining part is treated as $\xi_{\rm{noise}}$ (see methods for details). Note that the signal component ($\xi_{\rm{noise}}$) is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the noise component ($\xi_{\rm{noise}}$). Adding the discarded high frequency components to $\xi_{\rm{noise}}$ does not affect the results shown here.
}
\end{figure*}
\subsection*{Second-order susceptibility can explain nonlinear peaks in pure sinewave stimulation}
We calculated the second-order susceptibility surfaces at \fsum{} by extracting the respective spectral components of the P-unit responses to RAM stimuli. How does this relate to the pure sinewave situation that approximates the interference of real animals? The relevant signals are the the beat frequencies \bone{} and \btwo{} that arise from the interference of the receiving fish's own and either of the foreign EODs (\figref{fig:motivation}). The response power spectrum showed peaks from nonlinear interaction at the sum of the two beat frequencies (orange marker, \subfigrefb{fig:motivation}{D}) and at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}). In the example $\Delta f_{2}$ was similar to \fbase{}, corresponding to the horizontal line in the RAM-based second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}. In the three-fish example, there was a second, less prominent, nonlinearity at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}), that cannot be explained with the second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}, in which only the nonlinearity at \fsum{} in the response is addressed (\Eqnref{eq:crosshigh}).
We calculated the second-order susceptibility surfaces at \fsum{} by extracting the respective spectral components of the P-unit responses to RAM stimuli. How does this relate to the pure sinewave situation that approximates the interference of real animals? The relevant signals are the the beat frequencies \bone{} and \btwo{} that arise from the interference of the receiving fish's own and either of the foreign EODs (\figref{fig:motivation}). The response power spectrum showed peaks from nonlinear interaction at the sum of the two beat frequencies (orange marker, \subfigrefb{fig:motivation}{D}) and at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}). In the example $\Delta f_{2}$ was similar to \fbase{}, corresponding to the horizontal line in the RAM-based second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}. In the three-fish example, there was a second, less prominent, nonlinearity at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}), that cannot be explained with the so-far shown second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}, in which only the nonlinearity at \fsum{} in the response is addressed (\Eqnref{eq:crosshigh}).
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{model_full}
\caption{\label{fig:model_full} \figitem[]{A} Full second-order susceptibility of the model of an electrophysiologically recorded P-unit (see table~\ref{modelparams} for model parameters of 2012-07-03-ak). White lines -- coordinate axis. The nonlinearity at \fsum{} in the firing rate is quantified in the upper right and lower left quadrants (\Eqnref{eq:susceptibility}). The nonlinearity at \fdiff{} in the firing rate is quantified in the upper left and lower right quadrants. Baseline firing rate $\fbase{}=120$\,Hz. Absolute value of the model second-order susceptibility, with $N=1$\,million stimulus realizations and the intrinsic noise split (see methods). The colored markers highlight the nonlinear effects found in \subfigrefb{fig:motivation}{D}. \figitem{B} Power spectral density of model responses (left) and the respective recorded data (right) under pure sinewave stimulation. \figitem{C} Same as \panel[]{B} but for frequency combinations off the nonlinear structure. \note[TODO]{Better combination of off-axis frequency components. Still working on the units of the second-order susceptibility in this plot. In \panel[]{B} left the green and blue markers are at the same position.}}
\end{figure*}
%section \ref{intrinsicsplit_methods}).\figitem{A} Absolute value of the second-order susceptibility of an electrophysiologically recorded P-unit. RAM stimulus realizations $N=11$. Diagonal bands appear when the sum of the frequencies \fsum{} or the difference \fdiff{} is equal to \fbase{}. \figitem{B} The diagonals, that were present in \panel{A}, are complemented by vertical and horizontal lines when \fone{} or \ftwo{} are equal to \fbase{}. Note that the different scale of the second-order susceptibility is associated with the higher signal-to-ratio in case of 1 million repeats in \panel{B}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows increased \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in the data (\figref{fig:motivation}, \subfigref{fig:model_full}{B} right) and in the model (\subfigref{fig:model_full}{B} left).
However, the second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows increased \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in the data (\figref{fig:motivation}, \subfigref{fig:model_full}{B} right) and in the model (\subfigref{fig:model_full}{B} left).
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) can be explained by the fading of the horizontal line in the upper-left quadrant (\subfigrefb{fig:model_full}{A}, \cite{Schlungbaum2023}). If we choose different frequency combinations, weak or no nonlinear spectral peaks are observed \subfigrefb{fig:model_full}{C}. Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
@ -586,18 +588,18 @@ If two frequencies not part of the triangular structure are chosen with pure sin
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{data_overview_mod}
\caption{\label{fig:data_overview_mod} Nonlinearity for a population of P-units (\panel{A, C}) and ampullary cells (\panel{B, D}). The peakedness of the nonlinearity \nli{} is calculated as the maximal value in the range $\fbase{} \pm 5$\,Hz of the projected diagonal divided by its median (see \Eqnref{eq:nli_equation}). Each recorded neuron contributes at maximum with two stimulus contrasts. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} The \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 222 for P-units and 45 for ampullary cells.
\caption{\label{fig:data_overview_mod} Nonlinearity for a population of P-units (\panel{A, C}) and ampullary cells (\panel{B, D}). The peakedness of the nonlinearity \nli{} is calculated as the maximal value in the range $\fbase{} \pm 5$\,Hz of the projected diagonal divided by its median (see \Eqnref{eq:nli_equation}). Each recorded neuron contributes at maximum with two stimulus contrasts. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} The \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
}
\end{figure*}
%\Eqnref{response_modulation}
\subsection*{Low CVs and weak stimuli are associated with strong nonlinearity}
The nonlinear effects shown for single cell examples above are supported by the analysis of the pool of 222 P-units and 47 ampullary afferents recorded in 71 specimen. To compare across cells we expressed the second-order susceptibility as the peakedness of the nonlinearity \nli{}, see \Eqnref{eq:nli_equation}. The \nli{} characterizes the peakedness of the projections onto the diagonal of the \suscept{} matrices (e.g. \subfigref{fig:cells_suscept}{G} at \fbase{}). It assumes high values when the \fbase{} peak in the projected diagonal is pronounced relative to the median of the diagonal and is small when there is no distinct peak. The P-unit population \nli{} values depend weakly on the CV of the ISI distribution under baseline condition. Cells with lower baseline CVs have the tendency to exhibit a stronger nonlinearity than those that have high CVs during baseline (\subfigrefb{fig:data_overview_mod}{A}) or during stimulation (\subfigrefb{fig:data_overview_mod}{C}) . The two example P-units shown before (\figrefb{fig:cells_suscept} and \figrefb{fig:cells_suscept_high_CV}) are highlighted with dark circles in \subfigrefb{fig:data_overview_mod}{A, C, E}. The stimulus strength plays an important role. Several of the recorded neurons contribute with two dots to the data as their responses to the same RAM stimulus but with different contrasts were recorded. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview_mod}{A}, see methods). Since P-units are heterogeneous in their susceptibility to the stimulus\cite{Grewe2017}, their responses to the same stimulus intensity vary a lot. When replotting the \nli{} against the response modulation (\subfigrefb{fig:data_overview_mod}{E}) a negative correlation is observed showing that cells that are strongly driven by the stimulus show less nonlinearity while those that are only weakly driven show higher nonlinearities. Whether or not a cell responds nonlinearity thus depends on both, the baseline CV (i.e. the internal noise) and the response strength.
%(Pearson's $r=-0.35$, $p<0.001$)222 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=222$*, $\n{}=222$******, $\n{}=222$
The nonlinear effects shown for single cell examples above are supported by the analysis of the pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. To compare across cells we expressed the second-order susceptibility as the peakedness of the nonlinearity \nli{}, see \Eqnref{eq:nli_equation}. The \nli{} characterizes the peakedness of the projections onto the diagonal of the \suscept{} matrices (e.g. \subfigref{fig:cells_suscept}{G} at \fbase{}). It assumes high values when the \fbase{} peak in the projected diagonal is pronounced relative to the median of the diagonal and is small when there is no distinct peak. The P-unit population \nli{} values depend weakly on the CV of the ISI distribution under baseline condition. Cells with lower baseline CVs have the tendency to exhibit a stronger nonlinearity than those that have high CVs during baseline (\subfigrefb{fig:data_overview_mod}{A}) or during stimulation (\subfigrefb{fig:data_overview_mod}{C}) . The two example P-units shown before (\figrefb{fig:cells_suscept} and \figrefb{fig:cells_suscept_high_CV}) are highlighted with dark circles in \subfigrefb{fig:data_overview_mod}{A, C, E}. The stimulus strength plays an important role. Several of the recorded neurons contribute with two dots to the data as their responses to the same RAM stimulus but with different contrasts were recorded. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview_mod}{A}, see methods). Since P-units are heterogeneous in their susceptibility to the stimulus\cite{Grewe2017}, their responses to the same stimulus intensity vary a lot. When replotting the \nli{} against the response modulation (\subfigrefb{fig:data_overview_mod}{E}) a negative correlation is observed showing that cells that are strongly driven by the stimulus show less nonlinearity while those that are only weakly driven show higher nonlinearities. Whether or not a cell responds nonlinearity thus depends on both, the baseline CV (i.e. the internal noise) and the response strength.
%(Pearson's $r=-0.35$, $p<0.001$)221 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=221$*, $\n{}=221$******, $\n{}=221$
The population of ampullary cells is generally more homogeneous and have lower CVs than the P-units and show much higher \nli{} values (factor of 10). Overall, there is a negative correlation with the baseline CV. The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{}s are highlighted with black circles. Again, we see that cells that are strongly driven by the stimulus cluster at the bottom of the distribution and have \nli{} values close to zero (\subfigrefb{fig:data_overview_mod}{B, D}). This is confirmed when the data is replotted against the response modulation, those cells that are strongly driven by the stimulus show weak nonlinearities while weakly driven neurons exhibit high values (\subfigrefb{fig:data_overview_mod}{F}).
The population of ampullary cells is generally more homogeneous and have lower CVs than the P-units and show much higher \nli{} values (factor of 10). Overall, there is a negative correlation with the baseline CV. The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{}s are highlighted with black circles. Again, we see that cells that are strongly driven by the stimulus cluster at the bottom of the distribution and have \nli{} values close to zero (\subfigrefb{fig:data_overview_mod}{B, D}). This is confirmed when the data is replotted against the response modulation: Those cells that are strongly driven by the stimulus show weak nonlinearities while weakly driven neurons exhibit high values (\subfigrefb{fig:data_overview_mod}{F}).
%(Pearson's $r=-0.35$, $p < 0.01$) (Pearson's $r=-0.59$, $p < 0.0001$)
@ -608,19 +610,21 @@ Nonlinearities are ubiquitous in nervous systems, they are essential to extract
%\,\panel[iii]{C}
\subsection*{Theory applies to systems with and without carrier}
Theoretical work\cite{Voronenko2017} explained analytically the occurrence of nonlinear products when a LIF model neuron is stimulated with pure sine-waves. To investigate whether the same mechanisms occur in electroreceptor afferents which are driven by AMs of a carrier and not by pure sine-waves, we followed the previous approach and quantified the second-order susceptibility from responses to white-noise stimuli \cite{Voronenko2017,Neiman2011fish,Nikias1993}. We expected to see elevated second-order susceptibility where either of the foreign signals matches the baseline firing rate ($f_1=f_{base}$ or $f_2=f_{base}$) or when the sum equals the baseline firing rate of the neuron (\fsumb{}) creating a triangular pattern of elevated \suscept{} e.g.\,\subfigref{model_and_data}\,\panel[iii]{C}. Indeed, we find traces of the same nonlinearities in the neuronal responses of p-type electroreceptor afferents. The nonlinear pattern observed in the experimental data, however, matches to the expectations only partially and only in a subset of neurons \figsref{fig:cells_suscept} and\,\ref{fig:ampullary}. Nevertheless, the theory holds also for systems that are driven by AMs of a carrier and is thus more widely applicable.
Theoretical work\cite{Voronenko2017} explained analytically the occurrence of nonlinear products when a LIF model neuron is stimulated with pure sine-waves. To investigate whether the same mechanisms occur in electroreceptor afferents which are driven by AMs of a carrier and not by pure sine-waves, we followed the previous approach and quantified the second-order susceptibility from responses to white-noise stimuli \cite{Voronenko2017, Egerland2020, Neiman2011fish,Nikias1993}. We expected to see elevated second-order susceptibility where either of the foreign signals matches the baseline firing rate ($f_1=f_{base}$ or $f_2=f_{base}$) or when the sum equals the baseline firing rate of the neuron (\fsumb{}) creating a triangular pattern of elevated \suscept{} e.g.\,\subfigref{model_and_data}\,\panel[iii]{C}. Indeed, we find traces of the same nonlinearities in the neuronal responses of p-type electroreceptor afferents. The nonlinear pattern observed in the experimental data, however, matches to the expectations only partially and only in a subset of neurons \figsref{fig:cells_suscept} and\,\ref{fig:ampullary}. Nevertheless, the theory holds also for systems that are driven by AMs of a carrier and is thus more widely applicable.
\subsection*{Intrinsic noise limits nonlinear responses}
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\figref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview_mod}{A}). Such low-CV cells are rare among the 222 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{fig:ampullary}). The single ampullary cell featured in \figref{fig:ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\figref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview_mod}{A}). Such low-CV cells are rare among the 221 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{fig:ampullary}). The single ampullary cell featured in \figref{fig:ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and the noise-split according to the Novikov-Furutsu theorem\cite{Novikov1965,Furutsu1963} to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinearity structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and the noise-split according to the Furutsu-Novikov theorem\cite{Novikov1965,Furutsu1963} to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinearity structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
\subsection*{Noise stimulation approximates the real three-fish interaction}
Our analysis is based on the neuronal responses to white noise stimulus sequences. For the P-units, the stimulus was a random amplitude modulation (RAM) while it was a direct noise stimulus for the ampullary cells. These broad-band stimuli have the advantage that all behaviorally relevant frequencies can be measured with a single stimulus presentation and is a widely used approach to characterize sensory coding\cite{French1973, Borst1999, Chacron2005, Grewe2017}. However, these stimuli also increase the total level of noise in the system and may have a linearizing effect on signal transmission. In a our P-unit models, we were able to make use of the Furutsu-Novikov theorem to estimate nonlinear signal transmission for zero-amplitude stimulation. Only with this procedure and many trials, we find for low-CV P-units all the pronounced ridges in the second-order susceptibility that we would expect according to theory \cite{Voronenko2017}.
In the natural situation, the stimuli are periodic signals defined by the difference frequencies. Ho well can we extrapolate from the white noise analysis to the pure sinewave situation? \notejg{Predictions from the X2 matrix and the equations in Voronekov}
In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total power of the stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{fig:ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}). With the noise-splitting trick, we could show that the full nonlinearity pattern is present but covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to conclude that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of individual frequencies.
In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total power of the stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{fig:ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}). With the noise-splitting trick, we could show that in low-CV cells, that have a low-CV and are not subject to strong stimulation, the full nonlinearity pattern is present but covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to conclude that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of individual frequencies.
% The nonlinearity of ampullary cells in paddlefish \cite{Neiman2011fish} has been previously accessed with bandpass limited white noise.
@ -628,7 +632,7 @@ In contrast to the situation with individual frequencies (direct sine-waves or s
\subsection*{Selective readout versus integration of heterogeneous populations}% Nonlinearity might be influenced once integrating from a P-unit population with heterogeneous baseline properties}%Heterogeneity of P-units might influence
The observed nonlinear effects might facilitate the detectability of faint signals during a three fish setting, the electrosensory cocktail party. They are, however, very specific with respect to the relation of stimulus frequencies and the P-unit baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish\cite{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
The observed nonlinear effects might facilitate the detectability of faint signals during a three fish setting, the electrosensory cocktail party. These nonlinear effects are, however, very specific with respect to the relation of stimulus frequencies and the P-unit baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish\cite{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
P-units, however are very heterogeneous in their baseline firing properties\cite{Grewe2017, Hladnik2023}. The baseline firing rates vary in wide ranges (50--450\,Hz). This range covers substantial parts of the beat frequencies that may occur during animal interactions which is limited to frequencies below the Nyquist frequency (0 -- \feod/2)\cite{Barayeu2023}. It is thus likely that there are P-units which match approximately to the specificities of the different encounters.
On the other hand, the nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:data_overview_mod}\panel{A}) in our sample. Only a small fraction of the P-units has a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL\cite{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons\cite{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \cite{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \cite{Hladnik2023} the pyramidal cell input population will be heterogeneous. Heterogeneity was shown to be generally advantageous for the encoding in this\cite{Hladnik2023} and other systems\cite{Padmanabhan2010, Beiran2018}. At the same time it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
@ -652,7 +656,7 @@ auditory nerve fibers and such nonlinear effects might also be expected in the a
\subsection*{Experimental subjects and procedures}
Within this project we re-evaluated datasets that were recorded between 2010 and 2023 at the Ludwig Maximilian University (LMU) M\"unchen and the Eberhard-Karls University T\"ubingen. All experimental protocols complied with national and European law and were approved by the respective Ethics Committees of the Ludwig-Maximilians Universität München (permit no. 55.2-1-54-2531-135-09) and the Eberhard-Karls Unversität Tübingen (permit no. ZP 1/13 and ZP 1/16).
The final sample consisted of 222 P-units and 47 ampullary electroreceptor afferents recorded in 71 weakly electric fish of the species \lepto{}. The original electrophysiological recordings were performed on male and female weakly electric fish of the species \lepto{} that were obtained from a commercial supplier for tropical fish (Aquarium Glaser GmbH, Rodgau,
The final sample consisted of 221 P-units and 47 ampullary electroreceptor afferents recorded in 71 weakly electric fish of the species \lepto{}. The original electrophysiological recordings were performed on male and female weakly electric fish of the species \lepto{} that were obtained from a commercial supplier for tropical fish (Aquarium Glaser GmbH, Rodgau,
Germany). The fish were kept in tanks with a water temperature of $25\pm1\,^\circ$C and a conductivity of around $270\,\micro\siemens\per\centi\meter$ under a 12\,h:12\,h light-dark cycle.
Before surgery, the animals were deeply anesthetized via bath application with a solution of MS222 (120\,mg/l, PharmaQ, Fordingbridge, UK) buffered with Sodium Bicarbonate (120\,mg/l). The posterior anterior lateral line nerve (pALLN) was exposed by making a small cut into the skin covering the nerve. The cut was placed dorsal of the operculum just before the nerve descends towards the anterior lateral line ganglion (ALLNG). Those parts of the skin that were to be cut were locally anesthetized by cutaneous application of liquid lidocaine hydrochloride (20\,mg/ml, bela-pharm GmbH). During the surgery water supply was ensured by a mouthpiece to maintain anesthesia with a solution of MS222 (100\,mg/l) buffered with Sodium Bicarbonate (100\,mg/l). After surgery fish were immobilized by intramuscular injection of from 25\,$\micro$l to 50\,$\micro$l of tubocurarine (5\,mg/ml dissolved in fish saline; Sigma-Aldrich).
@ -848,11 +852,11 @@ From each simulation run, the first second was discarded and the analysis was ba
% The second-order susceptibility in the model was calculated with \Eqnref{eq:susceptibility}, resulting in matrices as in \figrefb{model_and_data} and \figrefb{fig:model_full}. For this, the model neuron was presented the input $x(t)$ for 2\,s, with the first second being dismissed as the transient. The second-order susceptibility calculation was performed on the last second, resulting in a frequency resolution of 1\,Hz.
\subsection*{Model noise split into a noise and a stimulus component}\label{intrinsicsplit_methods}
According to the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} the total noise of a LIF model ($\xi$) can be split up into several independent noise processes with the same correlation function. Here we split the internal noise into two parts: (i) One part is treated as a driving input signal $s_\xi(t)$ \note{hier umschreiben das xi muss ein RAM sein} and used to calculate the cross-spectra in \Eqnref{eq:crosshigh} and (ii) the remaining noise $\sqrt{2D \, c_{noise}} \cdot \xi(t)$ that is treated as pure noise. In this way the effective signal-to-noise ratio can be increased while maintaining the total noise in the system. $\rho$ a scaling factor that compensates (see below) for the signal transformations the amplitude modulation stimulus undergoes in the model, i.e. the threshold and the dendritic lowpass. In our case the model has a carrier (the fish's self-generated EOD) and we thus want to drive the model with an amplitude modulation stimulus
%\sqrt{\rho \, 2D \,c_{signal}} \cdot \xi(t)
According to the Furutsu-Novikov Theorem \cite{Novikov1965, Furutsu1963} the total noise of a LIF model ($\xi$) can be split up into several independent noise processes with the same correlation function. Here we split the internal noise into two parts: (i) One part is treated as a driving input signal $s_\xi(t)$ \note{hier umschreiben das xi muss ein RAM sein} and used to calculate the cross-spectra in \Eqnref{eq:crosshigh} and (ii) the remaining noise $\sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)$ that is treated as pure noise. In this way the effective signal-to-noise ratio can be increased while maintaining the total noise in the system. $\rho$ a scaling factor that compensates (see below) for the signal transformations the amplitude modulation stimulus undergoes in the model, i.e. the threshold and the dendritic lowpass. In our case the model has a carrier (the fish's self-generated EOD) and we thus want to drive the model with an amplitude modulation stimulus
%\sqrt{\rho \, 2D \,c_{\rm{signal}}} \cdot \xi(t)
%(1-c_{signal})\cdot\xi$c_{noise} = 1-c_{signal}$
%c_{signal} \cdot \xi
%(1-c_{\rm{signal}})\cdot\xi$c_{\rm{noise}} = 1-c_{\rm{signal}}$
%c_{\rm{signal}} \cdot \xi
\begin{equation}
\label{eq:ram_split}
y(t) = (1+ s_\xi(t)) \cdot \cos(2\pi f_{EOD} t)
@ -866,18 +870,18 @@ According to the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} the tot
\begin{equation}
\label{eq:Noise_split_intrinsic}
\tau_{m} \frac{d V_{m}}{d t} = - V_{m} + \mu + \alpha V_{d} - A + \sqrt{2D \, c_{noise}} \cdot \xi(t)
\tau_{m} \frac{d V_{m}}{d t} = - V_{m} + \mu + \alpha V_{d} - A + \sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)
\end{equation}
% das stimmt so, das c kommt unter die Wurzel!
%\begin{equation}
% \label{Noise_split_intrinsic}
% V_{m_{i+1}} = V_{m_i} + \left(-V_{m_i} + \mu + \alpha V_{d_i} - A_i + \sqrt{\frac{2D c_{noise}}{\Delta t}}\mathcal{N}(0,\,1)_i\right) \frac{\Delta t}{\tau_m}
% V_{m_{i+1}} = V_{m_i} + \left(-V_{m_i} + \mu + \alpha V_{d_i} - A_i + \sqrt{\frac{2D c_{\rm{noise}}}{\Delta t}}\mathcal{N}(0,\,1)_i\right) \frac{\Delta t}{\tau_m}
%\end{equation}
A big portion of the total noise was assigned to the signal component ($c_{signal} = 0.9$) and the remaining part to the noise component ($c_{noise} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}). For the application of the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} it is critical that both components add up to the initial 100\,$\%$ of the total noise. This is easily achieved in a model without a carrier if the condition $c_{signal}+c_{noise}=1$ is satisfied. The situation here is more complicated. To compensate for the transformations the signal undergoes before it enters the LIF core, $\xi_{signal}(t)$ was scaled up by the factor $\rho$ (\Eqnref{eq:ram_split}, red in \subfigrefb{flowchart}\,\panel[iii]{A}). $\rho$ was found by bisecting the space of possible $\rho$ scaling factors by minimizing the error between the baseline CV (only carrier) and the CV during stimulation with noise split.
A big portion of the total noise was assigned to the signal component ($c_{\rm{signal}} = 0.9$) and the remaining part to the noise component ($c_{\rm{noise}} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}). For the application of the Furutsu-Novikov Theorem \cite{Novikov1965, Furutsu1963} it is critical that both components add up to the initial 100\,$\%$ of the total noise. This is easily achieved in a model without a carrier if the condition $c_{\rm{signal}}+c_{\rm{noise}}=1$ is satisfied. The situation here is more complicated. To compensate for the transformations the signal undergoes before it enters the LIF core, $\xi_{\rm{noise}}(t)$ was scaled up by the factor $\rho$ (\Eqnref{eq:ram_split}, red in \subfigrefb{flowchart}\,\panel[iii]{A}). $\rho$ was found by bisecting the space of possible $\rho$ scaling factors by minimizing the error between the baseline CV (only carrier) and the CV during stimulation with noise split.
% See section \ref{lifmethods} for model and parameter description.
@ -936,7 +940,7 @@ CVs in P-units can range up to 1.5 \cite{Grewe2017, Hladnik2023}. We show the sa
\begin{figure*}[hp]%hp!
\includegraphics[width=\columnwidth]{trialnr}
\caption{\label{fig:trialnr} Change of the median second-order susceptibility depending on the stimulus repetition number $\n{}$. Grey -- 5th to 95th percentile of the second-order susceptibility.
\caption{\label{fig:trialnr} Change of the median second-order susceptibility depending on the stimulus repetition number $\n{}$. Black -- 99.9th percentile of the second-order susceptibility.
}
\end{figure*}

View File

@ -251,11 +251,11 @@
{\protect\marginpar{\small\textbf{changed\ifthenelse{\equal{#1}{}}{}{ [#1]}}}{\bfseries #2}}}}% 3
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\fstim}{\ensuremath{f_{stim}}}
\newcommand{\feod}{\ensuremath{f_{EOD}}}
\newcommand{\fstim}{\ensuremath{f_{\rm{stim}}}}
\newcommand{\feod}{\ensuremath{f_{\rm{EOD}}}}
\newcommand{\feodsolid}{\ensuremath{f_{\rm{EOD}}}}
\newcommand{\feodhalf}{\ensuremath{f_{EOD}/2}}
\newcommand{\fbase}{\ensuremath{f_{base}}}
\newcommand{\feodhalf}{\ensuremath{f_{\rm{EOD}}/2}}
\newcommand{\fbase}{\ensuremath{f_{\rm{base}}}}
\newcommand{\fbasesolid}{\ensuremath{f_{\rm{base}}}}
\newcommand{\fstimintro}{\ensuremath{\rm{EOD}_{2}}}
\newcommand{\feodintro}{\ensuremath{\rm{EOD}_{1}}}
@ -284,12 +284,12 @@
\newcommand{\cstable}{\ensuremath{c_{2}}}
\newcommand{\fstable}{\ensuremath{f_{2}}}
\newcommand{\aeod}{\ensuremath{A(f_{EOD})}}
\newcommand{\aeod}{\ensuremath{A(f_{\rm{EOD}})}}
\newcommand{\fbasecorrsolid}{\ensuremath{f_{\rm{BaseCorrected}}}}
\newcommand{\fbasecorr}{\ensuremath{f_{BaseCorrected}}}
\newcommand{\ffall}{$f_{EOD}$\&$f_{1}$\&$f_{2}$}
\newcommand{\ffvary}{$f_{EOD}$\&$f_{1}$}%sum
\newcommand{\ffstable}{$f_{EOD}$\&$f_{2}$}%sum
\newcommand{\fbasecorr}{\ensuremath{f_{\rm{BaseCorrected}}}}
\newcommand{\ffall}{$f_{\rm{EOD}}$\&$f_{1}$\&$f_{2}$}
\newcommand{\ffvary}{$f_{\rm{EOD}}$\&$f_{1}$}%sum
\newcommand{\ffstable}{$f_{\rm{EOD}}$\&$f_{2}$}%sum
\newcommand{\colstableone}{blue}%sum
\newcommand{\colstabletwo}{cyan}%sum
\newcommand{\colvaryone}{brown}%sum
@ -316,12 +316,12 @@
\newcommand{\boneb}{$\Delta f_{1}=\fbase{}$}%sum
\newcommand{\bsumbtwo}{$\bsum{}=2 \fbase{}$}%sum
\newcommand{\bsumbc}{$\bsum{}=\fbasecorr{}$}%sum
\newcommand{\bsume}{$\bsum{}=f_{EOD}$}%sum
\newcommand{\bsumehalf}{$\bsum{}=f_{EOD}/2$}%sum
\newcommand{\bsume}{$\bsum{}=\feod{}$}%sum
\newcommand{\bsumehalf}{$\bsum{}=\feod{}/2$}%sum
\newcommand{\bdiffb}{$\bdiff{}=\fbase{}$}%diff of both beat frequencies
\newcommand{\bdiffbc}{$\bdiff{}=\fbasecorr{}$}%diff of both beat frequencies
\newcommand{\bdiffe}{$\bdiff{}=f_{EOD}$}%diff of both
\newcommand{\bdiffehalf}{$\bdiff{}=f_{EOD}/2$}%diff of both
\newcommand{\bdiffe}{$\bdiff{}=\feod{}$}%diff of both
\newcommand{\bdiffehalf}{$\bdiff{}=\feod{}/2$}%diff of both
%beat frequencies
%%%%% tables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -353,12 +353,12 @@
\newcommand{\fonebc}{$f_{1}=\fbasecorr{}$}%sum
\newcommand{\fsumbtwo}{$\fsum{}=2 \fbase{}$}%sum
\newcommand{\fsumbc}{$\fsum{}=\fbasecorr{}$}%sum
\newcommand{\fsume}{$\fsum{}=f_{EOD}$}%sum
\newcommand{\fsumehalf}{$\fsum{}=f_{EOD}/2$}%sum
\newcommand{\fsume}{$\fsum{}=\feod{}$}%sum
\newcommand{\fsumehalf}{$\fsum{}=\feod{}/2$}%sum
\newcommand{\fdiffb}{$\fdiff{}=\fbase{}$}%diff of both beat frequencies
\newcommand{\fdiffbc}{$\fdiff{}=\fbasecorr{}$}%diff of both beat frequencies
\newcommand{\fdiffe}{$\fdiff{}=f_{EOD}$}%diff of both
\newcommand{\fdiffehalf}{$\fdiff{}=f_{EOD}/2$}%diff of both
\newcommand{\fdiffe}{$\fdiff{}=\feod{}$}%diff of both
\newcommand{\fdiffehalf}{$\fdiff{}=\feod{}/2$}%diff of both
\newcommand{\fctwo}{\ensuremath{f_{\rm{Female}}}}%sum
\newcommand{\fcone}{\ensuremath{f_{\rm{Intruder}}}}%sum
@ -507,7 +507,7 @@
Nonlinear processes are fundamental in neuronal information processing. On the systemic level: deciding to take one or another action is a nonlinear process. On a finer scale, neurons are inherently nonlinear: whether an action potential is elicited depends on the membrane potential to exceed a certain threshold\cite{Brincat2004, Chacron2000, Chacron2001, Nelson1997, Gussin2007, Middleton2007, Longtin2008}. In conjunction with neuronal noise, nonlinear mechanism facilitate the encoding of weak stimuli via stochastic resonance\cite{Wiesenfeld1995, Stocks2000,Neiman2011fish}. We can find nonlinearities in many sensory systems such as rectification in the transduction machinery of inner hair cells \cite{Peterson2019}, signal rectification in electroreceptor cells \cite{Chacron2000, Chacron2001}, or in complex cells of the visual system \cite{Adelson1985}. In the auditory or the active electric sense, for example, nonlinear processes are needed to extract envelopes, i.e. amplitude modulations of a carrier signal\cite{Joris2004, Barayeu2023} called beats. Beats are common stimuli in different sensory modalities enabling rhythm and pitch perception in human hearing \cite{Roeber1834, Plomp1967, Joris2004, Grahn2012} and providing context for electrocommunication in weakly electric fish \cite{Engler2001, Hupe2008, Henninger2018, Benda2020}.%Adelson1985,
While the sensory periphery can often be well described by linear models, this is not true for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\cite{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\cite{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\cite{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\cite{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$)\cite{Barayeu2023}. Cutaneous electroreceptor organs that are distributed over the bodies of these fish \cite{Carr1982} are tuned to the own field\cite{Hopkins1976,Viancour1979}. P-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\cite{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\cite{Krahe2014}. The P-units ot the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\cite{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike-interval distribution. Even though the extraction of the AM itself requires a nonlinearity\cite{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\cite{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\cite{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\cite{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\cite{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\cite{Nelson1997,Chacron2004}.
While the sensory periphery can often be well described by linear models, this is not true for many upstream neurons. Rather, nonlinear processes are implemented to extract special stimulus features\cite{Gabbiani1996}. In active electrosensation, the self-generated electric field (electric organ discharge, EOD)\cite{Salazar2013} that is quasi sinusoidal in wavetype electric fish and acts as the carrier signal that is amplitude modulated in the context of communication\cite{Benda2013, Fotowat2013, Walz2014, Henninger2018} as well as object detection and navigation\cite{Fotowat2013, Nelson1999}. In social contexts, the interference of the EODs of two interacting animals result in a characteristic periodic amplitude modulation, the so-called beat. The beat amplitude is defined by the smaller EOD amplitude, its frequency is defined as the difference between the two EOD frequencies ($\Delta f = f-\feod{}$, valid for $f < feod{}/2$)\cite{Barayeu2023}. Cutaneous electroreceptor organs that are distributed over the bodies of these fish \cite{Carr1982} are tuned to the own field\cite{Hopkins1976,Viancour1979}. Probability-type electroreceptor afferents (P-units) innervate these organs via ribbon synapses\cite{Szabo1965, Wachtel1966} and project to the hindbrain where they trifurcate and synapse onto pyramidal cells in the electrosensory lateral line lobe (ELL)\cite{Krahe2014}. The P-units of the gymnotiform electric fish \lepto{} encode such amplitude modulations (AMs) by modulation of their firing rate\cite{Gabbiani1996}. They fire probabilistically but phase-locked to the own EOD and the skipping of cycles leads to their characteristic multimodal interspike-interval distribution. Even though the extraction of the AM itself requires a nonlinearity\cite{Middleton2006,Stamper2012Envelope,Savard2011} encoding the time-course of the AM is linear over a wide range\cite{Xu1996,Benda2005,Gussin2007,Grewe2017,Savard2011}. In the context of social signalling among three fish we observe an AM of the AM, also referred to as second-order envelope or just social envelope\cite{Middleton2006, Savard2011, Stamper2012Envelope}. Encoding this again requires nonlinearities\cite{Middleton2006} and it was shown that a subpopulation of P-units are sensitive to envelopes\cite{Savard2011} and exhibit nonlinearities e.g. when driven by strong stimuli\cite{Nelson1997,Chacron2004}.
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{motivation}
@ -517,15 +517,16 @@ While the sensory periphery can often be well described by linear models, this i
Recent theoretical and modelling work on leaky integrate-and-fire (LIF) model neurons revealed specific pattern of nonlinear interactions when driven with weak sinewaves\cite{Voronenko2017}. This situation is reminiscent of the real fish's situation in which three electric fish interact. The active electrosensory system is then exposed to the two AMs arising from the interactions with either foreign fish's field. Previous recordings in the natural habitat showed interactions of three animals in which two animals interacted closely (strong signals) and were interrupted by an intruding animal (weak signal). The intruder was detected at spatial distances that led to an extremely faint intruder signal while the strong signal of the other animal is present\cite{Henninger2018}. When the receiver fish with EOD frequency \feod{} is alone, the P-unit fire action potentials at a spontaneous baseline rate. Accordingly, a peak at \fbase{} is present in the power spectrum of the neuronal response (\subfigrefb{fig:motivation}{A}, bottom).\notejg{more baseline trials, working on it}. Phase-locking to the own field also leads to a representation of \feod{} in their firing rate (see \figref{fig:cells_suscept}\panel{B})\cite{Sinz2020}. The beat frequency when two fish interact is also represented in the respective responses and accordingly, there is a peak in power spectrum at $\Delta f_1$ or $\Delta f_2$ (\subfigrefb{fig:motivation}{B, C}, respectively). When three fish encounter, all their waveforms interfere with both beat frequencies being present in the superimposed signal (\subfigrefb{fig:motivation}{D}, top). The power spectrum of the neuronal activity contains both previously seen peaks, but also nonlinear interaction peaks at the sum frequency \bsum{} and the difference frequency \bdiff{} (\subfigrefb{fig:motivation}{D}, bottom). The latter is known as the social envelope\cite{Stamper2012Envelope, Savard2011}. The neuron shown here, clearly encodes the envelope. Whether P-units in general encode envelopes has been subject of controversy, some works do not consider P-units as envelope encoders\cite{Middleton2006}, while others identify some P-units as envelope encoders\cite{Savard2011}.
The P-unit responses can be partially explained by simple linear filters. The linear relation of the cellular response and the stimulus can be captured by the first-order susceptibility (or transfer function). As in Volterra series, higher-order terms describe the nonlinear interactions. We quantify the nonlinearity of P-unit encoding by estimating the second-order susceptibility from white-noise responses\cite{Voronenko2017,Neiman2011fish,Nikias1993}. We address whether the theory still holds for neurons that do not encode the foreign signals directly but respond to the AM of a carrier. For this study we re-use a large set of recordings of afferents of both the active (P-units) and the passive electrosensory (ampullary cells) to work out which cellular features determine which cells show nonlinear encoding.
The P-unit responses can be partially explained by simple linear filters. The linear relation of the cellular response and the stimulus can be captured by the first-order susceptibility (or transfer function). As in Volterra series, higher-order terms describe the nonlinear interactions. We quantify the nonlinearity of P-unit encoding by estimating the second-order susceptibility from white-noise responses\cite{Nikias1993,Neiman2011fish, Voronenko2017,Egerland2020}. We address whether the theory still holds for neurons that do not encode the foreign signals directly but respond to the AM of a carrier. For this study we re-use a large set of recordings of afferents of both the active (P-units) and the passive electrosensory (ampullary cells) to work out which cellular features determine which cells show nonlinear encoding.
\section*{Results}
Theoretical work \cite{Voronenko2017} shows that stochastic leaky integrate-and-fire (LIF) model neurons may show nonlinear stimulus encoding when the model is driven by two cosine signals with specific frequencies. In the context of weakly electric fish, such a setting is part of the animal's everyday life. The sinusoidal electric-organ discharges (EODs) of neighboring animals interfere and lead to amplitude modulations (AMs) that are called beats (two-fish interaction) and envelopes (multiple-fish interaction) \cite{Middleton2006, Savard2011,Stamper2012Envelope}. The p-type electroreceptor afferents of the tuberous electrosensory system, i.e. the P-units encode such AMs of the underlying EOD carrier in their time-dependent firing rates \cite{Bastian1981a,Walz2014}. We here explore nonlinear responses of different cells that exhibit distinctly different levels of output variability, quantified by the coefficient of variation (CV) of their interspike intervals (ISI). Low-CV P-units have a less noisy firing pattern that is closer to pacemaker firing, whereas high-CV P-units show a more irregular firing pattern that is closer to a Poisson process.
Theoretical work \cite{Voronenko2017} shows that stochastic leaky integrate-and-fire (LIF) model neurons may show nonlinear stimulus encoding when the model is driven by two cosine signals with specific frequencies. In the context of weakly electric fish, such a setting is part of the animal's everyday life. The sinusoidal electric-organ discharges (EODs) of neighboring animals interfere and lead to amplitude modulations (AMs) that are called beats (two-fish interaction) and envelopes (multiple-fish interaction) \cite{Middleton2006, Savard2011,Stamper2012Envelope}. The p-type electroreceptor afferents of the tuberous electrosensory system, i.e. the P-units encode such AMs of the underlying EOD carrier in their time-dependent firing rates \cite{Bastian1981a,Walz2014}. We here explore the nonlinear mechanism in different cells that exhibit distinctly different levels of noise, i.e. differences in the coefficient of variation (CV) of the interspike intervals (ISI). Low-CV P-units have a less noisy firing pattern that is closer to pacemaker firing, whereas high-CV P-units show a more irregular firing pattern that is closer to a Poisson process.
%P-units are heterogeneous in their baseline firing properties \cite{Grewe2017, Hladnik2023} and differ with respect to their baseline firing rates, the sensitivity and their noisiness.
\subsection*{Nonlinear signal transmission in low-CV P-units} %frequency combinations withappearing when the input frequencies are related to \fbase{} are
Second-order susceptibility is expected to be especially pronounced for low-CV cells \cite{Voronenko2017}. P-units fire action potentials probabilistically phase-locked to the self-generated EOD. Skipping of EOD cycles leads to the characteristic multimodal ISI distribution with maxima at integer multiples of the EOD period (\subfigrefb{fig:cells_suscept}{A}). In this example the ISI distribution has a CV of 0.2 which can be considered low among P-units\cite{Hladnik2023}. Spectral analysis of the baseline activity shows two major peaks, the first is located at the baseline firing rate (\fbase), the second is located at the discharge frequency of the electric organ (\feod{}) and is flanked by two smaller peaks at $\feod \pm \fbase{}$ (\subfigref{fig:cells_suscept}{B}).
@ -538,43 +539,48 @@ Second-order susceptibility is expected to be especially pronounced for low-CV c
Noise stimuli, the random amplitude modulations (RAM, \subfigref{fig:cells_suscept}{C}, top trace, red line) of the EOD, are commonly used to characterize the stimulus driven responses of P-units by means of the transfer function (first-order susceptibility), the spike-triggered average, or the stimulus-response coherence. Here, we additionally estimate the second-order susceptibility to capture nonlinear encoding. Depending on the stimulus intensity which is given as the contrast, i.e. the amplitude of the noise stimulus in relation to the EOD amplitude (see methods), the spikes align more or less clearly to AMs of the stimulus (light and dark purple for low and high contrast stimuli, \subfigrefb{fig:cells_suscept}{C}). The linear encoding (see \Eqnref{linearencoding_methods}) is similar for the two RAM contrasts in this low-CV P-unit (\subfigrefb{fig:cells_suscept}{D}). First-order susceptibility is low for low frequencies, peaks in the range below 100\,Hz and then falls off again.
Theory predicts a pattern of nonlinear susceptibility for the interaction of two cosine stimuli when \fone{}, \ftwo{} or \fsum{} are equal to \fbase{} (pink triangle in \subfigsref{fig:cells_suscept}{E, F}). To estimate the second-order susceptibility from the P-unit responses to RAM stimuli, the noise stimulus was set in relation to the corresponding neuronal response in the Fourier domain, resulting in a matrix in which the nonlinearity at the sum frequency \fsum{} in the firing rate is depicted for two noise frequencies \fone{} and \ftwo{} (\Eqnref{eq:susceptibility}, \subfigrefb{fig:cells_suscept}{E--F}). The decomposition of the RAM stimulus into the frequency components allows us to approximate the beat frequencies $\Delta f$, occurring in case of pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}). Thus, the nonlinearity accessed with the RAM stimulation at \fsum{} (\subfigrefb{fig:cells_suscept}{E}) is similar to the nonlinearity appearing during pure sine-wave stimulation at \bsum{} (orange peak, \subfigrefb{fig:motivation}{D}). A band of elevated nonlinearity appears for the low RAM contrast when \fsumb{} (yellow anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}) but vanishes for the stronger stimulus (20\% contrast, \subfigref{fig:cells_suscept}{F}). Further, the overall level of nonlinearity changes with the stimulus strength. To compare the structural changes in the matrices we calculated the mean of the anti-diagonals, resulting in the projected diagonal (\subfigrefb{fig:cells_suscept}{G}). For a low RAM contrast the second-order susceptibility at \fbase{} is slightly enhanced (\subfigrefb{fig:cells_suscept}{G}, gray dot on light purple line). For the higher RAM contrast, however, this is not visible and the overall second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}, compare light and dark purple lines).
Theory predicts a pattern of nonlinear susceptibility for the interaction of two cosine stimuli when \fone{}, \ftwo{} or \fsum{} are equal to \fbase{} (pink triangle in \subfigsref{fig:cells_suscept}{E, F}). To estimate the second-order susceptibility from the P-unit responses to RAM stimuli, the noise stimulus was set in relation to the corresponding neuronal response in the Fourier domain, resulting in a matrix in which the nonlinearity at the sum frequency \fsum{} in the firing rate is depicted for two noise frequencies \fone{} and \ftwo{} (\Eqnref{eq:susceptibility}, \subfigrefb{fig:cells_suscept}{E--F}). The decomposition of the RAM stimulus into the frequency components allows us to approximate the beat frequencies $\Delta f$, occurring in case of pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}). Thus, the nonlinearity accessed with the RAM stimulation at \fsum{} (\subfigrefb{fig:cells_suscept}{E}) is similar to the nonlinearity appearing during pure sine-wave stimulation at \bsum{} (orange peak, \subfigrefb{fig:motivation}{D}). A band of elevated nonlinearity appears for the low RAM contrast when \fsumb{} (yellow anti-diagonal between pink edges, \subfigrefb{fig:cells_suscept}{E}) but vanishes for the stronger stimulus (20\% contrast, \subfigref{fig:cells_suscept}{F}). Further, the overall level of nonlinearity changes with the stimulus strength. To compare the structural changes in the matrices we calculated the mean of the anti-diagonals, resulting in the projected diagonal (\subfigrefb{fig:cells_suscept}{G}). For a low RAM contrast the second-order susceptibility at \fbase{} is slightly enhanced (\subfigrefb{fig:cells_suscept}{G}, gray dot on light purple line). For the higher RAM contrast, however, this is not visible and the overall second-order susceptibility is reduced (\subfigrefb{fig:cells_suscept}{G}, compare light and dark purple lines). The reason behind this decrease is that with the higher RAM contrast is associated with a simultaneously increase of the stimulus amplitude but also of the total noise in the system. This is important since increased noise is known to linearize the signal
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}.
High-CV P-units do not exhibit pronounced nonlinearities even at low stimulus contrasts (for more details see supplementary information: \nameref*{S1:highcvpunit}).
\subsection*{Ampullary afferents exhibit strong nonlinear interactions}
Irrespective of the CV, neither cell shows the complete proposed structure of nonlinear interactions. \lepto{} posses an additional electrosensory system, the passive or ampullary electrosensory system that responds to low-frequency exogeneous electric stimuli. The population of ampullary afferents is much less heterogeneous, and known for the much lower CVs of the ISI distributions (0.08--0.22)\cite{Grewe2017}. Ampullary cells do not phase-lock to the EOD and the ISI are unimodally distributed (\subfigrefb{ampullary}{A}). According to the low irregularity of the baseline response, the power spectrum shows a very distinct peak at \fbase{} and harmonics of it. Since the cells do not fire phase locked to the EOD, there is no peak at \feod{} (\subfigrefb{ampullary}{B}). When driven by a noise stimulus with a low contrast (note: this is not an AM but an added stimulus to the self-generated EOD, \subfigref{ampullary}{C}), ampullary cells exhibit very pronounced bands when \fsum{} is equal to \fbase{} or its harmonic in the second-order susceptibility matrix implying that this cell is especially nonlinear at these frequency combinations (yellow diagonals, \subfigrefb{ampullary}{E, G}, light green). With higher stimulus contrasts these bands disappear (\subfigrefb{ampullary}{F}) and the projected diagonal is decreased and lacks the distinct peak at \fsum{} (\subfigrefb{ampullary}{G}, dark green).
Irrespective of the CV, neither cell shows the complete proposed structure of nonlinear interactions. \lepto{} posses an additional electrosensory system, the passive or ampullary electrosensory system that responds to low-frequency exogeneous electric stimuli. The population of ampullary afferents is much less heterogeneous, and known for the much lower CVs of the ISI distributions (0.08--0.22)\cite{Grewe2017}. Ampullary cells do not phase-lock to the EOD and the ISI are unimodally distributed (\subfigrefb{fig:ampullary}{A}). According to the low irregularity of the baseline response, the power spectrum shows a very distinct peak at \fbase{} and harmonics of it. Since the cells do not fire phase locked to the EOD, there is no peak at \feod{} (\subfigrefb{fig:ampullary}{B}). When driven by a noise stimulus with a low contrast (note: this is not an AM but an added stimulus to the self-generated EOD, \subfigref{fig:ampullary}{C}), ampullary cells exhibit very pronounced bands when \fsum{} is equal to \fbase{} or its harmonic in the second-order susceptibility matrix implying that this cell is especially nonlinear at these frequency combinations (yellow diagonals, \subfigrefb{fig:ampullary}{E, G}, light green). With higher stimulus contrasts these bands disappear (\subfigrefb{fig:ampullary}{F}) and the projected diagonal is decreased and lacks the distinct peak at \fsum{} (\subfigrefb{fig:ampullary}{G}, dark green).
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{ampullary}
\caption{\label{ampullary} Estimation of linear and nonlinear stimulus encoding in an ampullary afferent. Calculated based on the first frozen noise repeat. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The CV of the ISIs is a dimensionless measure quantifying the response regularity. Zero CV would indicate perfect regularity. \figitem{B} Power-spectrum of the baseline response. \figitem{C} White noise stimulus (top) added to the fish's self-generated electric field and responses (spike raster in the lower traces). The stimulus contrast reflects the strength of the stimulus in relation to the own electric field amplitude. \figitem{D} Transfer function (first-order susceptibility, \Eqnref{linearencoding_methods}) of the responses to 2\% (light green) and 20\% contrast (dark green) stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for the low, and high stimulus contrasts. Pink angles -- edges of the structure when \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Projected diagonals, calculated as the mean of the anti-diagonals of the matrices in \panel{E, F}. Gray dots mark \fbase{}. Horizontal dashed lines: medians of the projected diagonals.
\caption{\label{fig:ampullary} Estimation of linear and nonlinear stimulus encoding in an ampullary afferent. Calculated based on the first frozen noise repeat. \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The CV of the ISIs is a dimensionless measure quantifying the response regularity. Zero CV would indicate perfect regularity. \figitem{B} Power-spectrum of the baseline response. \figitem{C} White noise stimulus (top) added to the fish's self-generated electric field and responses (spike raster in the lower traces). The stimulus contrast reflects the strength of the stimulus in relation to the own electric field amplitude. \figitem{D} Transfer function (first-order susceptibility, \Eqnref{linearencoding_methods}) of the responses to 2\% (light green) and 20\% contrast (dark green) stimulation. \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for the low, and high stimulus contrasts. Pink angles -- edges of the structure when \fone, \ftwo{} or \fsum{} are equal to \fbase{}. \figitem{G} Projected diagonals, calculated as the mean of the anti-diagonals of the matrices in \panel{E, F}. Gray dots mark \fbase{}. Horizontal dashed lines: medians of the projected diagonals.
}
\end{figure*}
\subsection*{High level of total noise hides parts of the nonlinearity structure}
Traces of the expected structure of second-order susceptibility are found in both ampullary and p-type electrosensory afferents. In the recordings shown above (\figrefb{fig:cells_suscept}, \figrefb{fig:ampullary}), the nonlinear response is strong whenever the two frequencies (\fone{}, \ftwo{}) fall onto the antidiagonal \fsumb{}, which is in line with theoretical expectations \cite{Voronenko2017}. However, a pronounced nonlinear response for frequencies with \foneb{} or \ftwob{}, although predicted by theory, cannot be observed. Here we investigate how these discrepancies can be understood.
\subsection*{Model-based estimation of the nonlinear structure}
Traces of the expected structure of second-order susceptibility are found in both ampullary and p-type electrosensory afferents. In the recordings shown above (\figrefb{fig:cells_suscept}, \figrefb{fig:ampullary}), the nonlinear response is strong whenever the two frequencies (\fone{}, \ftwo{}) fall onto the antidiagonal \fsumb{}, which is in line with theoretical expectations\cite{Voronenko2017}. However, a pronounced nonlinear response for frequencies with \foneb{} or \ftwob{}, although predicted by theory, cannot be observed. Here we investigate how these discrepancies can be understood.
In the electrophysiological experiments, we only have a limited number of trials and this insufficient averaging may occlude the full nonlinear structure. This limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, with parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \cite{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of repetitions ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).
In the model we can increase the number of repetitions substantially but still do not observe the full nonlinear structure ($\n{}=10^6$, \subfigrefb{model_and_data}\,\panel[iii]{B}). A possible reason for this could be that by applying a broadband stimulus the effective input-noise level is increased and this may linearize the signal
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full nonlinear structure should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \cite{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility according to $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods, equations \eqref{eq:crosshigh} and \eqref{eq:susceptibility}) \cite{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \cite{Lindner2022}, we can split the total noise and consider a fraction of it as stimulus. This allows to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_\xi(t)$ and a weak remaining intrinsic noise $\sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)$ with $c_\text{noise} = 0.1$ (see methods, equations \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{model_and_data}\,\panel[i]{C}). We tune the amplitude of the RAM stimulus $s_\xi(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\xi(t)$ in the voltage equation but no RAM) and compute the second- and third-order cross-spectra between the RAM part of the noise $s_\xi(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and $s_\xi(t)$, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of trials (\subfigrefb{model_and_data}\,\panel[iii]{B}), but not for a number of trials comparable to the experiment (\subfigrefb{model_and_data}\,\panel[ii]{B}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{model_and_data}\,\panel[iii]{C}).
In the electrophysiological experiments we only have a limited number of trials and this insufficient averaging may occlude the full nonlinear structure. This limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, with parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \cite{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of repetitions ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}). In the model we can increase the number of repetitions substantially but still do not observe the full nonlinear structure ($\n{}=10^6$, \subfigrefb{model_and_data}\,\panel[iii]{B}). A possible reason for this could be that by applying a broadband stimulus the effective input-noise level is increased and this may linearize the signal
transmission \cite{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full nonlinear structure should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \cite{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $\varepsilon s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods \eqref{eq:crosshigh}, \eqref{eq:susceptibility}) \cite{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \cite{Lindner2022}, we can split the total noise and consider a fraction of it as stimulus. This allows to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_\xi(t)$ and a weak remaining intrinsic noise ($\sqrt{2D \, c_{noise}} \cdot \xi(t)$, with $c_\text{noise} = 0.1$, see methods \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{model_and_data}\,\panel[i]{C}). We tune the amplitude / standard deviation of the RAM stimulus $s_\xi(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\xi(t)$ in the voltage equation but no RAM) and compute the second- and third-order cross-spectra between the RAM part of the noise $s_\xi(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and $s_\xi(t)$, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of trials (\subfigrefb{model_and_data}\,\panel[iii]{B}), but not for a number of trials comparable to the experiment (\subfigrefb{model_and_data}\,\panel[ii]{B}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{model_and_data}\,\panel[iii]{C}). Note, that the increased number of repetitions goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{model_and_data}\,\panel[iii]{B}), that saturate in its peak values for $N>10^5$ (\figrefb{trialnr}). This demonstrates the limited reliability of the statistics that is based on 11 trials. However, we would like to point out that already the limited number of trials as used in the experiments reveals key features of the nonlinear response.
Note, that the increased number of repetitions goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{model_and_data}\,\panel[iii]{B}), that saturate in its peak values for $N>10^5$ (\figrefb{fig:trialnr}). This demonstrates the limited reliability of a statistical estimate that is based on 11 trials only. However, we would like to point out that already the limited number of trials as used in the experiments reveals key features of the nonlinear response.
In the high-CV P-unit we could not find such nonlinear structures, neither in the electrophysiologically recorded data nor in the respective model (not shown), corresponding to the theoretical predictions \cite{Voronenko2017}.
With high levels of intrinsic noise, we would not expect the nonlinear response features to survive. Indeed, we do not find these features in a high-CV P-unit and its corresponding model (not shown).
\begin{figure*}[!hb]
\includegraphics[width=\columnwidth]{model_and_data}
\caption{\label{model_and_data} High trial numbers and a reduced internal noise reveal the nonlinear structure in a LIF model with carrier. \figitem{A} \suscept{} surface of the electrophysiologically recorded low-CV P-unit (cell 2012-07-03-ak) driven with a weak stimulus with 1\% contrast. The plot shows that average \suscept{} surface ($N=11$). Pink edges mark the expected structure of enhanced nonlinearity. \figitem[i]{B} \textit{Standard condition} of the model simulation. The model is driven by a RAM stimulus (red trace). $\xi_{signal}$ and $\xi_{noise}$ components of the total intrinsic noise ($\xi$) are shown in the center and bottom. In this condition, $\xi_{noise} = \xi$. \figitem[ii]{B} \suscept{} surface of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) averaged over the same number of stimulus repetitions. \figitem[iii]{B} Same as \panel[ii]{B} but 1 million stimulus repetitions. \figitem[i - iii]{C} Same as in \panel[i - iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Parts (90\%) of the total intrinsic noise ($\xi$) are treated as signal (center trace, $\xi_{signal}$) while the remaining part is treated as $\xi_{noise}$ (see methods for details). Note that the signal component ($\xi_{signal}$) is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the noise component ($\xi_{noise}$). Adding the discarded high frequency components to $\xi_{noise}$ does not affect the results shown here.
\caption{\label{model_and_data} High trial numbers and a reduced internal noise reveal the nonlinear structure in a LIF model with carrier. \figitem{A} \suscept{} surface of the electrophysiologically recorded low-CV P-unit (cell 2012-07-03-ak) driven with a weak stimulus with 1\% contrast. The plot shows that average \suscept{} surface ($N=11$). Pink edges mark the expected structure of enhanced nonlinearity. \figitem[i]{B} \textit{Standard condition} of the model simulation. The model is driven by a RAM stimulus (red trace). $\xi_{\rm{noise}}$ and $\xi_{\rm{noise}}$ components of the total intrinsic noise ($\xi$) are shown in the center and bottom. In this condition, $\xi_{\rm{noise}} = \xi$. \figitem[ii]{B} \suscept{} surface of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) averaged over the same number of stimulus repetitions. \figitem[iii]{B} Same as \panel[ii]{B} but 1 million stimulus repetitions. \figitem[i - iii]{C} Same as in \panel[i - iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Parts (90\%) of the total intrinsic noise ($\xi$) are treated as signal (center trace, $\xi_{\rm{noise}}$) while the remaining part is treated as $\xi_{\rm{noise}}$ (see methods for details). Note that the signal component ($\xi_{\rm{noise}}$) is added as an amplitude modulation and is thus limited with respect to its spectral content by the Nyquist frequency of the carrier, half the EOD frequency. It thus has a reduced high frequency content as compared to the noise component ($\xi_{\rm{noise}}$). Adding the discarded high frequency components to $\xi_{\rm{noise}}$ does not affect the results shown here.
}
\end{figure*}
\subsection*{Second-order susceptibility can explain nonlinear peaks in pure sinewave stimulation}
We calculated the second-order susceptibility surfaces at \fsum{} by extracting the respective spectral components of the P-unit responses to RAM stimuli. How does this relate to the pure sinewave situation that approximates the interference of real animals? The relevant signals are the the beat frequencies \bone{} and \btwo{} that arise from the interference of the receiving fish's own and either of the foreign EODs (\figref{fig:motivation}). The response power spectrum showed peaks from nonlinear interaction at the sum of the two beat frequencies (orange marker, \subfigrefb{fig:motivation}{D}) and at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}). In the example $\Delta f_{2}$ was similar to \fbase{}, corresponding to the horizontal line in the RAM-based second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}. In the three-fish example, there was a second, less prominent, nonlinearity at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}), that cannot be explained with the second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}, in which only the nonlinearity at \fsum{} in the response is addressed (\Eqnref{eq:crosshigh}).
We calculated the second-order susceptibility surfaces at \fsum{} by extracting the respective spectral components of the P-unit responses to RAM stimuli. How does this relate to the pure sinewave situation that approximates the interference of real animals? The relevant signals are the the beat frequencies \bone{} and \btwo{} that arise from the interference of the receiving fish's own and either of the foreign EODs (\figref{fig:motivation}). The response power spectrum showed peaks from nonlinear interaction at the sum of the two beat frequencies (orange marker, \subfigrefb{fig:motivation}{D}) and at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}). In the example $\Delta f_{2}$ was similar to \fbase{}, corresponding to the horizontal line in the RAM-based second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}. In the three-fish example, there was a second, less prominent, nonlinearity at the difference between the two beat frequencies (red circle, \subfigrefb{fig:motivation}{D}), that cannot be explained with the so-far shown second-order susceptibility matrix in \subfigrefb{model_and_data}\,\panel[iii]{C}, in which only the nonlinearity at \fsum{} in the response is addressed (\Eqnref{eq:crosshigh}).
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{model_full}
\caption{\label{fig:model_full} \figitem[]{A} Full second-order susceptibility of the model of an electrophysiologically recorded P-unit (see table~\ref{modelparams} for model parameters of 2012-07-03-ak). White lines -- coordinate axis. The nonlinearity at \fsum{} in the firing rate is quantified in the upper right and lower left quadrants (\Eqnref{eq:susceptibility}). The nonlinearity at \fdiff{} in the firing rate is quantified in the upper left and lower right quadrants. Baseline firing rate $\fbase{}=120$\,Hz. Absolute value of the model second-order susceptibility, with $N=1$\,million stimulus realizations and the intrinsic noise split (see methods). The colored markers highlight the nonlinear effects found in \subfigrefb{fig:motivation}{D}. \figitem{B} Power spectral density of model responses (left) and the respective recorded data (right) under pure sinewave stimulation. \figitem{C} Same as \panel[]{B} but for frequency combinations off the nonlinear structure. \note[TODO]{Better combination of off-axis frequency components. Still working on the units of the second-order susceptibility in this plot. In \panel[]{B} left the green and blue markers are at the same position.}}
\end{figure*}
%section \ref{intrinsicsplit_methods}).\figitem{A} Absolute value of the second-order susceptibility of an electrophysiologically recorded P-unit. RAM stimulus realizations $N=11$. Diagonal bands appear when the sum of the frequencies \fsum{} or the difference \fdiff{} is equal to \fbase{}. \figitem{B} The diagonals, that were present in \panel{A}, are complemented by vertical and horizontal lines when \fone{} or \ftwo{} are equal to \fbase{}. Note that the different scale of the second-order susceptibility is associated with the higher signal-to-ratio in case of 1 million repeats in \panel{B}.
The second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows increased \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in the data (\figref{fig:motivation}, \subfigref{fig:model_full}{B} right) and in the model (\subfigref{fig:model_full}{B} left).
However, the second-order susceptibility can also be calculated for the full matrix including negative frequency components of the respective spectra in \Eqnsref{eq:crosshigh} and (\ref{eq:susceptibility}). The resulting \suscept{} matrix is symmetric with respect to the origin and shows increased \suscept{} at \fsum{} in the upper-right and lower-left quadrants and \suscept{} for the differences \fdiff{} in the lower-right and upper-left quadrants \cite{Voronenko2017} (\figref{fig:model_full}). The vertical and horizontal lines at \foneb{} and \ftwob{} are very pronounced in the upper-right quadrant of \subfigrefb{fig:model_full}{A} for the nonlinearity at \fsum{} and extend into the upper-left quadrant (representing \fdiff) fading out towards more negative $f_1$ frequencies. \suscept{} values at \fsum{} match the \fsum{} peak seen in the data (\figref{fig:motivation}, \subfigref{fig:model_full}{B} right) and in the model (\subfigref{fig:model_full}{B} left).
The smaller \fdiff{} power spectral peak observed during pure sine-wave stimulation (\subfigrefb{fig:motivation}{D}) can be explained by the fading of the horizontal line in the upper-left quadrant (\subfigrefb{fig:model_full}{A}, \cite{Schlungbaum2023}). If we choose different frequency combinations, weak or no nonlinear spectral peaks are observed \subfigrefb{fig:model_full}{C}. Even though the second-order susceptibilities here were estimated form data and models with an modulated (EOD) carrier (\figrefb{fig:model_full}) they are in good accordance with the second-order susceptibilities found in LIF models without a carrier\cite{Voronenko2017, Schlungbaum2023}.
@ -582,18 +588,18 @@ If two frequencies not part of the triangular structure are chosen with pure sin
\begin{figure*}[!ht]
\includegraphics[width=\columnwidth]{data_overview_mod}
\caption{\label{fig:data_overview_mod} Nonlinearity for a population of P-units (\panel{A, C}) and ampullary cells (\panel{B, D}). The peakedness of the nonlinearity \nli{} is calculated as the maximal value in the range $\fbase{} \pm 5$\,Hz of the projected diagonal divided by its median (see \Eqnref{eq:nli_equation}). Each recorded neuron contributes at maximum with two stimulus contrasts. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} The \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 222 for P-units and 45 for ampullary cells.
\caption{\label{fig:data_overview_mod} Nonlinearity for a population of P-units (\panel{A, C}) and ampullary cells (\panel{B, D}). The peakedness of the nonlinearity \nli{} is calculated as the maximal value in the range $\fbase{} \pm 5$\,Hz of the projected diagonal divided by its median (see \Eqnref{eq:nli_equation}). Each recorded neuron contributes at maximum with two stimulus contrasts. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} The \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
}
\end{figure*}
%\Eqnref{response_modulation}
\subsection*{Low CVs and weak stimuli are associated with strong nonlinearity}
The nonlinear effects shown for single cell examples above are supported by the analysis of the pool of 222 P-units and 47 ampullary afferents recorded in 71 specimen. To compare across cells we expressed the second-order susceptibility as the peakedness of the nonlinearity \nli{}, see \Eqnref{eq:nli_equation}. The \nli{} characterizes the peakedness of the projections onto the diagonal of the \suscept{} matrices (e.g. \subfigref{fig:cells_suscept}{G} at \fbase{}). It assumes high values when the \fbase{} peak in the projected diagonal is pronounced relative to the median of the diagonal and is small when there is no distinct peak. The P-unit population \nli{} values depend weakly on the CV of the ISI distribution under baseline condition. Cells with lower baseline CVs have the tendency to exhibit a stronger nonlinearity than those that have high CVs during baseline (\subfigrefb{fig:data_overview_mod}{A}) or during stimulation (\subfigrefb{fig:data_overview_mod}{C}) . The two example P-units shown before (\figrefb{fig:cells_suscept} and \figrefb{fig:cells_suscept_high_CV}) are highlighted with dark circles in \subfigrefb{fig:data_overview_mod}{A, C, E}. The stimulus strength plays an important role. Several of the recorded neurons contribute with two dots to the data as their responses to the same RAM stimulus but with different contrasts were recorded. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview_mod}{A}, see methods). Since P-units are heterogeneous in their susceptibility to the stimulus\cite{Grewe2017}, their responses to the same stimulus intensity vary a lot. When replotting the \nli{} against the response modulation (\subfigrefb{fig:data_overview_mod}{E}) a negative correlation is observed showing that cells that are strongly driven by the stimulus show less nonlinearity while those that are only weakly driven show higher nonlinearities. Whether or not a cell responds nonlinearity thus depends on both, the baseline CV (i.e. the internal noise) and the response strength.
%(Pearson's $r=-0.35$, $p<0.001$)222 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=222$*, $\n{}=222$******, $\n{}=222$
The nonlinear effects shown for single cell examples above are supported by the analysis of the pool of 221 P-units and 47 ampullary afferents recorded in 71 specimen. To compare across cells we expressed the second-order susceptibility as the peakedness of the nonlinearity \nli{}, see \Eqnref{eq:nli_equation}. The \nli{} characterizes the peakedness of the projections onto the diagonal of the \suscept{} matrices (e.g. \subfigref{fig:cells_suscept}{G} at \fbase{}). It assumes high values when the \fbase{} peak in the projected diagonal is pronounced relative to the median of the diagonal and is small when there is no distinct peak. The P-unit population \nli{} values depend weakly on the CV of the ISI distribution under baseline condition. Cells with lower baseline CVs have the tendency to exhibit a stronger nonlinearity than those that have high CVs during baseline (\subfigrefb{fig:data_overview_mod}{A}) or during stimulation (\subfigrefb{fig:data_overview_mod}{C}) . The two example P-units shown before (\figrefb{fig:cells_suscept} and \figrefb{fig:cells_suscept_high_CV}) are highlighted with dark circles in \subfigrefb{fig:data_overview_mod}{A, C, E}. The stimulus strength plays an important role. Several of the recorded neurons contribute with two dots to the data as their responses to the same RAM stimulus but with different contrasts were recorded. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:data_overview_mod}{A}, see methods). Since P-units are heterogeneous in their susceptibility to the stimulus\cite{Grewe2017}, their responses to the same stimulus intensity vary a lot. When replotting the \nli{} against the response modulation (\subfigrefb{fig:data_overview_mod}{E}) a negative correlation is observed showing that cells that are strongly driven by the stimulus show less nonlinearity while those that are only weakly driven show higher nonlinearities. Whether or not a cell responds nonlinearity thus depends on both, the baseline CV (i.e. the internal noise) and the response strength.
%(Pearson's $r=-0.35$, $p<0.001$)221 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=221$*, $\n{}=221$******, $\n{}=221$
The population of ampullary cells is generally more homogeneous and have lower CVs than the P-units and show much higher \nli{} values (factor of 10). Overall, there is a negative correlation with the baseline CV. The example cell shown above (\figref{ampullary}) was recorded at two different stimulus intensities and the \nli{}s are highlighted with black circles. Again, we see that cells that are strongly driven by the stimulus cluster at the bottom of the distribution and have \nli{} values close to zero (\subfigrefb{fig:data_overview_mod}{B, D}). This is confirmed when the data is replotted against the response modulation, those cells that are strongly driven by the stimulus show weak nonlinearities while weakly driven neurons exhibit high values (\subfigrefb{fig:data_overview_mod}{F}).
The population of ampullary cells is generally more homogeneous and have lower CVs than the P-units and show much higher \nli{} values (factor of 10). Overall, there is a negative correlation with the baseline CV. The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{}s are highlighted with black circles. Again, we see that cells that are strongly driven by the stimulus cluster at the bottom of the distribution and have \nli{} values close to zero (\subfigrefb{fig:data_overview_mod}{B, D}). This is confirmed when the data is replotted against the response modulation: Those cells that are strongly driven by the stimulus show weak nonlinearities while weakly driven neurons exhibit high values (\subfigrefb{fig:data_overview_mod}{F}).
%(Pearson's $r=-0.35$, $p < 0.01$) (Pearson's $r=-0.59$, $p < 0.0001$)
@ -604,15 +610,21 @@ Nonlinearities are ubiquitous in nervous systems, they are essential to extract
%\,\panel[iii]{C}
\subsection*{Theory applies to systems with and without carrier}
Theoretical work\cite{Voronenko2017} explained analytically the occurrence of nonlinear products when a LIF model neuron is stimulated with pure sine-waves. To investigate whether the same mechanisms occur in electroreceptor afferents which are driven by AMs of a carrier and not by pure sine-waves, we followed the previous approach and quantified the second-order susceptibility from responses to white-noise stimuli \cite{Voronenko2017,Neiman2011fish,Nikias1993}. We expected to see elevated second-order susceptibility where either of the foreign signals matches the baseline firing rate ($f_1=f_{base}$ or $f_2=f_{base}$) or when the sum equals the baseline firing rate of the neuron (\fsumb{}) creating a triangular pattern of elevated \suscept{} e.g.\,\subfigref{model_and_data}\,\panel[iii]{C}. Indeed, we find traces of the same nonlinearities in the neuronal responses of p-type electroreceptor afferents. The nonlinear pattern observed in the experimental data, however, matches to the expectations only partially and only in a subset of neurons \figsref{fig:cells_suscept} and\,\ref{ampullary}. Nevertheless, the theory holds also for systems that are driven by AMs of a carrier and is thus more widely applicable.
Theoretical work\cite{Voronenko2017} explained analytically the occurrence of nonlinear products when a LIF model neuron is stimulated with pure sine-waves. To investigate whether the same mechanisms occur in electroreceptor afferents which are driven by AMs of a carrier and not by pure sine-waves, we followed the previous approach and quantified the second-order susceptibility from responses to white-noise stimuli \cite{Voronenko2017, Egerland2020, Neiman2011fish,Nikias1993}. We expected to see elevated second-order susceptibility where either of the foreign signals matches the baseline firing rate ($f_1=f_{base}$ or $f_2=f_{base}$) or when the sum equals the baseline firing rate of the neuron (\fsumb{}) creating a triangular pattern of elevated \suscept{} e.g.\,\subfigref{model_and_data}\,\panel[iii]{C}. Indeed, we find traces of the same nonlinearities in the neuronal responses of p-type electroreceptor afferents. The nonlinear pattern observed in the experimental data, however, matches to the expectations only partially and only in a subset of neurons \figsref{fig:cells_suscept} and\,\ref{fig:ampullary}. Nevertheless, the theory holds also for systems that are driven by AMs of a carrier and is thus more widely applicable.
\subsection*{Intrinsic noise limits nonlinear responses}
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\figref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview_mod}{A}). Such low-CV cells are rare among the 222 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{ampullary}). The single ampullary cell featured in \figref{ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
Only those P-units that exhibit low coefficients of variation (CV) of the interspike-interval distribution (\figref{fig:cells_suscept}{A}) in their unperturbed baseline response show the expected nonlinerities (\subfigref{fig:data_overview_mod}{A}). Such low-CV cells are rare among the 221 P-units that we used in this study. The afferents of the passive electrosensory system, the ampullary cells, however have generally lower CVs and show a much clearer nonlinearity pattern than the low-CV P-unit exemplified here (compare \figsref{fig:cells_suscept} and \ref{fig:ampullary}). The single ampullary cell featured in \figref{fig:ampullary} is a representative of the majority of ampullary cells analyzed here. All ampullary cells have CVs below 0.4 with a median around 0.12 and the observed \nli{}s are 10-fold higher than in P-units.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and the noise-split according to the Novikov-Furutsu theorem\cite{Novikov1965,Furutsu1963} to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinearity structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
The CV serves as a proxy for the intrinsic noise in the cells. In both cell types, we observe a negative correlation between \nli{} and the CV, indicating that it is the level of intrinsic noise that plays a role here. These findings are in line with previous studies that propose that noise linearizes the system\cite{Roddey2000, Chialvo1997, Voronenko2017}. More intrinsic noise has been demonstrated to increase the CV and reduce nonlinear phase-locking in vestibular afferents\cite{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL\cite{Chacron2006}. Further support for the notion of noise limiting the nonlinearity comes from our P-unit LIF model that faithfully reproduces P-unit activity\cite{Barayeu2023}. We can use this model and the noise-split according to the Furutsu-Novikov theorem\cite{Novikov1965,Furutsu1963} to increase the signal-to-noise ratio in the cell while keeping the overall response variability constant (see methods). Treating 90\% of the total noise as signal and simulating large numbers of trial uncovers the full nonlinearity structure (\figref{model_and_data}) seen in LIF neurons and the analytical derivations when driven with sine-wave stimuli\cite{Voronenko2017}.
\subsection*{Noise stimulation approximates the real three-fish interaction}
Our analysis is based on the neuronal responses to white noise stimulus sequences. For the P-units, the stimulus was a random amplitude modulation (RAM) while it was a direct noise stimulus for the ampullary cells. In true white noise, each frequency component contributes with equal amplitude. This has the methodological advantage that all behaviorally relevant frequencies can be measured with a single stimulus presentation and is a widely used approach to characterize sensory coding\cite{Borst1999,Chacron2005, Grewe2017}. In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total power of the stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}). With the noise-splitting trick, we could show that the full nonlinearity pattern is present but covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to conclude that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of individual frequencies.
Our analysis is based on the neuronal responses to white noise stimulus sequences. For the P-units, the stimulus was a random amplitude modulation (RAM) while it was a direct noise stimulus for the ampullary cells. These broad-band stimuli have the advantage that all behaviorally relevant frequencies can be measured with a single stimulus presentation and is a widely used approach to characterize sensory coding\cite{French1973, Borst1999, Chacron2005, Grewe2017}. However, these stimuli also increase the total level of noise in the system and may have a linearizing effect on signal transmission. In a our P-unit models, we were able to make use of the Furutsu-Novikov theorem to estimate nonlinear signal transmission for zero-amplitude stimulation. Only with this procedure and many trials, we find for low-CV P-units all the pronounced ridges in the second-order susceptibility that we would expect according to theory \cite{Voronenko2017}.
In the natural situation, the stimuli are periodic signals defined by the difference frequencies. Ho well can we extrapolate from the white noise analysis to the pure sinewave situation? \notejg{Predictions from the X2 matrix and the equations in Voronekov}
In contrast to the situation with individual frequencies (direct sine-waves or sinusoidal AMs) the total power of the stimulus is equally distributed on all frequencies leading to a weaker signal-to-noise ratio. This explains that the nonlinearity pattern in the electroreceptor recordings only partially matches the expectation (\figsref{fig:cells_suscept},\,\ref{fig:ampullary}) while the single-frequency stimulation shows nonlinear interference when the individual stimulus frequencies ($f_1, f_2, \Delta f_1, \Delta f_2$) match the baseline firing rate (\figref{fig:motivation}). With the noise-splitting trick, we could show that in low-CV cells, that have a low-CV and are not subject to strong stimulation, the full nonlinearity pattern is present but covered by the intrinsic noise. We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to conclude that the same nonlinear interactions happen here. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of individual frequencies.
% The nonlinearity of ampullary cells in paddlefish \cite{Neiman2011fish} has been previously accessed with bandpass limited white noise.
@ -620,7 +632,7 @@ Our analysis is based on the neuronal responses to white noise stimulus sequence
\subsection*{Selective readout versus integration of heterogeneous populations}% Nonlinearity might be influenced once integrating from a P-unit population with heterogeneous baseline properties}%Heterogeneity of P-units might influence
The observed nonlinear effects might facilitate the detectability of faint signals during a three fish setting, the electrosensory cocktail party. They are, however, very specific with respect to the relation of stimulus frequencies and the P-unit baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish\cite{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
The observed nonlinear effects might facilitate the detectability of faint signals during a three fish setting, the electrosensory cocktail party. These nonlinear effects are, however, very specific with respect to the relation of stimulus frequencies and the P-unit baseline frequency. The EOD frequencies of the interacting fish would be drawn from the distributions of EOD frequencies found in male and female fish\cite{Hopkins1974Eigen, Meyer1987, Henninger2018, Henninger2020}. To be behaviorally relevant the faint signal detection would require reliable neuronal signaling irrespective of the individual EOD frequencies.
P-units, however are very heterogeneous in their baseline firing properties\cite{Grewe2017, Hladnik2023}. The baseline firing rates vary in wide ranges (50--450\,Hz). This range covers substantial parts of the beat frequencies that may occur during animal interactions which is limited to frequencies below the Nyquist frequency (0 -- \feod/2)\cite{Barayeu2023}. It is thus likely that there are P-units which match approximately to the specificities of the different encounters.
On the other hand, the nonlinearity was found only in low-CV P-units (with white noise stimulation). The CVs are also very heterogeneous (0.1--1.4, \figref{fig:data_overview_mod}\panel{A}) in our sample. Only a small fraction of the P-units has a sufficiently low level of intrinsic noise and will exhibit nonlinear responses. The P-units project to the ELL\cite{Krahe2014} and the integrating pyramidal cells in the different segments receive inputs in the range of 10s to 1000s of neurons\cite{Maler2009a}. Since the receptive fields of the pyramidal neurons are patches of adjacent receptors on the fish's body surface \cite{Bastian2002, Maler2009a, Haggard2023} and the input heterogeneity does not depend on the location of the receptor on the fish body \cite{Hladnik2023} the pyramidal cell input population will be heterogeneous. Heterogeneity was shown to be generally advantageous for the encoding in this\cite{Hladnik2023} and other systems\cite{Padmanabhan2010, Beiran2018}. At the same time it contradicts the apparent need for a selective readout of low-CV cells to maintain information arising through nonlinear interactions.
@ -644,7 +656,7 @@ auditory nerve fibers and such nonlinear effects might also be expected in the a
\subsection*{Experimental subjects and procedures}
Within this project we re-evaluated datasets that were recorded between 2010 and 2023 at the Ludwig Maximilian University (LMU) M\"unchen and the Eberhard-Karls University T\"ubingen. All experimental protocols complied with national and European law and were approved by the respective Ethics Committees of the Ludwig-Maximilians Universität München (permit no. 55.2-1-54-2531-135-09) and the Eberhard-Karls Unversität Tübingen (permit no. ZP 1/13 and ZP 1/16).
The final sample consisted of 222 P-units and 47 ampullary electroreceptor afferents recorded in 71 weakly electric fish of the species \lepto{}. The original electrophysiological recordings were performed on male and female weakly electric fish of the species \lepto{} that were obtained from a commercial supplier for tropical fish (Aquarium Glaser GmbH, Rodgau,
The final sample consisted of 221 P-units and 47 ampullary electroreceptor afferents recorded in 71 weakly electric fish of the species \lepto{}. The original electrophysiological recordings were performed on male and female weakly electric fish of the species \lepto{} that were obtained from a commercial supplier for tropical fish (Aquarium Glaser GmbH, Rodgau,
Germany). The fish were kept in tanks with a water temperature of $25\pm1\,^\circ$C and a conductivity of around $270\,\micro\siemens\per\centi\meter$ under a 12\,h:12\,h light-dark cycle.
Before surgery, the animals were deeply anesthetized via bath application with a solution of MS222 (120\,mg/l, PharmaQ, Fordingbridge, UK) buffered with Sodium Bicarbonate (120\,mg/l). The posterior anterior lateral line nerve (pALLN) was exposed by making a small cut into the skin covering the nerve. The cut was placed dorsal of the operculum just before the nerve descends towards the anterior lateral line ganglion (ALLNG). Those parts of the skin that were to be cut were locally anesthetized by cutaneous application of liquid lidocaine hydrochloride (20\,mg/ml, bela-pharm GmbH). During the surgery water supply was ensured by a mouthpiece to maintain anesthesia with a solution of MS222 (100\,mg/l) buffered with Sodium Bicarbonate (100\,mg/l). After surgery fish were immobilized by intramuscular injection of from 25\,$\micro$l to 50\,$\micro$l of tubocurarine (5\,mg/ml dissolved in fish saline; Sigma-Aldrich).
@ -766,6 +778,20 @@ Leaky integrate-and-fire (LIF) models with a carrier were constructed to reprodu
\end{equation}
with the EOD frequency $f_{EOD}$ and an amplitude normalized to one.
%\subsection*{Stimuli for the model}
The model neurons were driven with similar stimuli as the real neurons in the original experiments. To mimic the interaction with one or two foreign animals the receiving fish's EOD (\Eqnref{eq:eod}) was normalized to an amplitude of one and the respective EODs of a second or third fish were added.%\Eqnref{ eq.\,\ref{eq:eod}
The random amplitude modulation (RAM) input to the model was created by drawing random amplitude and phases from Gaussian distributions for each frequency component in the range 0--300 Hz. An inverse Fourier transform was applied to get the final amplitude RAM time-course. The input to the model was then
\begin{equation}
\label{eq:ram_equation}
y(t) = (1+ s(t)) \cdot \cos(2\pi f_{EOD} t)
\end{equation}
\note{fix stimulus x and y notation and RAM}
From each simulation run, the first second was discarded and the analysis was based on the last second of the data. The resulting spectra thus have a spectral resolution of 1\,Hz.
% \subsection{Second-order susceptibility analysis of the model}
% %\subsubsection{Model second-order nonlinearity}
% The second-order susceptibility in the model was calculated with \Eqnref{eq:susceptibility}, resulting in matrices as in \figrefb{model_and_data} and \figrefb{fig:model_full}. For this, the model neuron was presented the input $x(t)$ for 2\,s, with the first second being dismissed as the transient. The second-order susceptibility calculation was performed on the last second, resulting in a frequency resolution of 1\,Hz.
In the model, the input $x(t)$ was then first thresholded to model the synapse between the primary receptor cells and the afferent.
\begin{equation}
\label{eq:threshold2}
@ -824,27 +850,13 @@ The model's ODEs were integrated by the Euler forward method with a time-step of
\subsection*{Model parameters}\label{paramtext}
The eight free parameters of the P-unit model $\beta$, $\tau_m$, $\mu$, $D$, $\tau_A$, $\Delta_A$, $\tau_d$, and $t_{ref}$, were fitted to both the baseline activity (baseline firing rate, CV of ISIs, serial correlation of ISIs at lag one, and vector strength of spike coupling to EOD) and the responses to step-like increases and decreases in EOD amplitude (onset-state and steady-state responses, effective adaptation time constant). For each simulation, the start parameters $A$, $V_{d}$ and $V_{m}$ were drawn from a random starting value distribution, estimated from a 100\,s baseline simulation after an initial 100\,s of simulation that was discarded as a transient.
\subsection*{Stimuli for the model}
The model neurons were driven with similar stimuli as the real neurons in the original experiments. To mimic the interaction with one or two foreign animals the receiving fish's EOD (\Eqnref{eq:eod}) was normalized to an amplitude of one and the respective EODs of a second or third fish were added.%\Eqnref{ eq.\,\ref{eq:eod}
The random amplitude modulation (RAM) input to the model was created by drawing random amplitude and phases from Gaussian distributions for each frequency component in the range 0--300 Hz. An inverse Fourier transform was applied to get the final amplitude RAM time-course. The input to the model was then
\begin{equation}
\label{eq:ram_equation}
y(t) = (1+ s(t)) \cdot \cos(2\pi f_{EOD} t)
\end{equation}
\note{fix stimulus x and y notation and RAM}
From each simulation run, the first second was discarded and the analysis was based on the last second of the data. The resulting spectra thus have a spectral resolution of 1\,Hz.
% \subsection{Second-order susceptibility analysis of the model}
% %\subsubsection{Model second-order nonlinearity}
% The second-order susceptibility in the model was calculated with \Eqnref{eq:susceptibility}, resulting in matrices as in \figrefb{model_and_data} and \figrefb{fig:model_full}. For this, the model neuron was presented the input $x(t)$ for 2\,s, with the first second being dismissed as the transient. The second-order susceptibility calculation was performed on the last second, resulting in a frequency resolution of 1\,Hz.
\subsection*{Model noise split into a noise and a stimulus component}\label{intrinsicsplit_methods}
According to the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} the total noise of a LIF model ($\xi$) can be split up into several independent noise processes with the same correlation function. Here we split the internal noise into two parts: (i) One part is treated as a driving input signal $s_\xi(t)$ \note{hier umschreiben das xi muss ein RAM sein} and used to calculate the cross-spectra in \Eqnref{eq:crosshigh} and (ii) the remaining noise $\sqrt{2D \, c_{noise}} \cdot \xi(t)$ that is treated as pure noise. In this way the effective signal-to-noise ratio can be increased while maintaining the total noise in the system. $\rho$ a scaling factor that compensates (see below) for the signal transformations the amplitude modulation stimulus undergoes in the model, i.e. the threshold and the dendritic lowpass. In our case the model has a carrier (the fish's self-generated EOD) and we thus want to drive the model with an amplitude modulation stimulus
%\sqrt{\rho \, 2D \,c_{signal}} \cdot \xi(t)
According to the Furutsu-Novikov Theorem \cite{Novikov1965, Furutsu1963} the total noise of a LIF model ($\xi$) can be split up into several independent noise processes with the same correlation function. Here we split the internal noise into two parts: (i) One part is treated as a driving input signal $s_\xi(t)$ \note{hier umschreiben das xi muss ein RAM sein} and used to calculate the cross-spectra in \Eqnref{eq:crosshigh} and (ii) the remaining noise $\sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)$ that is treated as pure noise. In this way the effective signal-to-noise ratio can be increased while maintaining the total noise in the system. $\rho$ a scaling factor that compensates (see below) for the signal transformations the amplitude modulation stimulus undergoes in the model, i.e. the threshold and the dendritic lowpass. In our case the model has a carrier (the fish's self-generated EOD) and we thus want to drive the model with an amplitude modulation stimulus
%\sqrt{\rho \, 2D \,c_{\rm{signal}}} \cdot \xi(t)
%(1-c_{signal})\cdot\xi$c_{noise} = 1-c_{signal}$
%c_{signal} \cdot \xi
%(1-c_{\rm{signal}})\cdot\xi$c_{\rm{noise}} = 1-c_{\rm{signal}}$
%c_{\rm{signal}} \cdot \xi
\begin{equation}
\label{eq:ram_split}
y(t) = (1+ s_\xi(t)) \cdot \cos(2\pi f_{EOD} t)
@ -858,18 +870,18 @@ According to the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} the tot
\begin{equation}
\label{eq:Noise_split_intrinsic}
\tau_{m} \frac{d V_{m}}{d t} = - V_{m} + \mu + \alpha V_{d} - A + \sqrt{2D \, c_{noise}} \cdot \xi(t)
\tau_{m} \frac{d V_{m}}{d t} = - V_{m} + \mu + \alpha V_{d} - A + \sqrt{2D \, c_{\rm{noise}}} \cdot \xi(t)
\end{equation}
% das stimmt so, das c kommt unter die Wurzel!
%\begin{equation}
% \label{Noise_split_intrinsic}
% V_{m_{i+1}} = V_{m_i} + \left(-V_{m_i} + \mu + \alpha V_{d_i} - A_i + \sqrt{\frac{2D c_{noise}}{\Delta t}}\mathcal{N}(0,\,1)_i\right) \frac{\Delta t}{\tau_m}
% V_{m_{i+1}} = V_{m_i} + \left(-V_{m_i} + \mu + \alpha V_{d_i} - A_i + \sqrt{\frac{2D c_{\rm{noise}}}{\Delta t}}\mathcal{N}(0,\,1)_i\right) \frac{\Delta t}{\tau_m}
%\end{equation}
A big portion of the total noise was assigned to the signal component ($c_{signal} = 0.9$) and the remaining part to the noise component ($c_{noise} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}). For the application of the Novikov-Furutsu Theorem \cite{Novikov1965, Furutsu1963} it is critical that both components add up to the initial 100\,$\%$ of the total noise. This is easily achieved in a model without a carrier if the condition $c_{signal}+c_{noise}=1$ is satisfied. The situation here is more complicated. To compensate for the transformations the signal undergoes before it enters the LIF core, $\xi_{signal}(t)$ was scaled up by the factor $\rho$ (\Eqnref{eq:ram_split}, red in \subfigrefb{flowchart}\,\panel[iii]{A}). $\rho$ was found by bisecting the space of possible $\rho$ scaling factors by minimizing the error between the baseline CV (only carrier) and the CV during stimulation with noise split.
A big portion of the total noise was assigned to the signal component ($c_{\rm{signal}} = 0.9$) and the remaining part to the noise component ($c_{\rm{noise}} = 0.1$, \subfigrefb{flowchart}\,\panel[iii]{C}). For the application of the Furutsu-Novikov Theorem \cite{Novikov1965, Furutsu1963} it is critical that both components add up to the initial 100\,$\%$ of the total noise. This is easily achieved in a model without a carrier if the condition $c_{\rm{signal}}+c_{\rm{noise}}=1$ is satisfied. The situation here is more complicated. To compensate for the transformations the signal undergoes before it enters the LIF core, $\xi_{\rm{noise}}(t)$ was scaled up by the factor $\rho$ (\Eqnref{eq:ram_split}, red in \subfigrefb{flowchart}\,\panel[iii]{A}). $\rho$ was found by bisecting the space of possible $\rho$ scaling factors by minimizing the error between the baseline CV (only carrier) and the CV during stimulation with noise split.
% See section \ref{lifmethods} for model and parameter description.
@ -928,7 +940,7 @@ CVs in P-units can range up to 1.5 \cite{Grewe2017, Hladnik2023}. We show the sa
\begin{figure*}[hp]%hp!
\includegraphics[width=\columnwidth]{trialnr}
\caption{\label{fig:trialnr} Change of the median second-order susceptibility depending on the stimulus repetition number $\n{}$. Grey -- 5th to 95th percentile of the second-order susceptibility.
\caption{\label{fig:trialnr} Change of the median second-order susceptibility depending on the stimulus repetition number $\n{}$. Black -- 99.9th percentile of the second-order susceptibility.
}
\end{figure*}

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 15 KiB

View File

@ -139,11 +139,11 @@ def trialnr(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1], cells
if len(stack)> 0:
model_show, stack_plot, stack_plot_wo_norm = get_stack(cell, stack)
stacks.append(stack_plot)
perc95.append(np.percentile(stack_plot,99.9))
perc95.append(np.percentile(stack_plot,99.99))
perc05.append(np.percentile(stack_plot, 0))
median.append(np.percentile(stack_plot, 50))
stacks_wo_norm.append(stack_plot_wo_norm)
perc95_wo_norm.append(np.percentile(stack_plot_wo_norm,99.9))
perc95_wo_norm.append(np.percentile(stack_plot_wo_norm,99.99))
perc05_wo_norm.append(np.percentile(stack_plot_wo_norm, 0))
median_wo_norm.append(np.percentile(stack_plot_wo_norm, 50))
@ -158,53 +158,18 @@ def trialnr(eod_metrice = False, width=0.005, nffts=['whole'], powers=[1], cells
perc05_wo_norm.append(float('nan'))
median_wo_norm.append(float('nan'))
fig, ax = plt.subplots(2,2)
fig, ax = plt.subplots(1,1)
#ax.plot(trial_nrs_here, perc05, color = 'grey')
ax[0,0].plot(trial_nrs_here, perc95, color = 'grey')
ax.plot(trial_nrs_here, perc95, color = 'grey', clip_on = False)
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[0,0].scatter(trial_nrs_here, perc95, color = 'black')
ax.scatter(trial_nrs_here, perc95, color = 'black', clip_on = False)
ax[0,1].plot(trial_nrs_here, perc95_wo_norm / trial_nrs_here, color = 'grey')
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[0,1].scatter(trial_nrs_here, perc95_wo_norm / trial_nrs_here, color = 'black')
##################################
ax[1,0].plot(trial_nrs_here, median, color = 'grey')
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[1,0].scatter(trial_nrs_here, median, color = 'black')
ax[1,1].plot(trial_nrs_here, median_wo_norm / trial_nrs_here, color = 'grey')
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[1,1].scatter(trial_nrs_here, median_wo_norm / trial_nrs_here, color = 'black')
#ax[2].plot(trial_nrs_here, perc95, color = 'grey')
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
#ax[2].scatter(trial_nrs_here, perc95, color = 'black')
#ax.scatter(trial_nrs_here, median, color = 'black', label = 'median')
#ax.fill_between(trial_nrs_here, perc05, perc95, color='grey')
ax[0,0].set_xscale('log')
ax[0,0].set_yscale('log')
ax[0,1].set_xscale('log')
ax[0,1].set_yscale('log')
ax[1,0].set_xscale('log')
ax[1,0].set_yscale('log')
ax[1,1].set_xscale('log')
ax[1,1].set_yscale('log')
ax[0,0].set_xlabel('Trials [$N$]')
ax[0,0].set_ylabel('$\chi_{2}$\,[Hz]')
ax[1,0].set_xlabel('Trials [$N$]')
ax[1,0].set_ylabel('$\chi_{2}$\,[Hz]')
ax[0,1].set_xlabel('Trials [$N$]')
ax[0,1].set_ylabel('$cross$\,[Hz]')
ax[1,1].set_xlabel('Trials [$N$]')
ax[1,1].set_ylabel('$cross$\,[Hz]')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('Trials [$N$]')
ax.set_ylabel('$\chi_{2}$\,[Hz]')
''' ax = plt.subplot(1,3,2)
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')

View File

@ -1817,10 +1817,6 @@ def model_sheme_split(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_len
# FIRST Row: Rectified stimulus
plot_point = [[], [], [], 'yes']
# counter, ax_rec[counter_here], ff, pp, axp = plot_rec_stimulus(eod_fr,grid_lowpass, time_transform, stimulus_here, color, color,
# time, counter, eod_fr, titles, g, deltat,
# fft_type, nfft, log, counterp,shift = shift, delta_f = delta_f, plot_point = plot_point[counter_here], lw = lw, xlim = xlim)
power_extra = False
wr2 = [1, 1.2]
if power_extra:
@ -1840,7 +1836,7 @@ def model_sheme_split(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_len
shift, nfft, time_transform, color, fft_type, lw=lw,
xlim=xlim)
# ax_rec[counter.]
ax_rec[counter_here].show_spines('b')
remove_xticks(ax_rec[counter_here])
axt_stims.append(ax_rec[counter_here])
@ -1853,33 +1849,13 @@ def model_sheme_split(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_len
axps_stimulus.append(axp)
colors_chosen.append(color)
# if counter_here == 0:
# ax_rec[counter_here].text(-7, 0, '0', color='black', ha='center', va='center')
# if colorful_title:
# rainbow_title(fig, ax_rec[counter_here], titles[g], add_pos[g], color_add_pos[g])
# else:#add_pos[g]
ax_rec[counter_here].text(0, 0.935, titles[c] + '\n' + r'$\rm{CV}=%s$' % (
np.round(np.std(np.diff(spike_times)) / np.mean(np.diff(spike_times)), 2)) + '\n$f_{Base}=%s$' % (
int(np.round(1 / np.mean(np.diff(spike_times))))) + '\,Hz',
transform=ax_rec[counter_here].transAxes,
va='bottom') # verticalalignment='right',
# And plot correspoding sheme
# if g == 0:
# REMAINING Rows: dendridic filter / LIF /EIF stimulus
# for ee, exponential in enumerate(exponentials):
# model
# v_offset, model_params, load_name= implement_three_core(cell,amp_frame, titles, g, cell_nr = cell_nr)
# for hard coding the offset here i check the change of the baseline
# if (ee == 0):
# SECOND Row: Dendridic Low pass filter
plot_point = [[], [], [], 'yes']
# ax_low[counter_here]
#embed()
grid_lowpass = gridspec.GridSpecFromSubplotSpec(1, col,
subplot_spec=grid_power_col[1], wspace=ws, hspace=1.3,
width_ratios=wr)
@ -1991,15 +1967,7 @@ def model_sheme_split(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_len
# plt.show()
counter_here += 1
devide = np.max(np.max(pps))
# plot_points = np.array([[], [], [], 'yes',
# [], [], [], 'yes'
# ,'yes','yes',[],'yes'
# ,'yes','yes',[],'yes'])
# von oben nach unten von links nach rechts
# plot psd with shared log lim
#embed()
####################################
# cut first parts
@ -2052,11 +2020,9 @@ def model_sheme_split(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_len
ax = np.transpose([axt_stims[0::2], axt_stims[1::2], ax_noise, axt_IF1, axps_stimulus])
fig = plt.gcf()
# fig.tag(ax, xoffs=-3.5, yoffs = 1.5)
nr = 1.7 # 2#.24
tag2(fig, axshemes, xoffs=-3.5, yoffs=5.5)
tag2(fig, np.transpose(ax), xoffs=-3.5) # yoffs = [5.5,nr,nr,nr,nr-0.2]
# get_ylim_same
tag2(fig = fig, axes = np.transpose(ax), xoffs=-3.5) # yoffs = [5.5,nr,nr,nr,nr-0.2]
#########################################################
# plot psds
@ -2130,6 +2096,7 @@ def model_sheme_split2(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_le
# a_fes =
nrs = [1, 2, 3, 4]
a_fes = [0, 0.02, 0] # alpha\alpha0.1,
a_fes = [0, 0.02, 0] # alpha\alpha0.1,
titles = ['Baseline', r'Contrast$\,=2\,\%$', noise_name()] # r'Contrast$\,=20\,\%$',
#########################################################################################
@ -2201,25 +2168,18 @@ def model_sheme_split2(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_le
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
a_fes, a_fr, c, c_sig, cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types, eod_fe,
color_p1, color_p3, mult_nr=mult_nr, load_name=load_name, exp_tau=exp_tau, v_exp=v_exp)
color_p1, color_p3, mult_nr=mult_nr, load_name=load_name, exp_tau=exp_tau, v_exp=v_exp, redo = False)
print(len(stimulus_here))
extracted, _ = extract_am(v_dent_output, stimulus_here / 1000, sampling=1 / deltat, eodf=eod_fr, norm=False)
print('noise var'+str(np.var(noise_final_c))+' stimulus var '+str(np.var(extracted))+' CV '+str(np.round(np.std(np.diff(spike_times)) / np.mean(np.diff(spike_times)), 2)))
##############################################
# titles = [titles[1]]
# for g, stimulus_here in enumerate([stimuli[1]]):
add = 0
color = colors[counter_here]
# FIRST Row: Rectified stimulus
plot_point = [[], [], [], 'yes']
# counter, ax_rec[counter_here], ff, pp, axp = plot_rec_stimulus(eod_fr,grid_lowpass, time_transform, stimulus_here, color, color,
# time, counter, eod_fr, titles, g, deltat,
# fft_type, nfft, log, counterp,shift = shift, delta_f = delta_f, plot_point = plot_point[counter_here], lw = lw, xlim = xlim)
power_extra = False
wr2 = [1, 1.2]
if power_extra:
wr = [1, 1.2]
col = 2
else:
col = 1
@ -2479,7 +2439,7 @@ def model_sheme_split2(grid_sheme_orig, time_transform=1000, ws=0.1, stimulus_le
def get_flowchart_params(a_fes, a_fr, c, c_sig, cell, deltat, eod_fr, model_params, stimulus_length, v_offset,
var_types, eod_fe=[750], color_p1='black', color_p3='black', colorful_title=False, mult_nr=1,
load_name='models_big_fit_d_right.csv', exp_tau=0.1, v_exp=1): # v_exp=1, exp_tau=0.1
load_name='models_big_fit_d_right.csv', exp_tau=0.1, v_exp=1, redo = False): # v_exp=1, exp_tau=0.1
# ok das hier scheint umständlich, aber ich hab einmal die eod_fe schleife und einmal die stimulus schleife
# einfach eine stimulus schleife zu machen würde mehrere änderungen bedeutetn
try:
@ -2513,18 +2473,19 @@ def get_flowchart_params(a_fes, a_fr, c, c_sig, cell, deltat, eod_fr, model_para
stimulus_length,
v_exp,
v_offset,
version_comp)
version_comp, redo = redo)
time = np.arange(0, len(stimulus_here) * deltat, deltat)
return noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame
def save_flowchart_susept(var_type, cell, a_fes, c, c_sig, deltat, eod_fish_rs, eod_fr, exp_tau, g, load_function,
load_name, model_params, stimulus_length, v_exp, v_offset, version_comp, exponential=''):
load_name, model_params, stimulus_length, v_exp, v_offset, version_comp, exponential='', redo = False):
save_arrays = load_function + '_' + var_type + '_' + '_c_sig_' + str(c_sig) + '_a_fe_' + str(a_fes[c]) + '.csv'
save_spikes = load_function + '_' + var_type + '_' + 'spikes_c_sig_' + str(c_sig) + '_a_fe_' + str(
a_fes[c]) + '.csv'
redo = False
#TODO: hier gibt es noch ein Problem!
if (version_comp == 'code') | (version_comp == 'develop'):
if (not os.path.exists(save_spikes)) | (redo == True):
print('redo flowchart')
@ -2731,7 +2692,7 @@ def save_flowchart_susept(var_type, cell, a_fes, c, c_sig, deltat, eod_fish_rs,
carrier_RAM[carrier_RAM < 0] = 0
stimulus_here = carrier_RAM
#embed()
frame = pd.DataFrame()
frame['v_dent_output'] = v_dent_output
@ -2925,6 +2886,8 @@ def find_load_function():
if name in st[-1][1]:
load_function = st[-1][1].split('.py')[0].split(name)[-1].split('thesis')[-1] # [1::]
found = True
if not found:
load_function = st[-1][1].split('.py')[0].split('suseptibility')[-1].split('thesis')[-1] # [1::]
# if '\\' in load_function:
try:
@ -2932,6 +2895,7 @@ def find_load_function():
except:
print('load_function_missing')
embed()
#embed()
return load_function
@ -5252,7 +5216,7 @@ def egerland_noise(stimulus_length, deltat, cut_off, noise_added='', noise_stren
# THIS is the one to find the correct CV
elif 'additiv_cv_adapt_factor' in var:
# 'additiv_cv_adapt_factor_scaled'
# embed()
#embed()
frame = pd.read_csv(load_path + '.csv', index_col=0) # "2012-12-21-ai-invivo-1","2012-06-27-an-invivo-1",
try:
height = float(frame.loc['height', cell])
@ -5424,7 +5388,7 @@ def egerland_noise(stimulus_length, deltat, cut_off, noise_added='', noise_stren
stimulus_spikes = noise_bef * 1
white_noise_eng_abs = np.abs(noise_bef_cut_off)
# embed()
#embed()
test = False
if test:
test_egerland()
@ -7654,6 +7618,7 @@ def simulate(cell, v_offset, stimulus, emb=False, cut=True, EODf='eod_fr', delta
else:
noise_strength_new = np.sqrt(noise_strength * 2)
noise_final *= noise_strength_new / np.sqrt(deltat) # 0.05370289258320868 0.0015532069917408744
#embed()
v_mem, adapt, v_dend = reshuffled_start_vals(reshuffle, a_zero, stimulus, v_zero, reshuffle_start_vals, cell,
reshuffle_stimulus_length_orig, reshuffle_transient)
@ -13839,7 +13804,10 @@ def tag2(fig=None, axes=None, xoffs=None, yoffs=None,
xoffs = fig.tags_xoffs
else:
xoffs = xo
xoffs = [xoffs] * len(axes_list)
xoffs = [xoffs] * len(axes_list)
if len(axes_list) != len(xoffs):
xoffs = xo
xoffs = [xoffs] * len(axes_list)
elif (type(xoffs) != float) & (type(xoffs) != int):
xoffs = np.array(xoffs)
try:
@ -13855,11 +13823,17 @@ def tag2(fig=None, axes=None, xoffs=None, yoffs=None,
xoffs *= 0.6 * fs / w
xoffs = [xoffs] * len(axes_list)
if yoffs == 'auto':
if hasattr(fig, 'tags_yoffs'):
yoffs = fig.tags_yoffs
else:
yoffs = yo - 1.0 / h # minus one pixel
yoffs = [yoffs] * len(axes_list)
yoffs = [yoffs] * len(axes_list)
if len(axes_list) != len(yoffs):
yoffs = yo - 1.0 / h # minus one pixel
yoffs = [yoffs] * len(axes_list)
#embed()
elif (type(yoffs) != float) & (type(yoffs) != int):
yoffs = np.array(yoffs)
try:
@ -13893,8 +13867,12 @@ def tag2(fig=None, axes=None, xoffs=None, yoffs=None,
except:
print('y something')
embed()
#try:
if y >= 1.0:
y = 1.0
#except:
# print('y something')
# embed()
ax.text(x, y, l, transform=fig.transFigure, ha='left', va='top', **fkwargs)
count += 1

File diff suppressed because it is too large Load Diff