removed files for second respository
This commit is contained in:
parent
ae914056aa
commit
1f76a90e8e
BIN
burst_add.pdf
BIN
burst_add.pdf
Binary file not shown.
624
burst_add.py
624
burst_add.py
@ -1,624 +0,0 @@
|
|||||||
#from plt_RAM import plt_squares_bursts_single_psd
|
|
||||||
from utils_suseptibility import *
|
|
||||||
|
|
||||||
|
|
||||||
def plt_squares_bursts_single_psd2(col = 6, cells = ['2012-07-12-ap-invivo-1', '2018-06-26-ah-invivo-1',
|
|
||||||
'2012-12-20-ae-invivo-1',
|
|
||||||
'2012-06-27-ah-invivo-1', '2011-10-25-ad-invivo-1',
|
|
||||||
'2012-12-21-ai-invivo-1',
|
|
||||||
'2012-05-10-ad-invivo-1', '2012-12-20-ad-invivo-1',
|
|
||||||
'2012-04-20-ak-invivo-1',
|
|
||||||
'2012-12-13-ah-invivo-1', '2012-12-20-ab-invivo-1'],nr_clim=10, many=False, width=0.02, row='no', HZ50=True, fs=8, hs=0.39, redo=False, nffts=['whole'],
|
|
||||||
powers=[1], col_desired=2, var_items=['contrasts'], show=False,
|
|
||||||
contrasts=[0], noises_added=[''], fft_i='forward', fft_o='forward', spikes_unit='Hz', mV_unit='mV',
|
|
||||||
D_extraction_method=['additiv_visual_d_4_scaled'], internal_noise=['eRAM'],
|
|
||||||
external_noise=['eRAM'], level_extraction=['_RAMdadjusted'], cut_off2=300, repeats=[1000000],
|
|
||||||
receiver_contrast=[1], dendrids=[''], ref_types=[''], adapt_types=[''], c_noises=[0.1], c_signal=[0.9],
|
|
||||||
cut_offs1=[300],burst_corrs = [''], clims='all', restrict='restrict', label=r'$\frac{1}{mV^2S}$'):
|
|
||||||
plot_style()
|
|
||||||
|
|
||||||
duration_noise = '_short',
|
|
||||||
formula = 'code' ##'formula'
|
|
||||||
# ,int(2 ** 16) int(2 ** 16), int(2 ** 15),
|
|
||||||
stimulus_length = 1 # 20#550 # 30 # 15#45#0.5#1.5 15 45 100
|
|
||||||
trials_nrs = [1] # [100, 500, 1000, 3000, 10000, 100000, 1000000] # 500
|
|
||||||
stimulus_type = '_StimulusOrig_' # ,#
|
|
||||||
# ,3]#, 3, 1, 1.5, 0.5, ] # ,1,1.5, 0.5] #[1,1.5, 0.5] # 1.5,0.5]3, 1,
|
|
||||||
variant = 'sinz'
|
|
||||||
mimick = 'no'
|
|
||||||
cell_recording_save_name = ''
|
|
||||||
trans = 1 # 5
|
|
||||||
|
|
||||||
aa = 0
|
|
||||||
|
|
||||||
for burst_corr, cell, var_type, stim_type_afe, trials_stim, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe, in it.product(
|
|
||||||
burst_corrs, cells, D_extraction_method, external_noise
|
|
||||||
, repeats, internal_noise, powers, nffts, dendrids, cut_offs1, trials_nrs, c_signal,
|
|
||||||
c_noises,
|
|
||||||
ref_types, adapt_types, noises_added, level_extraction, receiver_contrast, contrasts, ):
|
|
||||||
#print(cell, burst_corr, cell, var_type, stim_type_afe, trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, cut_off1,trial_nrs)
|
|
||||||
# print(trial_nrs, stim_type_noise, trials_stim, power, nfft, a_fe, a_fr, var_type, cut_off1,trial_nrs)
|
|
||||||
aa += 1
|
|
||||||
|
|
||||||
default_figsize(column=2, length=4.2) #5.25.5. 6.8 2+2.25+2.25
|
|
||||||
|
|
||||||
a = 0
|
|
||||||
maxs = []
|
|
||||||
mins = []
|
|
||||||
ims = []
|
|
||||||
perc05 = []
|
|
||||||
perc95 = []
|
|
||||||
iternames = [D_extraction_method, external_noise,
|
|
||||||
internal_noise, powers, nffts, dendrids, cut_offs1, trials_nrs, c_signal,
|
|
||||||
c_noises,
|
|
||||||
ref_types, adapt_types, noises_added, level_extraction, receiver_contrast, contrasts, ]
|
|
||||||
|
|
||||||
nr = '2'
|
|
||||||
n = 2
|
|
||||||
b = 0
|
|
||||||
|
|
||||||
ax_lines = []
|
|
||||||
ax_psds = []
|
|
||||||
ax_diagonals = []
|
|
||||||
axss = []
|
|
||||||
resize_val = None
|
|
||||||
for c, cell in enumerate(cells):
|
|
||||||
axps = []
|
|
||||||
axpsl = []
|
|
||||||
#pss = []
|
|
||||||
lines = []
|
|
||||||
diags = []
|
|
||||||
pss = []
|
|
||||||
mats = []
|
|
||||||
a = 0
|
|
||||||
#fig = plt.figure(figsize=(12, 5.5))
|
|
||||||
fig = plt.figure()
|
|
||||||
for all in it.product(*iternames):
|
|
||||||
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
|
|
||||||
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
|
|
||||||
#072
|
|
||||||
grid0 = gridspec.GridSpec(4, 1, wspace=0.24, bottom=0.1,
|
|
||||||
hspace=0.04, left=0.08, right=0.93, top=0.98, height_ratios = [1.1,1.3,1,5.8])#7.8
|
|
||||||
|
|
||||||
carrier, corrs_all, spikes_tr, spikes_tr_bef = save_spikes_burst_add(
|
|
||||||
a_fe, a_fr, adapt_type, burst_corr, c_noise, c_sig, cell, cell_recording_save_name, cut_off1,
|
|
||||||
cut_off2, dendrid, duration_noise, extract, fft_i, fft_o, formula, mimick, nfft, noise_added,
|
|
||||||
power, ref_type, stim_type_afe, stim_type_noise, stimulus_length, stimulus_type, trans,
|
|
||||||
trial_nrs, var_type, variant, trial_nrs_base=1, burst_corrs=burst_corrs)
|
|
||||||
# embed()
|
|
||||||
grid_stim = gridspec.GridSpecFromSubplotSpec(1, 1, grid0[0], wspace=0.34,
|
|
||||||
hspace=0.3)
|
|
||||||
ax_stim = plt.subplot(grid_stim[0])
|
|
||||||
model_cells = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
|
||||||
|
|
||||||
model_params = model_cells[model_cells.cell == cell].iloc[0]
|
|
||||||
cell = model_params.pop('cell')
|
|
||||||
eod_fr = model_params['EODf']
|
|
||||||
deltat = model_params.pop("deltat")
|
|
||||||
carrier = np.array(carrier['0'])
|
|
||||||
time_s = np.arange(0, len(carrier)*deltat, deltat)
|
|
||||||
carrier_RAM = np.random.normal(0, 1, size=len(time_s )) # *0.2
|
|
||||||
#sine = np.sin(2*np.pi*750)*(1+carrier_RAM*0.2)
|
|
||||||
extracted_am, time_am = extract_am(carrier, time_s, norm=False)
|
|
||||||
|
|
||||||
time_am = time_s * 1000
|
|
||||||
ax_stim.plot(time_am, extracted_am + 0.05, color='red')
|
|
||||||
|
|
||||||
|
|
||||||
ax_stim.plot(time_am, carrier, color = 'grey', linewidth = '0.5')
|
|
||||||
|
|
||||||
ax_stim.set_xlim(0, 200)
|
|
||||||
ax_stim.show_spines('')
|
|
||||||
grid_upper = gridspec.GridSpecFromSubplotSpec(1, 1, grid0[1], wspace=0.34,
|
|
||||||
hspace=0.3)
|
|
||||||
|
|
||||||
|
|
||||||
ax_spikes = plt.subplot(grid_upper[0])
|
|
||||||
#tags.append(ax_spikes)
|
|
||||||
#axss = plt.subplot(grid_data[0])
|
|
||||||
#todo: das modell hier einmal machen für eine variante
|
|
||||||
|
|
||||||
|
|
||||||
alpha = 1/(len(burst_corrs)+1)
|
|
||||||
#ax_spikes = plt.subplot(1,1,1)
|
|
||||||
colors = colors_overview()
|
|
||||||
for i in range(len(corrs_all)):
|
|
||||||
ax_spikes.eventplot(np.array(corrs_all[i]) * 1000, lineoffsets = len(corrs_all)-i, linelengths = 0.85, alpha =alphafunc_burstadd(
|
|
||||||
alpha, i), color=colors[' P-unit'])
|
|
||||||
#ax_upper.eventplot(spikes_tr_bef, color='red')
|
|
||||||
ax_spikes.set_xlim(0, 200)
|
|
||||||
ax_spikes.xscalebar(0.9, -0.02, 20, 'ms', va='right', ha='bottom')
|
|
||||||
#ax_diagonal.xscalebar(1, 0.5, 20, 'dB', va='center', ha='right')
|
|
||||||
ax_spikes.show_spines('')
|
|
||||||
#ax_spikes.set_yticks([])
|
|
||||||
|
|
||||||
##################################
|
|
||||||
grid_lower = gridspec.GridSpecFromSubplotSpec(row,col,grid0[3], wspace=0.25,
|
|
||||||
hspace=0.3)
|
|
||||||
|
|
||||||
|
|
||||||
labelpad = 0
|
|
||||||
for r, trials_stim in enumerate(repeats):
|
|
||||||
|
|
||||||
for b, burst_corr in enumerate(burst_corrs):
|
|
||||||
|
|
||||||
save_name = save_ram_model(stimulus_length, cut_off1, duration_noise, nfft, a_fe, formula,
|
|
||||||
stim_type_noise, mimick, variant, trials_stim, power,
|
|
||||||
stimulus_type,
|
|
||||||
cell_recording_save_name, nr=nr, fft_i=fft_i, fft_o=fft_o, Hz=spikes_unit,
|
|
||||||
mV=mV_unit, burst_corr=burst_corr, stim_type_afe=stim_type_afe, extract=extract,
|
|
||||||
noise_added=noise_added,
|
|
||||||
c_noise=c_noise, c_sig=c_sig, ref_type=ref_type, adapt_type=adapt_type,
|
|
||||||
var_type=var_type, cut_off2=cut_off2, dendrid=dendrid, a_fr=a_fr,
|
|
||||||
trials_nr=trial_nrs, trans=trans, zeros='ones')
|
|
||||||
|
|
||||||
path = save_name + '.pkl' # '../'+
|
|
||||||
|
|
||||||
|
|
||||||
print(save_name)
|
|
||||||
print(a)
|
|
||||||
grid_data = grid_matrices(a, grid_lower)
|
|
||||||
|
|
||||||
|
|
||||||
#grid1 = gridspec.GridSpecFromSubplotSpec(1, 2, grid[c], hspace=0)
|
|
||||||
|
|
||||||
##########596#####################
|
|
||||||
|
|
||||||
#frame = frame.sort_values(by='cv')
|
|
||||||
#fr = frame[frame.cell == cell].fr # np.array(model_cells['cell'])
|
|
||||||
#cv = frame[frame.cell == cell].cv
|
|
||||||
model_cells = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
|
||||||
model_params = model_cells[model_cells.cell == cell].iloc[0]
|
|
||||||
eod_fr = model_params['EODf']
|
|
||||||
|
|
||||||
|
|
||||||
#if cont_cell: # cont_cell
|
|
||||||
|
|
||||||
#grid_p_i = gridspec.GridSpecFromSubplotSpec(1, 2, grid_data[1])
|
|
||||||
|
|
||||||
#axp = plt.subplot(grid_p_i[0])
|
|
||||||
|
|
||||||
#axp.set_xlim(0,600)
|
|
||||||
sampling_calc = 40000
|
|
||||||
spikes_mat = [[]]*len(spikes_tr)
|
|
||||||
p_arrays = []
|
|
||||||
nfft_here = 2**16
|
|
||||||
diffs = []
|
|
||||||
f_array = []
|
|
||||||
#embed()
|
|
||||||
#spikes_tr = np.array(spikes_tr)
|
|
||||||
for s, sp in enumerate(corrs_all[b]):
|
|
||||||
if len(sp)>0:
|
|
||||||
#try:
|
|
||||||
np.isnan(sp[-1])
|
|
||||||
|
|
||||||
if np.isnan(sp[-1]):
|
|
||||||
sp = sp[~np.isnan(sp)]
|
|
||||||
spikes_mat[s] = cr_spikes_mat(np.array(sp), sampling_rate=sampling_calc,
|
|
||||||
length=int(sampling_calc * np.array(sp[-1])))
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
p_ar, f_array = ml.psd(spikes_mat[s] - np.mean(spikes_mat[s]), Fs=sampling_calc,
|
|
||||||
NFFT=nfft_here,
|
|
||||||
noverlap=nfft_here / 2)
|
|
||||||
p_arrays.append(p_ar)
|
|
||||||
diffs.extend(np.diff(sp))
|
|
||||||
ps = np.mean(p_arrays, axis = 0)[f_array<600]
|
|
||||||
fss = f_array[f_array<600]
|
|
||||||
|
|
||||||
#axi, axs = hist_part(grid1, cell_type, burst_corrs[b], colors, cell, spikes, eod_fr, )
|
|
||||||
|
|
||||||
###############################
|
|
||||||
# square
|
|
||||||
axs = plt.subplot(grid_data[0])
|
|
||||||
axss.append(axs)
|
|
||||||
model = load_model_susept(path, cells, save_name)
|
|
||||||
|
|
||||||
#if cont:,
|
|
||||||
if len(model) > 0:
|
|
||||||
|
|
||||||
titles = ''
|
|
||||||
|
|
||||||
model_show = model[
|
|
||||||
(model.cell == cell)] # & (model_cell.file_name == file)& (model_cell.power == power)]
|
|
||||||
#embed()
|
|
||||||
new_keys = model_show.index.unique() # [0:490]
|
|
||||||
# np.abs(
|
|
||||||
try:
|
|
||||||
stack_plot = model_show[list(map(str, new_keys))]
|
|
||||||
except:
|
|
||||||
stack_plot = model_show[new_keys]
|
|
||||||
stack_plot = stack_plot.iloc[np.arange(0, len(new_keys), 1)]
|
|
||||||
stack_plot.columns = list(map(float, stack_plot.columns))
|
|
||||||
|
|
||||||
axs.set_xlim(0, 300)
|
|
||||||
axs.set_ylim(0, 300)
|
|
||||||
axs.set_xticks_delta(100)
|
|
||||||
axs.set_yticks_delta(100)
|
|
||||||
axs.set_aspect('equal')
|
|
||||||
model_params = model_cells[model_cells['cell'] == cell]
|
|
||||||
if len(model_show) > 0:
|
|
||||||
noise_strength = model_params.noise_strength.iloc[0] # **2/2
|
|
||||||
|
|
||||||
stack_plot = RAM_norm(stack_plot, trials_stim,model_show=model_show)
|
|
||||||
|
|
||||||
if many == True:
|
|
||||||
titles = titles + ' Ef=' + str(int(model_params.EODf.iloc[0]))
|
|
||||||
color = title_color(cell)
|
|
||||||
#embed()
|
|
||||||
stack_plot, add_nonlin_title, resize_val = rescale_colorbar_and_values(stack_plot, resize_val = resize_val)
|
|
||||||
#cbar[0].set_label(nonlin_title(add_nonlin_title)) # , labelpad=100
|
|
||||||
fr = int(np.round(model_show.fr.iloc[0]))
|
|
||||||
#burst_corr +
|
|
||||||
axs.text(1, 1.15, titles + ' $f_{Base}=%s$' %(int(np.round(model_show.fr_stim.iloc[0]))) + '\,Hz \n'+ r'$\rm{CV}=%s$' %(
|
|
||||||
np.round(model_show.cv_stim.iloc[0], 2)), ha = 'right', va = 'center',
|
|
||||||
transform=axs.transAxes, alpha=alphafunc_burstadd(
|
|
||||||
alpha, a), color=colors[' P-unit']) # color=color,fontsize=fs,+\n $cv_{B}$='$_{stim} + str(np.round(model_show.cv.iloc[0], 2)) + ' $fr_{B}$=' + str(fr) + '\n $D_{sig}$=' + str( np.round(D_derived, 5)) + ' s=' + str(np.round(model_show.ser_sum_stim.iloc[0], 2)
|
|
||||||
|
|
||||||
perc = '' # 'perc'
|
|
||||||
im = plt_RAM_perc(axs, perc, stack_plot)
|
|
||||||
pos = np.argmin(np.abs(stack_plot.index -fr/2))
|
|
||||||
# wenn _ am Anfang des Labels ist verändert das irgendwas, deswgen muss man das auswechseln!
|
|
||||||
if burst_corr == '':
|
|
||||||
burst_corr_name = 'no burst corr'
|
|
||||||
else:
|
|
||||||
burst_corr_name = burst_corr.replace('_', '-')
|
|
||||||
|
|
||||||
######################################
|
|
||||||
# psds
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
lines.append(stack_plot.iloc[pos])
|
|
||||||
|
|
||||||
diag, diagonals_prj_l = get_mat_diagonals(np.array(stack_plot))
|
|
||||||
diags.append(diagonals_prj_l)
|
|
||||||
|
|
||||||
|
|
||||||
pss.append(ps)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
ims.append(im)
|
|
||||||
mats.append(stack_plot)
|
|
||||||
maxs.append(np.max(np.array(stack_plot)))
|
|
||||||
mins.append(np.min(np.array(stack_plot)))
|
|
||||||
perc05.append(np.percentile(stack_plot, 5))
|
|
||||||
perc95.append(np.percentile(stack_plot, 95))
|
|
||||||
|
|
||||||
plt_triangle(axs, model_show.fr.iloc[0], np.round(model_show.fr_stim.iloc[0]),
|
|
||||||
model_show.eod_fr.iloc[0], 300)
|
|
||||||
|
|
||||||
#plt_peaks_several(['',''], [model_show.fr.iloc[0],np.round(model_show.fr_stim.iloc[0])],ps,0,axp,ps,['brown','red'], fss)
|
|
||||||
|
|
||||||
axs.set_aspect('equal')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if a in np.arange(col - 1, 100, col):
|
|
||||||
cbar = colorbar_outside(axs, im, fig, add=0, width=width)
|
|
||||||
cbar[0].set_label(nonlin_title(' ['+add_nonlin_title))#, labelpad=100
|
|
||||||
#if b > col-1:
|
|
||||||
# axs.set_xlabel(F1_xlabel(), labelpad=20)
|
|
||||||
#axs.text(1.05, -0.35, F1_xlabel(), ha='center', va='center',
|
|
||||||
# transform=axs.transAxes)
|
|
||||||
set_xlabel_arrow(axs, ypos=-0.28)
|
|
||||||
#else:
|
|
||||||
# remove_xticks(axs)
|
|
||||||
#axs.set_ylabel(F2_xlabel())
|
|
||||||
#if a in np.arange(0, 10, 1) * col:
|
|
||||||
if b in np.arange(0, 100,col):
|
|
||||||
#axs.set_ylabel(F2_xlabel())
|
|
||||||
axs.text(-0.35, 0.97, F2_xlabel(), ha='center', va='center',
|
|
||||||
transform=axs.transAxes, rotation=90)
|
|
||||||
else:
|
|
||||||
remove_yticks(axs)
|
|
||||||
axs.arrow_spines('lb')
|
|
||||||
#else:
|
|
||||||
# remove_tick_ymarks(axs)
|
|
||||||
else:
|
|
||||||
print('no model there')
|
|
||||||
embed()
|
|
||||||
axs.set_title(var_type[7::] + ' \n' + burst_corr, fontsize=fs,
|
|
||||||
color=color) # + '\n $D_{sig}$=' + str( np.round(D_derived, 5)) + ' s=' + str(np.round(model_show.ser_sum_stim.iloc[0], 2)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#####################################################
|
|
||||||
####################################################
|
|
||||||
# plt psds
|
|
||||||
save_name = save_ram_model(stimulus_length, cut_off1, duration_noise, nfft, a_fe, formula,
|
|
||||||
stim_type_noise, mimick, variant, trials_stim, power,
|
|
||||||
stimulus_type,
|
|
||||||
cell_recording_save_name, nr=nr, fft_i=fft_i, fft_o=fft_o,
|
|
||||||
Hz=spikes_unit,
|
|
||||||
mV=mV_unit, burst_corr=burst_corr, stim_type_afe=stim_type_afe,
|
|
||||||
extract=extract,
|
|
||||||
noise_added=noise_added,
|
|
||||||
c_noise=c_noise, c_sig=c_sig, ref_type=ref_type, adapt_type=adapt_type,
|
|
||||||
var_type=var_type, cut_off2=cut_off2, dendrid=dendrid, a_fr=a_fr,
|
|
||||||
trials_nr=trial_nrs, trans=trans, zeros='ones')
|
|
||||||
|
|
||||||
path = save_name + '.pkl' # '../'+
|
|
||||||
grid_data = grid_matrices(a, grid_lower)
|
|
||||||
#grid_data = gridspec.GridSpecFromSubplotSpec(2, 1, grid_lower[b],
|
|
||||||
# hspace=1, height_ratios = [1.4,1]) #1.2 height_ratios=[1,1,1, 6],
|
|
||||||
|
|
||||||
grid_pds = gridspec.GridSpecFromSubplotSpec(1, 1, grid_data[1], wspace=0.34,
|
|
||||||
hspace = 0.8)#1.5
|
|
||||||
|
|
||||||
#ax_psd = plt.subplot(grid_pds[0])
|
|
||||||
#ax_psds.append(ax_psd)
|
|
||||||
ax_diagonal = plt.subplot(grid_pds[0])
|
|
||||||
ax_diagonals.append(ax_diagonal)
|
|
||||||
line = False
|
|
||||||
if line:
|
|
||||||
ax_line = plt.subplot(grid_pds[2])
|
|
||||||
ax_lines.append(ax_line)
|
|
||||||
|
|
||||||
colors = colors_overview()
|
|
||||||
psd_all = False
|
|
||||||
if psd_all:
|
|
||||||
psd_plot = False
|
|
||||||
if psd_plot:
|
|
||||||
##############################
|
|
||||||
# psd
|
|
||||||
max_val = pss[a] # np.array(diagonals_prj_l)
|
|
||||||
loag_val = 10 * np.log10(max_val / np.max(pss)) # / np.max(max_val)
|
|
||||||
ax_psd.plot(fss[fss < np.max(stack_plot.columns)], loag_val[fss < np.max(stack_plot.columns)],
|
|
||||||
zorder=100 - a, alpha=alphafunc_burstadd(
|
|
||||||
alpha, a), color=colors[' P-unit'])
|
|
||||||
else:
|
|
||||||
model = load_model_susept(path, cells, save_name)
|
|
||||||
#frame = pd.read_pickle('../calc_model/noise2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_10000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV.pkl')
|
|
||||||
# if cont:,
|
|
||||||
if len(model) > 0:
|
|
||||||
titles = ''
|
|
||||||
|
|
||||||
model_show = model[
|
|
||||||
(model.cell == cell)] # & (model_cell.file_name == file)& (model_cell.power == power)]
|
|
||||||
try:
|
|
||||||
model_show['io_cross'] = model_show['io_cross'].astype('complex')
|
|
||||||
except:
|
|
||||||
print('io cross something')
|
|
||||||
embed()
|
|
||||||
vals = np.abs(np.array(model_show['io_cross']))/model_show['isf_psd']
|
|
||||||
#embed()
|
|
||||||
ax_psd.plot(stack_plot.columns, vals, alpha=alphafunc_burstadd(
|
|
||||||
alpha, a),
|
|
||||||
color=colors[' P-unit'])#[fss < np.max(stack_plot.columns)]
|
|
||||||
arrow = False
|
|
||||||
if arrow:
|
|
||||||
if b == 3:
|
|
||||||
|
|
||||||
set_xlabel_arrow(tranfer_xlabel(),xpos=1.15, ypos=-0.35)
|
|
||||||
#ax_psd.set_xlabel(tranfer_xlabel(), labelpad = labelpad)
|
|
||||||
else:
|
|
||||||
set_xlabel_arrow('', xpos=1.15, ypos=-0.35)
|
|
||||||
|
|
||||||
ax_psd.text(0.45, -0.6, tranfer_xlabel(), va='center', ha = 'center', transform=ax_psd.transAxes)
|
|
||||||
|
|
||||||
if b == 0:
|
|
||||||
ax_psd.set_ylabel(trasnfer_ylabel())
|
|
||||||
else:
|
|
||||||
remove_yticks(ax_psd)
|
|
||||||
#vals = np.abs(vals) / (powers / counter)
|
|
||||||
#if 'osf' in model_show.keys():
|
|
||||||
# plt_transferfunction(alpha, ax_psd, color, model_show, eod_fr=eod_fr)
|
|
||||||
#######################################
|
|
||||||
# line throuhg
|
|
||||||
|
|
||||||
if line:
|
|
||||||
max_val = np.array(lines[a]) # stack_plot.iloc[pos]
|
|
||||||
loag_val = 10 * np.log10(max_val / np.max(lines)) # / np.max(max_val)
|
|
||||||
|
|
||||||
ax_line.plot(np.array(stack_plot.columns), loag_val, label=burst_corr_name, zorder=100 - b,
|
|
||||||
alpha=alphafunc_burstadd(
|
|
||||||
alpha, a), color=colors[' P-unit'])
|
|
||||||
|
|
||||||
colors = colors_overview()
|
|
||||||
# diag, diagonals_prj_l = get_mat_diagonals(np.array(stack_plot))
|
|
||||||
|
|
||||||
axis_d = axis_projection(stack_plot, axis='')
|
|
||||||
if psd_all:
|
|
||||||
ax_psd.show_spines('lb')
|
|
||||||
ax_psd.set_xlim(0, axis_d[-1])
|
|
||||||
a += 1
|
|
||||||
|
|
||||||
alpha = 1 / (len(burst_corrs) + 1)
|
|
||||||
a = 0
|
|
||||||
for b, burst_corr in enumerate(burst_corrs):
|
|
||||||
#######################################
|
|
||||||
# diagonal
|
|
||||||
|
|
||||||
axis_d = axis_projection(stack_plot, axis='')
|
|
||||||
max_val = np.array(diags[b])
|
|
||||||
loag_val = 10 * np.log10(max_val / np.max(diags)) # / np.max(max_val)
|
|
||||||
colors = colors_overview()
|
|
||||||
print(np.max(loag_val))
|
|
||||||
ax_diagonal = ax_diagonals[b]
|
|
||||||
ax_diagonal.plot(axis_d, loag_val,
|
|
||||||
label=burst_corr_name, zorder=100 - a, alpha=alphafunc_burstadd(
|
|
||||||
alpha, a),
|
|
||||||
color=colors[' P-unit'])
|
|
||||||
|
|
||||||
a += 1
|
|
||||||
ax_diagonal.set_xlim(0, axis_d[-1])
|
|
||||||
#remove_xticks(ax_psd)
|
|
||||||
#ax_psd.set_ylim(-12, 0)
|
|
||||||
ax_diagonal.set_ylim(-14, 0)
|
|
||||||
scalebar = False
|
|
||||||
if scalebar:
|
|
||||||
if b == 0:
|
|
||||||
ax_diagonal.text(-0.2, 0.5, chi_name(), ha='center', va='center', rotation=90,
|
|
||||||
transform=ax_diagonal.transAxes) # diagonal_xlabel())
|
|
||||||
|
|
||||||
if b == 3:#a == len(lines) - 1:
|
|
||||||
|
|
||||||
|
|
||||||
ax_diagonal.show_spines('b')
|
|
||||||
ax_diagonal.yscalebar(1, 0.5, 10, 'dB', va='center', ha='right')
|
|
||||||
# ax_line.yscalebar(1, 0.1, 10, 'dB', va='top', ha='right')
|
|
||||||
#ax_psd.yscalebar(1, 0.5, 10, 'dB', va='center', ha='right')
|
|
||||||
|
|
||||||
#ax_diagonal.text(1.25, 0.5, 'Projection', ha='center', va='center',
|
|
||||||
# transform=ax_diagonal.transAxes, rotation=90)
|
|
||||||
#ax_psd.text(1.25, 0.5, 'Output', ha='center', va='center',
|
|
||||||
# transform=ax_psd.transAxes, rotation=90)
|
|
||||||
if line:
|
|
||||||
ax_line.text(1.25, 0.5, 'Line', ha='center', va='center',
|
|
||||||
transform=ax_line.transAxes, rotation=90)
|
|
||||||
ax_line.show_spines('b')
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
if b == 0:
|
|
||||||
ax_diagonal.set_ylabel('dB', va='center', ha='right')
|
|
||||||
else:
|
|
||||||
remove_yticks(ax_diagonal)
|
|
||||||
# ax_line.yscalebar(1, 0.1, 10, 'dB', va='top', ha='right')
|
|
||||||
# ax_psd.yscalebar(1, 0.5, 10, 'dB', va='center', ha='right')
|
|
||||||
|
|
||||||
# ax_diagonal.text(1.25, 0.5, 'Projection', ha='center', va='center',
|
|
||||||
# transform=ax_diagonal.transAxes, rotation=90)
|
|
||||||
# ax_psd.text(1.25, 0.5, 'Output', ha='center', va='center',
|
|
||||||
# transform=ax_psd.transAxes, rotation=90)
|
|
||||||
#if line:
|
|
||||||
# ax_line.text(1.25, 0.5, 'Line', ha='center', va='center',
|
|
||||||
# transform=ax_line.transAxes, rotation=90)
|
|
||||||
# ax_line.show_spines('b')
|
|
||||||
# else:
|
|
||||||
|
|
||||||
if line:
|
|
||||||
ax_line.set_xlim(0, axis_d[-1])
|
|
||||||
ax_line.set_ylim(-25, 0)
|
|
||||||
remove_xticks(ax_diagonal)
|
|
||||||
else:
|
|
||||||
arrow = False
|
|
||||||
if arrow:
|
|
||||||
if b == 3:
|
|
||||||
set_xlabel_arrow(diagonal_xlabel(), xpos=1.15, ypos=-0.35)
|
|
||||||
else:
|
|
||||||
set_xlabel_arrow(diagonal_xlabel(), xpos=1.15, ypos=-0.35)
|
|
||||||
|
|
||||||
#ax_diagonal.text(0.45, -0.6,diagonal_xlabel(), va='center', ha='center', transform=ax_diagonal.transAxes)
|
|
||||||
#ax_psd.text(0.45, -0.6, tranfer_xlabel(), va='center', ha='center', transform=ax_psd.transAxes)
|
|
||||||
|
|
||||||
ax_diagonal.set_xlabel(diagonal_xlabel(), labelpad = labelpad)
|
|
||||||
|
|
||||||
for a in axps:
|
|
||||||
a.set_ylim(0,np.max(axpsl))
|
|
||||||
#set_clim_same_remainer(clims, ims, maxs, mins, nr_clim, perc05, perc95)
|
|
||||||
#set_same_clim_perc(ims, perc05, perc95)
|
|
||||||
set_clim_same_here(ims, nr_clim='perc',mats = mats, percnr = 85,perc05=perc05, perc95=perc95, lim_type='up')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if line:
|
|
||||||
ax_lines[0].get_shared_y_axes().join(*ax_lines)
|
|
||||||
ax_diagonals[0].get_shared_y_axes().join(*ax_diagonals)
|
|
||||||
#ax_psds[0].get_shared_y_axes().join(*ax_psds)ax_psds,
|
|
||||||
|
|
||||||
tags = np.transpose([axss])#,ax_diagonals,
|
|
||||||
xoffs = -3.1#2.9
|
|
||||||
fig.tag(ax_stim, xoffs=xoffs)
|
|
||||||
fig.tag(ax_spikes,xoffs=xoffs)#,-4.5
|
|
||||||
tag2(fig,axss,xoffs=xoffs, yoffs = 1.9)#.35#, -0.2
|
|
||||||
save_visualization(pdf=True)
|
|
||||||
|
|
||||||
|
|
||||||
def grid_matrices(a, grid_lower):
|
|
||||||
grid_data = gridspec.GridSpecFromSubplotSpec(2, 1, grid_lower[a], hspace=0.5,
|
|
||||||
height_ratios=[1.7, 1]) # height_ratios=[1,1,1, 6],
|
|
||||||
return grid_data
|
|
||||||
|
|
||||||
|
|
||||||
def alphafunc_burstadd(alpha, i):
|
|
||||||
return 1 - alpha * i
|
|
||||||
|
|
||||||
|
|
||||||
def set_same_clim_perc(ims, perc05, perc95):
|
|
||||||
for i, im in enumerate(ims):
|
|
||||||
im.set_clim(np.min(perc05), np.max(perc95))
|
|
||||||
|
|
||||||
|
|
||||||
def set_clim_same_remainer(clims, ims, maxs, mins, nr_clim, perc05, perc95):
|
|
||||||
if 'all' in clims:
|
|
||||||
remainer = clims.replace('all', '')
|
|
||||||
if remainer == '':
|
|
||||||
remainer = 0
|
|
||||||
else:
|
|
||||||
remainer = int(remainer)
|
|
||||||
# embed()
|
|
||||||
# remainer = 0
|
|
||||||
|
|
||||||
# set_clim_same_here()
|
|
||||||
for i, im in enumerate(ims):
|
|
||||||
|
|
||||||
if i < remainer:
|
|
||||||
# im.set_clim(np.min(np.min(mins)) * nr_clim, np.max(np.max(maxs) / nr_clim))
|
|
||||||
im.set_clim(perc05[i], perc95[i])
|
|
||||||
else:
|
|
||||||
if nr_clim == 'perc':
|
|
||||||
im.set_clim(perc05[i], perc95[i])
|
|
||||||
else:
|
|
||||||
im.set_clim(np.min(perc05), np.max(perc95))
|
|
||||||
# im.set_clim(mins[i] * nr_clim, maxs[i] / nr_clim)
|
|
||||||
else:
|
|
||||||
for i, im in enumerate(ims):
|
|
||||||
if nr_clim == 'perc':
|
|
||||||
im.set_clim(perc05[i], perc95[i])
|
|
||||||
else:
|
|
||||||
im.set_clim(mins[i] * nr_clim, maxs[i] / nr_clim)
|
|
||||||
|
|
||||||
|
|
||||||
#####################################################
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
##################################################
|
|
||||||
# compare all scales with 0.2, 0.25, 0.3, 0.35
|
|
||||||
model = resave_small_files("models_big_fit_d_right.csv", load_folder = 'calc_model_core')
|
|
||||||
#e#mbed()
|
|
||||||
cells = model.cell.unique()
|
|
||||||
cells_m = np.array(model.cell)
|
|
||||||
cells = []
|
|
||||||
cells = ['2018-05-08-af-invivo-1', '2018-05-08-ad-invivo-1', '2012-12-20-ae-invivo-1', '2015-01-20-af-invivo-1',
|
|
||||||
'2012-07-12-ap-invivo-1', '2018-05-08-ae-invivo-1',
|
|
||||||
'2014-12-11-aa-invivo-1',
|
|
||||||
'2015-01-15-ab-invivo-1', '2018-06-25-ad-invivo-1',
|
|
||||||
'2011-10-25-ad-invivo-1', '2018-05-08-ad-invivo-1',
|
|
||||||
'2018-05-08-ab-invivo-1', '2014-06-06-ag-invivo-1',
|
|
||||||
'2014-06-06-ac-invivo-1', '2012-04-20-ak-invivo-1',
|
|
||||||
'2018-05-08-aa-invivo-1']
|
|
||||||
cells.extend(cells_m)
|
|
||||||
cells = ["2013-01-08-aa-invivo-1"]
|
|
||||||
|
|
||||||
#cells = ['2012-04-20-ak-invivo-1']
|
|
||||||
burst_corrs = ['', '_burst_added1_','_burst_added2_','_burst_added3_',]#'_burst_added2only_',]#'_burst_added2_',
|
|
||||||
params = {'burst_corrs': burst_corrs}
|
|
||||||
########
|
|
||||||
# das mit den niedriegeren CVs machen
|
|
||||||
redo = True
|
|
||||||
show = True
|
|
||||||
repeats = [1000000] #250000 250000**params,
|
|
||||||
#repeats = [10000]
|
|
||||||
|
|
||||||
D_extraction_method = ['additiv_cv_adapt_factor_scaled0.2','additiv_cv_adapt_factor_scaled0.25',
|
|
||||||
'additiv_cv_adapt_factor_scaled0.3','additiv_cv_adapt_factor_scaled0.35',]
|
|
||||||
D_extraction_method = ['additiv_cv_adapt_factor_scaled0.3','additiv_cv_adapt_factor_scaled0.35',
|
|
||||||
'additiv_cv_adapt_factor_scaled0.4','additiv_cv_adapt_factor_scaled0.45',]
|
|
||||||
D_extraction_method = ['additiv_cv_adapt_factor_scaled0.4','additiv_cv_adapt_factor_scaled0.45',]
|
|
||||||
D_extraction_method = ['additiv_cv_adapt_factor_scaled',
|
|
||||||
]#'additiv_visual_d_4_scaled',
|
|
||||||
#cells = ['2018-05-08-ad-invivo-1','2018-05-08-af-invivo-1','2018-06-25-ad-invivo-1']
|
|
||||||
#todo:hier das mit dem psd machen
|
|
||||||
#embed()#'perc'
|
|
||||||
plt_squares_bursts_single_psd2(row = 1, level_extraction=[''], col = 4, cells = cells, burst_corrs=burst_corrs, D_extraction_method=D_extraction_method, nr_clim=10,
|
|
||||||
many=False,internal_noise=['RAM'],
|
|
||||||
external_noise=['RAM'], width=0.005, HZ50=False, fs=7, hs=0.8, redo=redo,
|
|
||||||
var_items=[k for k in params], clims='all0', repeats=repeats, show=show, label=r'$\frac{1}{S}$')#r'$\frac{1}{mV^2S}$'
|
|
||||||
#embed()
|
|
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 160 KiB |
@ -1,388 +0,0 @@
|
|||||||
from utils_suseptibility import *#p_units_to_show,burst_cells
|
|
||||||
#from plt_RAM import plt_punit
|
|
||||||
|
|
||||||
# plt_cellbody_singlecell
|
|
||||||
def plt_cellbody_singlecell_bursts2(grid1, frame, save_names, cells_plot, cell_type_type, plus=1, ax3=[],
|
|
||||||
burst_corr='_burst_corr_individual', cells_plot2 = []):
|
|
||||||
#plt.rcParams["font.family"] = "Times New Roman"
|
|
||||||
colors = colors_overview()
|
|
||||||
stack = []
|
|
||||||
|
|
||||||
axis = []
|
|
||||||
|
|
||||||
ims = []
|
|
||||||
|
|
||||||
tags_cell = []
|
|
||||||
#titles = ['Low CV P-unit', 'High CV P-unit', 'Ampullary cell']
|
|
||||||
for c, cell in enumerate(cells_plot):
|
|
||||||
|
|
||||||
print(cell)
|
|
||||||
|
|
||||||
frame_cell = frame[(frame['cell'] == cell)]
|
|
||||||
|
|
||||||
frame_cell = unify_cell_names(frame_cell, cell_type=cell_type_type)
|
|
||||||
try:
|
|
||||||
cell_type = frame_cell[cell_type_type].iloc[0]
|
|
||||||
except:
|
|
||||||
print('cell type prob')
|
|
||||||
embed()
|
|
||||||
spikes = frame_cell.spikes.iloc[0]
|
|
||||||
wss = [0.15, 0.66]
|
|
||||||
# embed()
|
|
||||||
# eod, sampling_rate, ds, time_eod = find_eod(frame_cell)
|
|
||||||
tags = []
|
|
||||||
spikes_base = []
|
|
||||||
isi = []
|
|
||||||
frs_calc = []
|
|
||||||
fr = frame_cell.fr.iloc[0]
|
|
||||||
cv = frame_cell.cv.iloc[0]
|
|
||||||
vs = frame_cell.vs.iloc[0]
|
|
||||||
eod_fr = frame_cell.EODf.iloc[0]
|
|
||||||
print('EODF' + str(eod_fr))
|
|
||||||
spikes_base, isi, frs_calc, cont_spikes = load_spikes(spikes, eod_fr)
|
|
||||||
|
|
||||||
save_name_type = ['_allspikes_', '_burstIndividual_']
|
|
||||||
|
|
||||||
colors_b = ['grey', colors[cell_type]]
|
|
||||||
ims = []
|
|
||||||
|
|
||||||
|
|
||||||
wr_l = [1, 0.1, 1, 1]
|
|
||||||
wr_l = wr_l_cells_susept()
|
|
||||||
wr_u = [1, 0.1, 1, 1]
|
|
||||||
grid_cell, grid_upper = grids_upper_susept_pics(c, grid1, hs=0.75, row = 2, hr = [1, 0.8], wr_u = wr_u)
|
|
||||||
wss = ws_for_susept_pic()
|
|
||||||
# todo: das wenn die zwei ungleich ist ist noch ein Problem
|
|
||||||
widht_ratios = [2 + wss[0], 2 + wss[1]]
|
|
||||||
|
|
||||||
grid_lower = gridspec.GridSpecFromSubplotSpec(1, len(save_names), grid_cell[1], hspace=0.1, wspace=0.15,
|
|
||||||
width_ratios=widht_ratios)
|
|
||||||
|
|
||||||
'''grid_s1 = gridspec.GridSpecFromSubplotSpec(2, 2, grid_lower[0],
|
|
||||||
hspace=0.1, wspace=wss[0],
|
|
||||||
width_ratios=[0.8,
|
|
||||||
1]) # height_ratios=[1.5, 1.5, 5],
|
|
||||||
|
|
||||||
# plot the same also to the next plot
|
|
||||||
grid_s2 = gridspec.GridSpecFromSubplotSpec(2, 2, grid_lower[1],
|
|
||||||
hspace=0.1, wspace=wss[1],
|
|
||||||
width_ratios=[0.8,
|
|
||||||
1]) # height_ratios=[1.5, 1.5, 5],
|
|
||||||
'''
|
|
||||||
several = False
|
|
||||||
extra_input = False#>
|
|
||||||
axes = []
|
|
||||||
axos = []
|
|
||||||
axds = []
|
|
||||||
axd2, axi, axo2, grid_lower, grid_s1, grid_s2 = grids_for_psds(save_names, extra_input, grid_cell,
|
|
||||||
several, widht_ratios = widht_ratios, wss = wss, wr = wr_l)
|
|
||||||
|
|
||||||
|
|
||||||
#axo2 = None
|
|
||||||
#axd2 = None
|
|
||||||
|
|
||||||
test_clim = False
|
|
||||||
|
|
||||||
zorder = [100,1]
|
|
||||||
mats = []
|
|
||||||
ax_psds = []
|
|
||||||
add_nonlin_title = None
|
|
||||||
title_squares = ['All spikes, ', 'First spike, ']
|
|
||||||
var = ['fr','fr_burst_corr_individual']
|
|
||||||
for aa, save_name in enumerate(save_names):
|
|
||||||
add_save = '_cell' + cell + save_name_type[aa] #
|
|
||||||
|
|
||||||
# grid_lower = gridspec.GridSpecFromSubplotSpec(1, len(save_names), grid_cell[1], hspace=0.1,
|
|
||||||
# wspace=0.15)
|
|
||||||
|
|
||||||
title_square = title_squares[aa]
|
|
||||||
load_name = load_folder_name('calc_RAM') + '/' + save_name + '_' + cell
|
|
||||||
# embed()
|
|
||||||
# axes = []
|
|
||||||
stack = load_data_susept(load_name + '.pkl', load_name, add=add_save, load_version='csv', cells = cells_plot2)
|
|
||||||
|
|
||||||
if len(stack) > 0:
|
|
||||||
|
|
||||||
files = stack['file_name'].unique()
|
|
||||||
amps = stack['amp'].unique()
|
|
||||||
file_name = files[0]
|
|
||||||
stack_file = stack[stack['file_name'] == file_name]
|
|
||||||
amps_defined = [np.min(stack_file['amp'].unique())]
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
xpos_xlabel = -0.24
|
|
||||||
for aaa, amp in enumerate(amps_defined):
|
|
||||||
if amp in np.array(stack_file['amp']):
|
|
||||||
|
|
||||||
alpha = find_alpha_val(aa, save_names)
|
|
||||||
#add_save = '_cell' + str(cell) + '_amp_' + str(amp)
|
|
||||||
|
|
||||||
xlim = [0,1.1]#
|
|
||||||
if not several:
|
|
||||||
#embed()
|
|
||||||
#lim = find_lim_here(cell, 'individual')
|
|
||||||
fr = frame[frame.cell == cell][var[aa]].iloc[0]
|
|
||||||
fr_bc = frame[frame.cell == cell][var[-1]].iloc[0]
|
|
||||||
#embed()
|
|
||||||
diagonals_prj_l, axi, eod_fr, fr, stack_final1, axds, axos, ax_square, axo2, axd2,mat, add_nonlin_title = plt_psds_in_one_squares_next(
|
|
||||||
aa, add_save, amp, amps_defined, axds, axes, axis, axos, c, cells_plot, colors_b,
|
|
||||||
eod_fr, file_name, grid_lower, ims, load_name, save_names, stack_file, wss, xlim = [],
|
|
||||||
test_clim=test_clim, zorder=zorder[aa], alpha=alpha, extra_input=extra_input, fr=fr,
|
|
||||||
title_square=title_square,fr_diag = fr_bc, xpos_xlabel=xpos_xlabel, add_nonlin_title=add_nonlin_title,
|
|
||||||
color=colors[cell_type], axo2=axo2, peaks_extra = True, axd2=axd2, axi=axi, iterate_var=save_names, amp_give = False)
|
|
||||||
mats.append(mat)
|
|
||||||
print(np.max(np.max(mat)))
|
|
||||||
else:
|
|
||||||
axi, eod_fr, fr, stack_final1, stack_spikes, axds, axos, ax_square, axo2, axd2 = plt_psds_in_one_squares(
|
|
||||||
aa, add, amp,
|
|
||||||
amps_defined, axds, axes,
|
|
||||||
axis, axos, c, cells_plot,
|
|
||||||
colors_b, eod_fr,
|
|
||||||
file_name, files, fr,
|
|
||||||
grid_s1, grid_s2, ims,
|
|
||||||
load_name, save_names,
|
|
||||||
stack_file, wss, xlim, axo2=axo2, axd2=axd2, iterate_var=save_names)
|
|
||||||
|
|
||||||
if aa == 0:
|
|
||||||
if extra_input:
|
|
||||||
tags.append(axi)
|
|
||||||
else:
|
|
||||||
tags.append(axo2)
|
|
||||||
|
|
||||||
tags.append(ax_square)
|
|
||||||
|
|
||||||
if aa == 1:
|
|
||||||
tags.append(axd2)
|
|
||||||
ax_psds.append(axo2)
|
|
||||||
ax_psds.append(axd2)
|
|
||||||
################################
|
|
||||||
# do the scatter of these cells
|
|
||||||
add = ['', '_burst_corr', ]
|
|
||||||
add = ['', '_burst_corr_individual']
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
if len(stack) > 0:
|
|
||||||
load_name = load_folder_name('calc_RAM') + '/' + save_names[aa] + '_' + cell
|
|
||||||
if ax3 != []:
|
|
||||||
try:
|
|
||||||
frame_g = base_to_stim(load_name, frame, cell_type_type, cell_type, stack=stack)
|
|
||||||
except:
|
|
||||||
print('stim problem')
|
|
||||||
embed()
|
|
||||||
try:
|
|
||||||
ax3.scatter(frame_g['cv'], frame_g['cv_stim'], zorder=2, alpha=1,
|
|
||||||
label=cell_type, s=15,
|
|
||||||
color=colors[str(cell_type)], facecolor='white')
|
|
||||||
except:
|
|
||||||
print('scatter problem')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
######################################################
|
|
||||||
#if aa == 0:
|
|
||||||
# color_here = 'grey'
|
|
||||||
#else:
|
|
||||||
color_here = ['grey', colors[str(cell_type)]][aa]#[colors[str(cell_type)]
|
|
||||||
add = ['', '_burst_corr', ]
|
|
||||||
add = ['', '_burst_corr_individual']
|
|
||||||
#colors_hist = ['grey', colors[str(cell_type)]]
|
|
||||||
# if len(hists_both) > 1:
|
|
||||||
# colors_hist = ['grey', colors[str(cell_type)]]
|
|
||||||
# else:
|
|
||||||
# colors_hist = [colors[str(cell_type)]]
|
|
||||||
# for gg in range(len(hists_both)):
|
|
||||||
# if len(hists_both) > 1:
|
|
||||||
# hists_here = hists_both[gg]
|
|
||||||
# embed()
|
|
||||||
# spikes_base, hists, frs_calc, cont_spikes = load_spikes(spikes, eod_fr, spikes_base, hists, frs_calc)
|
|
||||||
|
|
||||||
xlim_e = [0, 200]
|
|
||||||
|
|
||||||
#if 'spikes' in stack_final1.keys():
|
|
||||||
if aa == 0:
|
|
||||||
axss = plt.subplot(grid_upper[1, -2::])
|
|
||||||
# axii = plt.subplot(grid_upper[:, 0])
|
|
||||||
# try:
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
# ax_spikes = plt.subplot(grid_upper[1, 1::])
|
|
||||||
eod_fr, length, stack_final, stack_final1, trial_nr = stack_preprocessing(amp, stack_file)
|
|
||||||
|
|
||||||
stack_spikes = load_data_susept(load_name + '.pkl', load_name, add=add_save, load_version='csv',
|
|
||||||
load_type='spikes',
|
|
||||||
trial_nr=trial_nr, stimulus_length=length, amp=amp,
|
|
||||||
file_name=file_name, redo = True)
|
|
||||||
|
|
||||||
# das mache ich damit der Stimulus für Mascha hier einmal mit abgespeichert ist
|
|
||||||
#stack_stim = load_data_susept(load_name + '.pkl', load_name, add=add + '_sampling_' + str(sampling),
|
|
||||||
# load_version='csv', load_type='stimulus',
|
|
||||||
# trial_nr=trial_nr, stimulus_length=length, redo=True, amp=amp,
|
|
||||||
# file_name=file_name)
|
|
||||||
|
|
||||||
|
|
||||||
plt_spikes(amps_defined, aa, c, cell, cell_type, cells_plot, color_here, eod_fr, fr, axss,
|
|
||||||
stack_final1, stack_spikes, xlim, axi=axi,xlim_e = [0,150], alpha = alpha, spikes_max = 3)
|
|
||||||
|
|
||||||
|
|
||||||
# print('spikes not there yet')
|
|
||||||
#else:
|
|
||||||
# eod_mt, sampling, spikes_loaded = nix_load(cell, stack_final1)
|
|
||||||
|
|
||||||
##############################
|
|
||||||
# isi
|
|
||||||
if len(isi) > 0:
|
|
||||||
if aa == 0:
|
|
||||||
grid_p = gridspec.GridSpecFromSubplotSpec(1, 2, grid_upper[:, 0], width_ratios=[1.4, 2],
|
|
||||||
wspace=0.3,
|
|
||||||
hspace=0.55)
|
|
||||||
#grid_p = gridspec.GridSpecFromSubplotSpec(2, 1, grid_upper[:, 0], height_ratios=[1.4, 2],
|
|
||||||
# hspace=0.55)
|
|
||||||
# hspace=0.25)
|
|
||||||
ax_isi = plt.subplot(grid_p[0])
|
|
||||||
ax_p = plt.subplot(grid_p[1])
|
|
||||||
tags.insert(0, ax_isi)
|
|
||||||
lim_here = find_lim_here(cell, burst_corr=burst_corr)
|
|
||||||
if np.min(np.concatenate(isi)) < lim_here:
|
|
||||||
_, spikes_ex, frs_calc2 = correct_burstiness(isi, spikes_base,
|
|
||||||
[eod_fr] * len(spikes_base),
|
|
||||||
[eod_fr] * len(spikes_base), lim=lim_here,
|
|
||||||
burst_corr=burst_corr)
|
|
||||||
else:
|
|
||||||
# da machen wir die Burst corr spikes anders
|
|
||||||
lim_here = find_lim_here(cell, burst_corr=burst_corr)
|
|
||||||
if np.min(np.concatenate(isi)) < lim_here:
|
|
||||||
isi, spikes_ex, frs_calc2 = correct_burstiness(isi, spikes_base,
|
|
||||||
[eod_fr] * len(spikes_base),
|
|
||||||
[eod_fr] * len(spikes_base), lim=lim_here,
|
|
||||||
burst_corr=burst_corr)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
#if len(isi[0])<1:
|
|
||||||
# print('len thing')
|
|
||||||
# embed()
|
|
||||||
right = False
|
|
||||||
ax_isi = base_cells_susept(ax_isi, ax_p, c, cell, cell_type, cells_plot, colors, eod_fr, frame,
|
|
||||||
isi, right, spikes_ex,stack,xlim,add_texts = [-3.1,0],texts_left = [250.3,0],peaks = True, pos = -0.55, titles = ['Bursty P-unit,','Bursty P-unit,'],fr_name = '$f_{BaseCorrected}$')
|
|
||||||
#plt_susept_isi_base(c, cell_type, cells_plot,'grey', ax_isi, isi, xlim=[])# color_here
|
|
||||||
#ax_p = plt_susept_psd_base(cell_type, 'grey', eod_fr, ax_p, spikes_base, xlim,
|
|
||||||
# right) #colors[str(cell_type)]
|
|
||||||
#remove_xticks(ax_p)
|
|
||||||
#else:
|
|
||||||
# embed()
|
|
||||||
##################################
|
|
||||||
# stimulus
|
|
||||||
xlim_e = [0, 100]
|
|
||||||
if aa == 0:
|
|
||||||
axe = plt.subplot(grid_upper[0, -2::])
|
|
||||||
plt_stimulus(eod_fr, axe, stack_final1, xlim_e, files[0])
|
|
||||||
|
|
||||||
tags.insert(1, axe)
|
|
||||||
#embed()
|
|
||||||
set_same_ylimscale(ax_psds)
|
|
||||||
labels_for_psds(axd2, axi, axo2, extra_input, right = right, xpos_xlabel = xpos_xlabel)
|
|
||||||
|
|
||||||
tags_cell.append(tags)
|
|
||||||
if not test_clim:
|
|
||||||
set_clim_same_here(ims, mats=mats, lim_type='up', mean_type = True, percnr = 94)
|
|
||||||
|
|
||||||
#set_clim_same_here(ims, clims='all', same = 'same', lim_type='up')
|
|
||||||
#set_clim_same_here(ims, clims='all', same = 'same', lim_type='up')
|
|
||||||
# join_y(axes)
|
|
||||||
# axds[0].get_shared_y_axes().join(*axds)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
# todo: das muss noch der gleiche ylim sein
|
|
||||||
try:
|
|
||||||
set_same_ylim(axos)
|
|
||||||
set_same_ylim(axds)
|
|
||||||
except:
|
|
||||||
print('axo thing')
|
|
||||||
#fig = plt.gcf()
|
|
||||||
#fig.tag(tags_cell, xoffs=-4, yoffs=1.9) # -1.5diese Offsets sind nicht intuitiv
|
|
||||||
if not test_clim:
|
|
||||||
try:
|
|
||||||
if len(cells_plot2) ==1:
|
|
||||||
tags_susept_pictures(tags_cell)
|
|
||||||
else:
|
|
||||||
tags_susept_pictures(tags_cell,yoffs=np.array([1.1, 1.1, 2.9, 2.9, 2.9, 2.9]))
|
|
||||||
except:
|
|
||||||
print('tag thing')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
|
|
||||||
def burst_cells(amp_desired=[0.5, 1, 5], cell_class=' Ampullary', cells_plot2=[], show=False, annotate=False):
|
|
||||||
plot_style()
|
|
||||||
default_figsize(column=2, width=12, length=7.7) #ts=10, fs=10, ls=10,
|
|
||||||
save_names = ['noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr']
|
|
||||||
|
|
||||||
# 'noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s',#__burstIndividual_
|
|
||||||
# ]
|
|
||||||
save_names = ['noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual_']
|
|
||||||
save_names = ['noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr']
|
|
||||||
save_names = ['noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr',
|
|
||||||
'noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr',
|
|
||||||
'noise_data10_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s_spikes_']
|
|
||||||
save_names = [
|
|
||||||
'noise_data10_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s_spikes_',
|
|
||||||
'noise_data10_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual__spikes_']
|
|
||||||
save_names = [version_final(),version_final()+'__burstIndividual_']
|
|
||||||
# amps_desired, cell_type_type, cells_plot, frame, cell_types = load_isis(save_names, amps_desired = amp_desired, cell_class = cell_class)
|
|
||||||
cell_type_type = 'cell_type_reclassified'
|
|
||||||
#frame = load_cv_base_frame(cells_plot2, cell_type_type=cell_type_type)
|
|
||||||
#
|
|
||||||
frame, frame_spikes = load_cv_vals_susept(cells_plot2, EOD_type='synch',
|
|
||||||
names_keep=['spikes','gwn', 'fs', 'EODf', 'cv', 'fr', 'width_75', 'vs',
|
|
||||||
'cv_burst_corr_individual',
|
|
||||||
'fr_burst_corr_individual',
|
|
||||||
'width_75_burst_corr_individual',
|
|
||||||
'vs_burst_corr_individual', 'cell_type_reclassified',
|
|
||||||
'cell'], path_sp = '/calc_base_data-base_frame_overview.pkl',frame_general = False)
|
|
||||||
|
|
||||||
#print(cell)
|
|
||||||
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
|
|
||||||
# if len(cells_plot2)>0:
|
|
||||||
cells_plot = cells_plot2
|
|
||||||
# '2012-05-15-ac-invivo-1','2010-06-21-ac-invivo-1','2010-06-18-ah-invivo-1'
|
|
||||||
# elif len(cells_plot)>6:
|
|
||||||
# cells_plot = cells_plot[0:6]
|
|
||||||
# cells_plot = cells_plot[0:6]
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
################################################
|
|
||||||
# fig = plt.figure(figsize=(11.5, 6))
|
|
||||||
# das entscheided ob wir ein burst pic haben werden
|
|
||||||
#default_settings(ts=10, fs=10, ls=10, width=12, length=3.25 * len(cells_plot), column=2)
|
|
||||||
|
|
||||||
default_settings_cells_susept(cells_plot, l=3.65)
|
|
||||||
|
|
||||||
if len(cells_plot) > 1:
|
|
||||||
grid1 = big_grid_susept_pics(cells_plot, top=0.96, bottom=0.065)
|
|
||||||
else:
|
|
||||||
grid1 = big_grid_susept_pics(cells_plot, top=0.9, bottom=0.12)
|
|
||||||
|
|
||||||
|
|
||||||
plt_cellbody_singlecell_bursts2(grid1, frame, save_names, cells_plot, cell_type_type,
|
|
||||||
plus=1, burst_corr='_burst_corr_individual', cells_plot2 = cells_plot2)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
# plt.show()
|
|
||||||
fig = plt.gcf()
|
|
||||||
|
|
||||||
save_visualization(pdf=True)
|
|
||||||
# fig.savefig()
|
|
||||||
# save_all(0, cell+save_name+cell_sorted, show, '')
|
|
||||||
# show_func(show = show)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
cells_plot1 = p_units_to_show(type_here = 'contrasts')
|
|
||||||
cells_plot1 = p_units_to_show(type_here='contrasts')
|
|
||||||
cells_plot2 = p_units_to_show(type_here = 'bursts')
|
|
||||||
|
|
||||||
burst_cells(cells_plot2 = [cells_plot2[0]], show = True, cell_class =' P-unit')#
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 138 KiB |
@ -1,324 +0,0 @@
|
|||||||
from utils_suseptibility import *#p_units_to_show,burst_cells
|
|
||||||
#from plt_RAM import plt_punit
|
|
||||||
from burst_cells_suscept import burst_cells
|
|
||||||
|
|
||||||
# plt_cellbody_singlecell
|
|
||||||
def plt_cellbody_singlecell_bursts2(grid1, frame, save_names, cells_plot, cell_type_type, plus=1, ax3=[],
|
|
||||||
burst_corr='_burst_corr_individual'):
|
|
||||||
#plt.rcParams["font.family"] = "Times New Roman"
|
|
||||||
colors = colors_overview()
|
|
||||||
stack = []
|
|
||||||
|
|
||||||
axis = []
|
|
||||||
|
|
||||||
ims = []
|
|
||||||
|
|
||||||
tags_cell = []
|
|
||||||
#titles = ['Low CV P-unit', 'High CV P-unit', 'Ampullary cell']
|
|
||||||
for c, cell in enumerate(cells_plot):
|
|
||||||
|
|
||||||
print(cell)
|
|
||||||
|
|
||||||
frame_cell = frame[(frame['cell'] == cell)]
|
|
||||||
|
|
||||||
frame_cell = unify_cell_names(frame_cell, cell_type=cell_type_type)
|
|
||||||
try:
|
|
||||||
cell_type = frame_cell[cell_type_type].iloc[0]
|
|
||||||
except:
|
|
||||||
print('cell type prob')
|
|
||||||
embed()
|
|
||||||
spikes = frame_cell.spikes.iloc[0]
|
|
||||||
wss = [0.15, 0.66]
|
|
||||||
# embed()
|
|
||||||
# eod, sampling_rate, ds, time_eod = find_eod(frame_cell)
|
|
||||||
tags = []
|
|
||||||
spikes_base = []
|
|
||||||
isi = []
|
|
||||||
frs_calc = []
|
|
||||||
fr = frame_cell.fr.iloc[0]
|
|
||||||
cv = frame_cell.cv.iloc[0]
|
|
||||||
vs = frame_cell.vs.iloc[0]
|
|
||||||
eod_fr = frame_cell.EODf.iloc[0]
|
|
||||||
print('EODF' + str(eod_fr))
|
|
||||||
spikes_base, isi, frs_calc, cont_spikes = load_spikes(spikes, eod_fr)
|
|
||||||
|
|
||||||
save_name_type = ['_allspikes_', '_burstIndividual_']
|
|
||||||
|
|
||||||
colors_b = ['grey', colors[cell_type]]
|
|
||||||
ims = []
|
|
||||||
|
|
||||||
|
|
||||||
wr_l = [1, 0.1, 1, 1]
|
|
||||||
wr_l = wr_l_cells_susept()
|
|
||||||
wr_u = [1, 0.1, 1, 1]
|
|
||||||
grid_cell, grid_upper = grids_upper_susept_pics(c, grid1, hs=0.75, row = 2, hr = [1, 0.8], wr_u = wr_u)
|
|
||||||
wss = ws_for_susept_pic()
|
|
||||||
# todo: das wenn die zwei ungleich ist ist noch ein Problem
|
|
||||||
widht_ratios = [2 + wss[0], 2 + wss[1]]
|
|
||||||
|
|
||||||
grid_lower = gridspec.GridSpecFromSubplotSpec(1, len(save_names), grid_cell[1], hspace=0.1, wspace=0.15,
|
|
||||||
width_ratios=widht_ratios)
|
|
||||||
|
|
||||||
'''grid_s1 = gridspec.GridSpecFromSubplotSpec(2, 2, grid_lower[0],
|
|
||||||
hspace=0.1, wspace=wss[0],
|
|
||||||
width_ratios=[0.8,
|
|
||||||
1]) # height_ratios=[1.5, 1.5, 5],
|
|
||||||
|
|
||||||
# plot the same also to the next plot
|
|
||||||
grid_s2 = gridspec.GridSpecFromSubplotSpec(2, 2, grid_lower[1],
|
|
||||||
hspace=0.1, wspace=wss[1],
|
|
||||||
width_ratios=[0.8,
|
|
||||||
1]) # height_ratios=[1.5, 1.5, 5],
|
|
||||||
'''
|
|
||||||
several = False
|
|
||||||
extra_input = False#>
|
|
||||||
axes = []
|
|
||||||
axos = []
|
|
||||||
axds = []
|
|
||||||
axd2, axi, axo2, grid_lower, grid_s1, grid_s2 = grids_for_psds(save_names, extra_input, grid_cell,
|
|
||||||
several, widht_ratios = widht_ratios, wss = wss, wr = wr_l)
|
|
||||||
|
|
||||||
|
|
||||||
#axo2 = None
|
|
||||||
#axd2 = None
|
|
||||||
|
|
||||||
test_clim = False
|
|
||||||
|
|
||||||
zorder = [100,1]
|
|
||||||
mats = []
|
|
||||||
ax_psds = []
|
|
||||||
add_nonlin_title = None
|
|
||||||
title_squares = ['All spikes, ', 'First spike, ']
|
|
||||||
var = ['fr','fr_burst_corr_individual']
|
|
||||||
for aa, save_name in enumerate(save_names):
|
|
||||||
add_save = '_cell' + cell + save_name_type[aa] #
|
|
||||||
|
|
||||||
# grid_lower = gridspec.GridSpecFromSubplotSpec(1, len(save_names), grid_cell[1], hspace=0.1,
|
|
||||||
# wspace=0.15)
|
|
||||||
|
|
||||||
title_square = title_squares[aa]
|
|
||||||
load_name = load_folder_name('calc_RAM') + '/' + save_name + '_' + cell
|
|
||||||
# embed()
|
|
||||||
# axes = []
|
|
||||||
stack = load_data_susept(load_name + '.pkl', load_name, add=add_save, load_version='csv', cells = cells_plot2)
|
|
||||||
|
|
||||||
if len(stack) > 0:
|
|
||||||
|
|
||||||
files = stack['file_name'].unique()
|
|
||||||
amps = stack['amp'].unique()
|
|
||||||
file_name = files[0]
|
|
||||||
stack_file = stack[stack['file_name'] == file_name]
|
|
||||||
amps_defined = [np.min(stack_file['amp'].unique())]
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
xpos_xlabel = -0.24
|
|
||||||
for aaa, amp in enumerate(amps_defined):
|
|
||||||
if amp in np.array(stack_file['amp']):
|
|
||||||
|
|
||||||
alpha = find_alpha_val(aa, save_names)
|
|
||||||
#add_save = '_cell' + str(cell) + '_amp_' + str(amp)
|
|
||||||
|
|
||||||
xlim = [0,1.1]#
|
|
||||||
if not several:
|
|
||||||
#embed()
|
|
||||||
#lim = find_lim_here(cell, 'individual')
|
|
||||||
fr = frame[frame.cell == cell][var[aa]].iloc[0]
|
|
||||||
fr_bc = frame[frame.cell == cell][var[-1]].iloc[0]
|
|
||||||
#embed()
|
|
||||||
diagonals_prj_l, axi, eod_fr, fr, stack_final1, axds, axos, ax_square, axo2, axd2,mat, add_nonlin_title = plt_psds_in_one_squares_next(
|
|
||||||
aa, add_save, amp, amps_defined, axds, axes, axis, axos, c, cells_plot, colors_b,
|
|
||||||
eod_fr, file_name, grid_lower, ims, load_name, save_names, stack_file, wss, xlim = [],
|
|
||||||
test_clim=test_clim, zorder=zorder[aa], alpha=alpha, extra_input=extra_input, fr=fr,
|
|
||||||
title_square=title_square,fr_diag = fr_bc, xpos_xlabel=xpos_xlabel, add_nonlin_title=add_nonlin_title,
|
|
||||||
color=colors[cell_type], axo2=axo2, peaks_extra = True, axd2=axd2, axi=axi, iterate_var=save_names, amp_give = False)
|
|
||||||
mats.append(mat)
|
|
||||||
print(np.max(np.max(mat)))
|
|
||||||
else:
|
|
||||||
axi, eod_fr, fr, stack_final1, stack_spikes, axds, axos, ax_square, axo2, axd2 = plt_psds_in_one_squares(
|
|
||||||
aa, add, amp,
|
|
||||||
amps_defined, axds, axes,
|
|
||||||
axis, axos, c, cells_plot,
|
|
||||||
colors_b, eod_fr,
|
|
||||||
file_name, files, fr,
|
|
||||||
grid_s1, grid_s2, ims,
|
|
||||||
load_name, save_names,
|
|
||||||
stack_file, wss, xlim, axo2=axo2, axd2=axd2, iterate_var=save_names)
|
|
||||||
|
|
||||||
if aa == 0:
|
|
||||||
if extra_input:
|
|
||||||
tags.append(axi)
|
|
||||||
else:
|
|
||||||
tags.append(axo2)
|
|
||||||
|
|
||||||
tags.append(ax_square)
|
|
||||||
|
|
||||||
if aa == 1:
|
|
||||||
tags.append(axd2)
|
|
||||||
ax_psds.append(axo2)
|
|
||||||
ax_psds.append(axd2)
|
|
||||||
################################
|
|
||||||
# do the scatter of these cells
|
|
||||||
add = ['', '_burst_corr', ]
|
|
||||||
add = ['', '_burst_corr_individual']
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
if len(stack) > 0:
|
|
||||||
load_name = load_folder_name('calc_RAM') + '/' + save_names[aa] + '_' + cell
|
|
||||||
if ax3 != []:
|
|
||||||
try:
|
|
||||||
frame_g = base_to_stim(load_name, frame, cell_type_type, cell_type, stack=stack)
|
|
||||||
except:
|
|
||||||
print('stim problem')
|
|
||||||
embed()
|
|
||||||
try:
|
|
||||||
ax3.scatter(frame_g['cv'], frame_g['cv_stim'], zorder=2, alpha=1,
|
|
||||||
label=cell_type, s=15,
|
|
||||||
color=colors[str(cell_type)], facecolor='white')
|
|
||||||
except:
|
|
||||||
print('scatter problem')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
######################################################
|
|
||||||
#if aa == 0:
|
|
||||||
# color_here = 'grey'
|
|
||||||
#else:
|
|
||||||
color_here = ['grey', colors[str(cell_type)]][aa]#[colors[str(cell_type)]
|
|
||||||
add = ['', '_burst_corr', ]
|
|
||||||
add = ['', '_burst_corr_individual']
|
|
||||||
#colors_hist = ['grey', colors[str(cell_type)]]
|
|
||||||
# if len(hists_both) > 1:
|
|
||||||
# colors_hist = ['grey', colors[str(cell_type)]]
|
|
||||||
# else:
|
|
||||||
# colors_hist = [colors[str(cell_type)]]
|
|
||||||
# for gg in range(len(hists_both)):
|
|
||||||
# if len(hists_both) > 1:
|
|
||||||
# hists_here = hists_both[gg]
|
|
||||||
# embed()
|
|
||||||
# spikes_base, hists, frs_calc, cont_spikes = load_spikes(spikes, eod_fr, spikes_base, hists, frs_calc)
|
|
||||||
|
|
||||||
xlim_e = [0, 200]
|
|
||||||
|
|
||||||
#if 'spikes' in stack_final1.keys():
|
|
||||||
if aa == 0:
|
|
||||||
axss = plt.subplot(grid_upper[1, -2::])
|
|
||||||
# axii = plt.subplot(grid_upper[:, 0])
|
|
||||||
# try:
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
# ax_spikes = plt.subplot(grid_upper[1, 1::])
|
|
||||||
eod_fr, length, stack_final, stack_final1, trial_nr = stack_preprocessing(amp, stack_file)
|
|
||||||
|
|
||||||
stack_spikes = load_data_susept(load_name + '.pkl', load_name, add=add_save, load_version='csv',
|
|
||||||
load_type='spikes',
|
|
||||||
trial_nr=trial_nr, stimulus_length=length, amp=amp,
|
|
||||||
file_name=file_name, redo = True)
|
|
||||||
|
|
||||||
# das mache ich damit der Stimulus für Mascha hier einmal mit abgespeichert ist
|
|
||||||
#stack_stim = load_data_susept(load_name + '.pkl', load_name, add=add + '_sampling_' + str(sampling),
|
|
||||||
# load_version='csv', load_type='stimulus',
|
|
||||||
# trial_nr=trial_nr, stimulus_length=length, redo=True, amp=amp,
|
|
||||||
# file_name=file_name)
|
|
||||||
|
|
||||||
|
|
||||||
plt_spikes(amps_defined, aa, c, cell, cell_type, cells_plot, color_here, eod_fr, fr, axss,
|
|
||||||
stack_final1, stack_spikes, xlim, axi=axi,xlim_e = [0,150], alpha = alpha, spikes_max = 3)
|
|
||||||
|
|
||||||
|
|
||||||
# print('spikes not there yet')
|
|
||||||
#else:
|
|
||||||
# eod_mt, sampling, spikes_loaded = nix_load(cell, stack_final1)
|
|
||||||
|
|
||||||
##############################
|
|
||||||
# isi
|
|
||||||
if len(isi) > 0:
|
|
||||||
if aa == 0:
|
|
||||||
grid_p = gridspec.GridSpecFromSubplotSpec(1, 2, grid_upper[:, 0], width_ratios=[1.4, 2],
|
|
||||||
wspace=0.3,
|
|
||||||
hspace=0.55)
|
|
||||||
#grid_p = gridspec.GridSpecFromSubplotSpec(2, 1, grid_upper[:, 0], height_ratios=[1.4, 2],
|
|
||||||
# hspace=0.55)
|
|
||||||
# hspace=0.25)
|
|
||||||
ax_isi = plt.subplot(grid_p[0])
|
|
||||||
ax_p = plt.subplot(grid_p[1])
|
|
||||||
tags.insert(0, ax_isi)
|
|
||||||
lim_here = find_lim_here(cell, burst_corr=burst_corr)
|
|
||||||
if np.min(np.concatenate(isi)) < lim_here:
|
|
||||||
_, spikes_ex, frs_calc2 = correct_burstiness(isi, spikes_base,
|
|
||||||
[eod_fr] * len(spikes_base),
|
|
||||||
[eod_fr] * len(spikes_base), lim=lim_here,
|
|
||||||
burst_corr=burst_corr)
|
|
||||||
else:
|
|
||||||
# da machen wir die Burst corr spikes anders
|
|
||||||
lim_here = find_lim_here(cell, burst_corr=burst_corr)
|
|
||||||
if np.min(np.concatenate(isi)) < lim_here:
|
|
||||||
isi, spikes_ex, frs_calc2 = correct_burstiness(isi, spikes_base,
|
|
||||||
[eod_fr] * len(spikes_base),
|
|
||||||
[eod_fr] * len(spikes_base), lim=lim_here,
|
|
||||||
burst_corr=burst_corr)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
#if len(isi[0])<1:
|
|
||||||
# print('len thing')
|
|
||||||
# embed()
|
|
||||||
right = False
|
|
||||||
ax_isi = base_cells_susept(ax_isi, ax_p, c, cell, cell_type, cells_plot, colors, eod_fr, frame,
|
|
||||||
isi, right, spikes_ex,stack,xlim,add_texts = [-3.1,0],texts_left = [250.3,0],peaks = True, pos = -0.55, titles = ['Bursty P-unit,','Bursty P-unit,'],fr_name = '$f_{BaseCorrected}$')
|
|
||||||
#plt_susept_isi_base(c, cell_type, cells_plot,'grey', ax_isi, isi, xlim=[])# color_here
|
|
||||||
#ax_p = plt_susept_psd_base(cell_type, 'grey', eod_fr, ax_p, spikes_base, xlim,
|
|
||||||
# right) #colors[str(cell_type)]
|
|
||||||
#remove_xticks(ax_p)
|
|
||||||
#else:
|
|
||||||
# embed()
|
|
||||||
##################################
|
|
||||||
# stimulus
|
|
||||||
xlim_e = [0, 100]
|
|
||||||
if aa == 0:
|
|
||||||
axe = plt.subplot(grid_upper[0, -2::])
|
|
||||||
plt_stimulus(eod_fr, axe, stack_final1, xlim_e, files[0])
|
|
||||||
|
|
||||||
tags.insert(1, axe)
|
|
||||||
set_same_ylimscale(ax_psds)
|
|
||||||
labels_for_psds(axd2, axi, axo2, extra_input, right = right, xpos_xlabel = xpos_xlabel)
|
|
||||||
|
|
||||||
tags_cell.append(tags)
|
|
||||||
if not test_clim:
|
|
||||||
set_clim_same_here(ims, mats=mats, lim_type='up', mean_type = True, percnr = 94)
|
|
||||||
|
|
||||||
#set_clim_same_here(ims, clims='all', same = 'same', lim_type='up')
|
|
||||||
#set_clim_same_here(ims, clims='all', same = 'same', lim_type='up')
|
|
||||||
# join_y(axes)
|
|
||||||
# axds[0].get_shared_y_axes().join(*axds)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
# todo: das muss noch der gleiche ylim sein
|
|
||||||
try:
|
|
||||||
set_same_ylim(axos)
|
|
||||||
set_same_ylim(axds)
|
|
||||||
except:
|
|
||||||
print('axo thing')
|
|
||||||
#fig = plt.gcf()
|
|
||||||
#fig.tag(tags_cell, xoffs=-4, yoffs=1.9) # -1.5diese Offsets sind nicht intuitiv
|
|
||||||
if not test_clim:
|
|
||||||
try:
|
|
||||||
if len(cells_plot2) ==1:
|
|
||||||
tags_susept_pictures(tags_cell)
|
|
||||||
else:
|
|
||||||
tags_susept_pictures(tags_cell,yoffs=np.array([1.1, 1.1, 2.9, 2.9, 2.9, 2.9]))
|
|
||||||
except:
|
|
||||||
print('tag thing')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
|
|
||||||
cells_plot2 = p_units_to_show(type_here = 'bursts')
|
|
||||||
|
|
||||||
burst_cells( cells_plot2 = [cells_plot2[1]], show = True, cell_class =' P-unit')
|
|
||||||
|
|
||||||
|
|
BIN
cells_eigen.pdf
BIN
cells_eigen.pdf
Binary file not shown.
@ -1,75 +0,0 @@
|
|||||||
from utils_suseptibility import cells_eigen
|
|
||||||
from utils_all import p_units_to_show
|
|
||||||
#from utils_all import load_folder_name
|
|
||||||
#from plt_RAM import plt_punit
|
|
||||||
from IPython import embed
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
#'2010-06-21-ac-invivo-1'
|
|
||||||
# Bei dem ampullary cells machen wir auch die Bursts weg
|
|
||||||
['2010-11-26-al-invivo-1', '2010-11-26-am-invivo-1',
|
|
||||||
'2010-11-08-ab-invivo-1', '2010-11-08-ag-invivo-1', '2010-11-08-ah-invivo-1', '2010-11-08-ai-invivo-1',
|
|
||||||
'2010-11-11-ak-invivo-1', '2010-11-11-ac-invovo-1',
|
|
||||||
'2013-04-11-ab-invivo-1',
|
|
||||||
]
|
|
||||||
cells = ['2010-11-26-al-invivo-1', '2010-11-26-am-invivo-1'
|
|
||||||
]
|
|
||||||
|
|
||||||
# 10-08-11-ar
|
|
||||||
# 5 + 10+20
|
|
||||||
|
|
||||||
# 0.5, 1, 5, 10, 20
|
|
||||||
|
|
||||||
# 2.5 5 10
|
|
||||||
|
|
||||||
# 5 10 20 (2012-06-21-av, 2010-08-27-ag)
|
|
||||||
# 0.5, 1, 5 (2021-08-03-ab)
|
|
||||||
# 0.1, 0.5, 1, 5 (2021-08-03-ac)
|
|
||||||
# 1 5 10 20, (2020-10-21-ac)
|
|
||||||
# 0.1,1,10 (2021-12-17-ad)
|
|
||||||
# 0.1, 0.5, 1, 5, 10 ,20 (2020-10-27-af)
|
|
||||||
# 1, 2, 5, 10, 20 (2021-06-18-ae)
|
|
||||||
|
|
||||||
unklar = ['2010-07-29-ae-invivo-1']
|
|
||||||
# für mehrere
|
|
||||||
|
|
||||||
# ampullary
|
|
||||||
## 2.5, 5, 10 (2011-10-25-ab, 2012-07-11-ag, 2012-12-13-ao)
|
|
||||||
# amp_desired = [2.5, 10, 20]# '2010-08-31-ad-invivo-1',
|
|
||||||
# cells_plot2 = ['2011-10-25-ac-invivo-1', '2012-05-15-ac-invivo-1','2012-06-08-ae-invivo-1']#['2010-06-21-av-invivo-1', '2010-08-27-ag-invivo-1','2020-10-27-ae-invivo-1']
|
|
||||||
|
|
||||||
amp_desired = [1, 5, 10, 20]
|
|
||||||
amp_desired = [0.1, 1, 10]
|
|
||||||
amp_desired = [0.5, 1, 5]
|
|
||||||
amp_desired = [0.5, 1, 5],
|
|
||||||
|
|
||||||
# 0.1, 0.5, 1, 5 (2021-08-03-ac,2021-08-03-ae)
|
|
||||||
amp_desired = [0.1, 0.5, 1, 5]
|
|
||||||
cells_plot2 = []
|
|
||||||
|
|
||||||
# 0.5, 1, 5 (2021-08-03-ab)
|
|
||||||
amp_desired = [0.5, 1, 5]
|
|
||||||
cells_plot2 = ['2021-08-03-ab-invivo-1','2021-08-03-ac-invivo-1','2021-08-03-ae-invivo-1']
|
|
||||||
|
|
||||||
# 1 5 10 20, (2020-10-21-ac)
|
|
||||||
amp_desired = [1,5,10,20]
|
|
||||||
cells_plot2 = []
|
|
||||||
# 0.1,1,10 (2021-12-17-ad)
|
|
||||||
# 0.1, 0.5, 1, 5, 10 ,20 (2020-10-20-ab, 2020-10-27-af)
|
|
||||||
#amp_desired = [1,5,10,20]
|
|
||||||
#cells_plot2 = []
|
|
||||||
|
|
||||||
# das hat uns glaube ich ganz gut gefallen
|
|
||||||
# 5 10 20 (2010-06-21-av, 2010-08-27-ag, 2010-08-31-ad)
|
|
||||||
amp_desired = [5,20]# '2010-08-31-ad-invivo-1', 10,
|
|
||||||
cells_plot2 = p_units_to_show(type_here = 'eigen_small')
|
|
||||||
# I like: '2020-10-21-ac' '2010-06-21-av-invivo-1', '2010-08-27-ag-invivo-1' '2021-08-03-ag-invivo-1, '20-10-21-aa-invivo-1
|
|
||||||
#2021-12-17-ad
|
|
||||||
#embed()
|
|
||||||
#'2017-10-25-am-invivo-1', '2010-11-26-an-invivo-1'
|
|
||||||
#save_names = ['noise_data10_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s_spikes_']
|
|
||||||
#load_name = load_folder_name('calc_RAM') + '/' + save_names[0] + '_' +'2017-10-25-am-invivo-1'# '2010-11-26-an-invivo-1'#'2017-10-25-am-invivo-1'
|
|
||||||
#stack = pd.read_pickle(load_name + '.pkl')
|
|
||||||
#embed()#[0, 250]#'High CV P-unit', at Fr \n at 1/2 EODf'
|
|
||||||
cells_eigen(titles = ['Low-CV P-unit,','Low-CV P-unit,'], cells_plot2 = cells_plot2, amp_desired = amp_desired, show = True,cell_class = ' P-unit')
|
|
Binary file not shown.
918
data_overview.py
918
data_overview.py
@ -1,918 +0,0 @@
|
|||||||
#sys.path.insert(0, '..')
|
|
||||||
#from plt_RAM import plt_RAM_overview_nice
|
|
||||||
#from utils_susept import
|
|
||||||
from IPython import embed
|
|
||||||
from matplotlib import gridspec as gridspec, pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
from utils_all_down import default_settings, resave_small_files,update_cell_names
|
|
||||||
from utils_suseptibility import default_figsize, NLI_scorename, kernel_scatter, plt_burst_modulation_hists, \
|
|
||||||
plt_model_overview2, version_final
|
|
||||||
from utils_all import colors_overview, cv_base_name, load_overview_susept, make_log_ticks, p_units_to_show, \
|
|
||||||
save_visualization, \
|
|
||||||
setting_overview_score, update_ssh_file, load_folder_name
|
|
||||||
|
|
||||||
#import lstat
|
|
||||||
try:
|
|
||||||
from plotstyle import plot_style, spines_params
|
|
||||||
except:
|
|
||||||
a = 5
|
|
||||||
from heterogeneity import plt_fr_cv_base, get_grids_for_cv_fr, get_frame_for_base_plot
|
|
||||||
|
|
||||||
|
|
||||||
def data_overview2():
|
|
||||||
# calcdf_RAM_overview()
|
|
||||||
|
|
||||||
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
|
|
||||||
col = 4
|
|
||||||
row = 2 # sharex=True,
|
|
||||||
|
|
||||||
plot_style()
|
|
||||||
default_figsize(column=2, length=7.35)
|
|
||||||
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
|
|
||||||
three = True
|
|
||||||
if three:
|
|
||||||
top = True
|
|
||||||
grid00 = gridspec.GridSpec(2, 1, wspace=0.37, bottom=0.15,
|
|
||||||
hspace=0.25, left=0.085, right=0.95, top=0.94, height_ratios = [1,2.7])
|
|
||||||
else:
|
|
||||||
grid00 = gridspec.GridSpec(4, 2, wspace=0.75, bottom=0.04,
|
|
||||||
hspace=0.6, left=0.15, right=0.99, top=0.95)
|
|
||||||
top = False
|
|
||||||
|
|
||||||
#grid0 = gridspec.GridSpec(3, 3, wspace=0.35, bottom=0.2,
|
|
||||||
# hspace=1, left=0.085, right=0.95, top=0.94)
|
|
||||||
grid0 = gridspec.GridSpecFromSubplotSpec(1, 5, grid00[0],width_ratios = [1,0.4, 1,0.55,1], hspace=0.35,wspace=0)
|
|
||||||
|
|
||||||
grid1 = gridspec.GridSpecFromSubplotSpec(2, 5, grid00[1],width_ratios = [1,0.4, 1,0.55,1], hspace=1.1, wspace=0)
|
|
||||||
|
|
||||||
###################################
|
|
||||||
###############################
|
|
||||||
# Das ist der Finale Score
|
|
||||||
scoreall = 'perc99/med'
|
|
||||||
|
|
||||||
###################################
|
|
||||||
#scores = [scoreall+'_diagonal_proj']
|
|
||||||
#score = scores[0]
|
|
||||||
##########################
|
|
||||||
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
|
|
||||||
|
|
||||||
#save_names = []
|
|
||||||
save_names = ['calc_RAM_overview-_simplified_'+version_final()]#'calc_RAM_overview-_simplified_noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual_','calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s__burstIndividual_',
|
|
||||||
save_names = [version_final_overview()]#_abs_
|
|
||||||
#save_names = ['calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__abs_']
|
|
||||||
counter = 0
|
|
||||||
|
|
||||||
colors = colors_overview()
|
|
||||||
ax_j = []
|
|
||||||
axls = []
|
|
||||||
axss = []
|
|
||||||
cell_types = [' Ampullary', ' P-unit', ]
|
|
||||||
|
|
||||||
counter = 0
|
|
||||||
tags = []
|
|
||||||
log = False
|
|
||||||
|
|
||||||
counterplus = 2
|
|
||||||
|
|
||||||
max_val = 1.5
|
|
||||||
score_burst_corr = 'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'#scores[0]
|
|
||||||
score_n_burst_corr= 'max(diag5Hz)/med \n diagonal_proj \n fr_base_w_burstcorr' # , 'max(diag5Hz)/med \n diagonal_proj \n fr_base_w_burstcorr']
|
|
||||||
score_n_burst_corr = 'Fr$_{BurstCorr}$/Median' # , 'max(diag5Hz)/med \n diagonal_proj \n fr_base_w_burstcorr']
|
|
||||||
score_n_burst_corr = NLI_burstcorr_name()
|
|
||||||
score = 'max(diag5Hz)/med_diagonal_proj_fr'
|
|
||||||
score_n = 'max(diag5Hz)\n/med_diagonal_proj_fr'
|
|
||||||
score_n = 'Fr/Median' # , 'max(diag5Hz)/med \n diagonal_proj \n fr_base_w_burstcorr']
|
|
||||||
score_n = NLI_scorename()
|
|
||||||
#score = 'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr' # scores[0]
|
|
||||||
redo = False#True#True
|
|
||||||
frame_load_sp = load_overview_susept(save_names[0], redo=redo, redo_class=redo)
|
|
||||||
#embed()
|
|
||||||
test_amps = False
|
|
||||||
if test_amps:
|
|
||||||
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac', '2010-06-21-ac']
|
|
||||||
cells_amp = update_cell_names(cells_amp)
|
|
||||||
frame_amps = frame_load_sp[frame_load_sp.cell.isin(cells_amp)]
|
|
||||||
|
|
||||||
fish_plot = False
|
|
||||||
if fish_plot:
|
|
||||||
axls, axss, counter, frame_load_sp, max_val, score_burst_corr = fish_plt_false(ax_j, axls, axss, cell_types,
|
|
||||||
colors, counter, grid0, log,
|
|
||||||
max_val, save_names,
|
|
||||||
score_burst_corr)
|
|
||||||
|
|
||||||
alpha = 0.3
|
|
||||||
####################################################################
|
|
||||||
# base plots
|
|
||||||
# cells = p_units_to_show()
|
|
||||||
# cell_type_type, frame_load, frame_spikes = get_frame_for_base_plot(cells)
|
|
||||||
burst_choice = ['', '_burst_corr_individual']
|
|
||||||
|
|
||||||
xmax_burst = [[1.5,'no'],[0.8,'no']]
|
|
||||||
for gg in range(len(burst_choice)):
|
|
||||||
cells = p_units_to_show()
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_type, frame_load, frame_spikes = get_frame_for_base_plot(cells, save_names = save_names, species = species)
|
|
||||||
ax0, ax_cv, ax_fr = get_grids_for_cv_fr(gg, grid0[counter])#counter
|
|
||||||
if gg == 0:
|
|
||||||
#ax_cv.text(1.5, 2, r'\bf{A} \textit{Apteronotus leptorhynchus}', ha = 'center', va = 'center', transform=ax_cv.transAxes)
|
|
||||||
text_punits(ax_cv, colors)
|
|
||||||
ax_cv.text(0.35, 0.45, r'Ampullary cells', ha='left', va='center',
|
|
||||||
transform=ax_cv.transAxes, color = colors[' Ampullary'])#' Ampullary',
|
|
||||||
species_letter(ax_cv)
|
|
||||||
|
|
||||||
print(species)
|
|
||||||
x_axis, y_axis = plt_fr_cv_base(ax0, ax_cv, ax_fr, burst_choice,
|
|
||||||
frame_load, gg, alpha = alpha, xmax = xmax_burst[gg], species = species)
|
|
||||||
ax0.set_xticks_delta(0.5)
|
|
||||||
tags.append(ax_cv)
|
|
||||||
counter += 2
|
|
||||||
#frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
# base plots
|
|
||||||
# cells = p_units_to_show()
|
|
||||||
# cell_type_type, frame_load, frame_spikes = get_frame_for_base_plot(cells)
|
|
||||||
burst_choice = ['']#, '_burst_corr_individual']
|
|
||||||
#counter += 1
|
|
||||||
nrs = [1,3]
|
|
||||||
for gg in range(len(burst_choice)):
|
|
||||||
cells = p_units_to_show()
|
|
||||||
species = ' Eigenmannia virescens'
|
|
||||||
cell_type_type, frame_load, frame_spikes = get_frame_for_base_plot(cells,save_names = save_names, species = species)
|
|
||||||
ax0, ax_cv, ax_fr = get_grids_for_cv_fr(gg, grid0[counter])#counter
|
|
||||||
#ax_cv.set_title('Eigenmannia virescens')
|
|
||||||
#ax_cv.text(0.5, 2, B, ha='center', va='center', transform=ax_cv.transAxes)
|
|
||||||
species_letter(ax_cv, letter='B', species=r'\textit{Eigenmannia virescens}')
|
|
||||||
|
|
||||||
print(species)
|
|
||||||
x_axis, y_axis = plt_fr_cv_base(ax0, ax_cv, ax_fr, burst_choice,
|
|
||||||
frame_load, gg, alpha = alpha, xmax = ['no','no'], species = species)
|
|
||||||
ax0.set_xticks_delta(0.5)
|
|
||||||
tags.append(ax_cv)
|
|
||||||
counter += 2
|
|
||||||
#embed()
|
|
||||||
|
|
||||||
###########################
|
|
||||||
###########################
|
|
||||||
###########################
|
|
||||||
# counterreset!
|
|
||||||
counter = 0
|
|
||||||
#grid0 = grid1
|
|
||||||
|
|
||||||
# base ready
|
|
||||||
####################################################################
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
#grid_lower = gridspec.GridSpecFromSubplotSpec(2, 2, grid0[2],hspace = 0.55, wspace = 0.5)
|
|
||||||
#
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
#for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
#embed()
|
|
||||||
#setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
x_axis = ['cv_base',score]#,'burst_fraction_burst_corr_individual_stim']#, 'cv_base']#,'cv_base',]
|
|
||||||
x_axis_names = [cv_base_name(), score_n] # ,'Burst Fraction$_{Stim}$' 'CV$_{Base}$']#,'Burst Fraction$_{Base}$',]
|
|
||||||
|
|
||||||
y_axis = ['burst_fraction_burst_corr_individual_base', score_burst_corr] # , 'coherence_', ]
|
|
||||||
y_axis_name = ['Burst Fraction$_{Base}$', score_n_burst_corr]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
var_item_names = ['Response Modulation [Hz]']#,'Response Modulation [Hz]']#,'Burst Fraction$_{Base}$']#'Response Modulation',]#,score_n_burst_corr,'Response Modulation [Hz]']#'Burst Fraction$_{Stim}$',['Modulation']#,
|
|
||||||
#'Response Modulation [Hz]',
|
|
||||||
var_types = ['response_modulation']#,'response_modulation']#,'burst_fraction_burst_corr_individual_base']#'response_modulation']#,score_burst_corr,'response_modulation']#,'burst_fraction_burst_corr_individual_stim','cv_base''response_modulation'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
logs = [False,False]#,False]
|
|
||||||
xmins = [0,0]#,'no']
|
|
||||||
#'response_modulation',
|
|
||||||
|
|
||||||
|
|
||||||
#var_item_names = ['burst_diff']#['Modulation [Hz]']#,
|
|
||||||
#var_types = ['burst_diff'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
|
|
||||||
#['burst_fraction_burst_corr_individual_stim']
|
|
||||||
#score_name = ['Burst Fraction$_{Stim}$']# 'CV$_{Base}$']#,'Burst Fraction', ]
|
|
||||||
frame_file['burst_diff'] = np.abs(frame_file['burst_fraction_burst_corr_individual_stim']-frame_file['burst_fraction_burst_corr_individual_base'])
|
|
||||||
|
|
||||||
|
|
||||||
burst_fraction = [1,1,1]#, 0.5, 1, 1]#05burst_fraction_burst_corr_individual_base
|
|
||||||
|
|
||||||
#score_n = ['Perc99/Med','Perc99/Med']
|
|
||||||
#score = ['max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr']
|
|
||||||
|
|
||||||
n = False
|
|
||||||
xlim_here0 = [0,1.5]
|
|
||||||
ax_j, axls, axs, axss, counter = plt_var_axis([], axls, axss,y_axis_name, burst_fraction, cell_type_here, counter, cv_name,
|
|
||||||
frame_file, grid1, max_val, score_burst_corr, y_axis, var_item_names,
|
|
||||||
var_types, x_axis, x_axis_names, counterplus = counterplus, n = n, xlim = xlim_here0, log = logs, top = top, xmins = xmins, extra_cells = False)
|
|
||||||
text_punits(ax_j[0], colors, xpos = 0.65, ypos = 0.9)
|
|
||||||
#plt.show()
|
|
||||||
#hier beide anhängen
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
#tags.extend(ax_j)
|
|
||||||
|
|
||||||
xlim_here = axss[-1].get_xlim()
|
|
||||||
ylim_here = axss[-1].get_ylim()
|
|
||||||
axss[-1].set_xlim(xlim_here0)
|
|
||||||
ax_j[-1].set_xlim(xlim_here0)
|
|
||||||
start = np.max([xlim_here[0],ylim_here[0]])
|
|
||||||
end = np.min([xlim_here[1], ylim_here[1]])
|
|
||||||
#axss[-1].plot([start, end], [start, end], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
#plt.show()
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
#grid_lower = gridspec.GridSpecFromSubplotSpec(2, 2, grid0[2],hspace = 0.55, wspace = 0.5)
|
|
||||||
#
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
#for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
|
|
||||||
|
|
||||||
x_axis = ['burst_fraction_burst_corr_individual_base','cv_base',score]#,'burst_fraction_burst_corr_individual_stim']#, 'cv_base']#,'cv_base',]
|
|
||||||
x_axis_names = ['Burst Fraction$_{Base}$', 'CV$_{Base}$',score_n] # ,'Burst Fraction$_{Stim}$' 'CV$_{Base}$']#,'Burst Fraction$_{Base}$',]
|
|
||||||
|
|
||||||
y_axis = [score_burst_corr, 'burst_fraction_burst_corr_individual_base', score_burst_corr] # , 'coherence_', ]
|
|
||||||
y_axis_name = [score_n_burst_corr, 'Burst Fraction$_{Base}$', score_n_burst_corr]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
var_item_names = ['Response Modulation [Hz]']#,'Response Modulation [Hz]']#,'Burst Fraction$_{Base}$']#'Response Modulation',]#,score_n_burst_corr,'Response Modulation [Hz]']#'Burst Fraction$_{Stim}$',['Modulation']#,
|
|
||||||
#'Response Modulation [Hz]',
|
|
||||||
var_types = ['response_modulation']#,'response_modulation']#,'burst_fraction_burst_corr_individual_base']#'response_modulation']#,score_burst_corr,'response_modulation']#,'burst_fraction_burst_corr_individual_stim','cv_base''response_modulation'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
logs = [False,False]#,False]
|
|
||||||
xmins = [0,0]#,'no']
|
|
||||||
#'response_modulation',
|
|
||||||
|
|
||||||
|
|
||||||
#var_item_names = ['burst_diff']#['Modulation [Hz]']#,
|
|
||||||
#var_types = ['burst_diff'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
|
|
||||||
#['burst_fraction_burst_corr_individual_stim']
|
|
||||||
#score_name = ['Burst Fraction$_{Stim}$']# 'CV$_{Base}$']#,'Burst Fraction', ]
|
|
||||||
frame_file['burst_diff'] = np.abs(frame_file['burst_fraction_burst_corr_individual_stim']-frame_file['burst_fraction_burst_corr_individual_base'])
|
|
||||||
|
|
||||||
|
|
||||||
burst_fraction = [1,1,1]#, 0.5, 1, 1]#05burst_fraction_burst_corr_individual_base
|
|
||||||
|
|
||||||
#score_n = ['Perc99/Med','Perc99/Med']
|
|
||||||
#score = ['max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr']
|
|
||||||
|
|
||||||
xmax = 6
|
|
||||||
ax_j, axls, axs, axss, counter = plt_var_axis([], axls, axss,y_axis_name, burst_fraction, cell_type_here, counter, cv_name,
|
|
||||||
frame_file, grid1, max_val, score_burst_corr, y_axis, var_item_names,
|
|
||||||
var_types, x_axis, x_axis_names, counterplus = counterplus, n = n, log = logs, top = top, xmins = xmins, ymaxs = [xmax], extra_cells = True)
|
|
||||||
#text_punits(axs, colors)
|
|
||||||
#hier beide anhängen
|
|
||||||
reset_xlims(axls, axss, xmax)
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
#tags.extend(ax_j)
|
|
||||||
|
|
||||||
xlim_here = axss[-1].get_xlim()
|
|
||||||
ylim_here = axss[-1].get_ylim()
|
|
||||||
start = np.max([xlim_here[0],ylim_here[0]])
|
|
||||||
end = np.min([xlim_here[1], ylim_here[1]])
|
|
||||||
#axss[-1].plot([start, end], [start, end], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
#plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
########################################################################
|
|
||||||
#####################################################################
|
|
||||||
# Eigemania Zellen
|
|
||||||
ylim_eigen = [0, 6]
|
|
||||||
cell_types = [' P-unit',' Ampullary'] # ,' P-unit',' Ampullary', ]
|
|
||||||
x_axis = ["cv_base"] # , "cv_base_w_burstcorr","cv_base", ]
|
|
||||||
cv_name_title = [cv_base_name()] # ,'CV$_{BurstCorr}$','CV']
|
|
||||||
species_all = [' Eigenmannia virescens'] # ,' Apteronotus leptorhynchus',' Eigenmannia virescens']
|
|
||||||
#counter += counterplus
|
|
||||||
ax_j, axls, axss, cell_types, _, max_val, _ = species_with_both_cells(grid1[counter], cell_types, ax_j,
|
|
||||||
axls, axss, colors,
|
|
||||||
cv_name_title,
|
|
||||||
save_names, score,
|
|
||||||
species_all, x_axis,ylim = ylim_eigen,
|
|
||||||
max_val=max_val,n = n, alpha = alpha, log = False, score_n = score_n)
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
axss[-1].set_title('')
|
|
||||||
ax_j[-1].set_title('')
|
|
||||||
counter += 1
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
# grid_lower = gridspec.GridSpecFromSubplotSpec(2, 2, grid0[2],hspace = 0.55, wspace = 0.5)
|
|
||||||
#
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
# for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
|
|
||||||
x_axis = [
|
|
||||||
score] # 'burst_fraction_burst_corr_individual_base','cv_base']#,score]#,'burst_fraction_burst_corr_individual_stim']#, 'cv_base']#,'cv_base',]
|
|
||||||
x_axis_names = [
|
|
||||||
score_n] # ,'Burst Fraction$_{Base}$', 'CV$_{Base}$']#,score_n] # ,'Burst Fraction$_{Stim}$' 'CV$_{Base}$']#,'Burst Fraction$_{Base}$',]
|
|
||||||
|
|
||||||
y_axis = [
|
|
||||||
score_burst_corr] # , 'burst_fraction_burst_corr_individual_base']#, score_burst_corr] # , 'coherence_', ]
|
|
||||||
y_axis_name = [score_n_burst_corr] # , 'Burst Fraction$_{Base}$']#, score_n_burst_corr]
|
|
||||||
|
|
||||||
#
|
|
||||||
var_item_names = [
|
|
||||||
'Burst Fraction$_{Base}$'] # 'Response Modulation',]#,score_n_burst_corr,'Response Modulation [Hz]']#'Burst Fraction$_{Stim}$',['Modulation']#,
|
|
||||||
# 'Response Modulation [Hz]',
|
|
||||||
var_types = [
|
|
||||||
'burst_fraction_burst_corr_individual_base'] # 'response_modulation']#,score_burst_corr,'response_modulation']#,'burst_fraction_burst_corr_individual_stim','cv_base''response_modulation'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
logs = [False]
|
|
||||||
xmins = ['no']
|
|
||||||
ymins = ['no']
|
|
||||||
# 'response_modulation',
|
|
||||||
|
|
||||||
# var_item_names = ['burst_diff']#['Modulation [Hz]']#,
|
|
||||||
# var_types = ['burst_diff'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
|
|
||||||
# ['burst_fraction_burst_corr_individual_stim']
|
|
||||||
# score_name = ['Burst Fraction$_{Stim}$']# 'CV$_{Base}$']#,'Burst Fraction', ]
|
|
||||||
frame_file['burst_diff'] = np.abs(frame_file['burst_fraction_burst_corr_individual_stim'] - frame_file[
|
|
||||||
'burst_fraction_burst_corr_individual_base'])
|
|
||||||
|
|
||||||
burst_fraction = [1, 1, 1] # , 0.5, 1, 1]#05burst_fraction_burst_corr_individual_base
|
|
||||||
|
|
||||||
# score_n = ['Perc99/Med','Perc99/Med']
|
|
||||||
# score = ['max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr']
|
|
||||||
|
|
||||||
|
|
||||||
xmax = 7
|
|
||||||
ax_j, axls, axs, axss, counter = plt_var_axis(ax_j, axls, axss, y_axis_name, burst_fraction, cell_type_here,
|
|
||||||
counter, cv_name,
|
|
||||||
frame_file, grid1, max_val, score_burst_corr, y_axis, var_item_names,
|
|
||||||
var_types, x_axis, x_axis_names, counterplus = counterplus,n = n, log=logs, top=top, xmins=xmins, ymaxs = [xmax], extra_cells= False)
|
|
||||||
|
|
||||||
reset_xlims(axls, axss, xmax)
|
|
||||||
axss[-1].set_xticks_delta(2)
|
|
||||||
axss[-1].set_yticks_delta(2)
|
|
||||||
|
|
||||||
axss[-1].set_xlim(0.5, xmax)
|
|
||||||
ax_j[-1].get_shared_x_axes().join(*[axss[-1], ax_j[-1]])
|
|
||||||
#text_punits(axs, colors)
|
|
||||||
# embed()
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
|
|
||||||
xlim_here = axss[-1].get_xlim()
|
|
||||||
ylim_here = axss[-1].get_ylim()
|
|
||||||
start = np.max([xlim_here[0], ylim_here[0]])
|
|
||||||
end = np.min([xlim_here[1], ylim_here[1]])
|
|
||||||
axss[-1].plot([start, end], [start, end], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
# for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
|
||||||
|
|
||||||
var_types = ['response_modulation']#,'response_modulation']
|
|
||||||
x_axis = ['burst_fraction_burst_corr_individual_base']#,score]
|
|
||||||
var_item_names = ['Response Modulation [Hz]']#,'Response Modulation [Hz]']#'Modulatoin'
|
|
||||||
x_axis_names = ['Burst Fraction$_{Base}$']#,score_n]
|
|
||||||
burst_fraction = [1, 1, 1, 1] # burst_fraction_burst_corr_individual_base
|
|
||||||
y_axis = ['burst_fraction_burst_corr_individual_stim']#,score_burst_corr]
|
|
||||||
y_axis_name = ['Burst Fraction$_{Stim}$']#,score_n_burst_corr]
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
test = False
|
|
||||||
if test:
|
|
||||||
burst_fraction, var_item_names, var_types, x_axis, x_axis_names, y_axis, y_axis_name = test_eodfr(
|
|
||||||
burst_fraction, var_item_names, var_types, x_axis, x_axis_names, y_axis, y_axis_name)
|
|
||||||
#embed()
|
|
||||||
for v, var_type in enumerate(var_types):
|
|
||||||
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
||||||
|
|
||||||
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid1[counter])
|
|
||||||
|
|
||||||
cmap, _, _ = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
|
|
||||||
x_axis[v], frame_file, max_val, y_axis[v],
|
|
||||||
burst_fraction=burst_fraction[v], n = n,top = top, var_item=var_type)
|
|
||||||
axs.set_ylabel(y_axis_name[v])
|
|
||||||
axs.set_xlabel(x_axis_names[v])
|
|
||||||
#text_punits(axs, colors)
|
|
||||||
plot_extra_cells(axs, frame_file, y_axis, v, x_axis, type_here = 'contrasts')
|
|
||||||
|
|
||||||
#if v == 1:
|
|
||||||
if test == False:
|
|
||||||
axs.plot([0, 1.01], [0, 1.01], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
tags.append(axk)
|
|
||||||
counter += counterplus
|
|
||||||
|
|
||||||
|
|
||||||
####################################################################
|
|
||||||
|
|
||||||
#grid_lower = gridspec.GridSpecFromSubplotSpec(2, 2, grid0[2],hspace = 0.55, wspace = 0.5)
|
|
||||||
#
|
|
||||||
mutual_information = False
|
|
||||||
if mutual_information:
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
#for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
|
|
||||||
x_axis = ['burst_fraction_burst_corr_individual_base','cv_base',score]#,'burst_fraction_burst_corr_individual_stim']#, 'cv_base']#,'cv_base',]
|
|
||||||
x_axis_names = ['Burst Fraction$_{Base}$', 'CV$_{Base}$',score_n] # ,'Burst Fraction$_{Stim}$' 'CV$_{Base}$']#,'Burst Fraction$_{Base}$',]
|
|
||||||
|
|
||||||
y_axis = ['contrast_integral', 'burst_fraction_burst_corr_individual_base', score_burst_corr] # , 'coherence_', ]
|
|
||||||
y_axis_name = ['(MI$_{R}$-MI$_{C}$)/MI$_{C}$', 'Burst Fraction$_{Base}$', score_n_burst_corr]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
var_item_names = ['Response Modulation [Hz]']#,'Response Modulation [Hz]']#,'Burst Fraction$_{Base}$']#'Response Modulation',]#,score_n_burst_corr,'Response Modulation [Hz]']#'Burst Fraction$_{Stim}$',['Modulation']#,
|
|
||||||
#'Response Modulation [Hz]',
|
|
||||||
var_types = ['response_modulation']#,'response_modulation']#,'burst_fraction_burst_corr_individual_base']#'response_modulation']#,score_burst_corr,'response_modulation']#,'burst_fraction_burst_corr_individual_stim','cv_base''response_modulation'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
logs = [False,False]#,False]
|
|
||||||
xmins = [0,0]#,'no']
|
|
||||||
#'response_modulation',
|
|
||||||
|
|
||||||
|
|
||||||
#var_item_names = ['burst_diff']#['Modulation [Hz]']#,
|
|
||||||
#var_types = ['burst_diff'] # [ 'response_modulation']#,'cv_base''response_modulation']#,'burst_fraction_burst_corr_individual_base', ]
|
|
||||||
|
|
||||||
#['burst_fraction_burst_corr_individual_stim']
|
|
||||||
#score_name = ['Burst Fraction$_{Stim}$']# 'CV$_{Base}$']#,'Burst Fraction', ]
|
|
||||||
frame_file['burst_diff'] = np.abs(frame_file['burst_fraction_burst_corr_individual_stim']-frame_file['burst_fraction_burst_corr_individual_base'])
|
|
||||||
|
|
||||||
|
|
||||||
burst_fraction = [1,1,1]#, 0.5, 1, 1]#05burst_fraction_burst_corr_individual_base
|
|
||||||
|
|
||||||
#score_n = ['Perc99/Med','Perc99/Med']
|
|
||||||
#score = ['max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr']
|
|
||||||
|
|
||||||
|
|
||||||
ax_j, axls, axs, axss, counter = plt_var_axis([], axls, axss,y_axis_name, burst_fraction, cell_type_here, counter, cv_name,
|
|
||||||
frame_file, grid0, max_val, score_burst_corr, y_axis, var_item_names,
|
|
||||||
var_types, x_axis, x_axis_names,counterplus = coutnerplus, n = n, extra_cells = True, log = logs, top = top, xmins = xmins)
|
|
||||||
#hier beide anhängen
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
#tags.extend(ax_j)
|
|
||||||
|
|
||||||
xlim_here = axss[-1].get_xlim()
|
|
||||||
ylim_here = axss[-1].get_ylim()
|
|
||||||
start = np.max([xlim_here[0],ylim_here[0]])
|
|
||||||
end = np.min([xlim_here[1], ylim_here[1]])
|
|
||||||
#axss[-1].plot([start, end], [start, end], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
#####################################################################
|
|
||||||
# Eigemania Zellen
|
|
||||||
cell_types = [' P-unit',' Ampullary'] # ,' P-unit',' Ampullary', ]
|
|
||||||
x_axis = ["response_modulation"] # , "cv_base_w_burstcorr","cv_base", ]
|
|
||||||
cv_name_title = ['Response Modulation [Hz]'] # ,'CV$_{BurstCorr}$','CV']
|
|
||||||
species_all = [' Eigenmannia virescens'] # ,' Apteronotus leptorhynchus',' Eigenmannia virescens']
|
|
||||||
#counter += 1
|
|
||||||
ax_j, axls, axss, cell_types, frame_load_sp, max_val, score_burst_corr = species_with_both_cells(grid1[counter], cell_types, ax_j,
|
|
||||||
axls, axss, colors,
|
|
||||||
cv_name_title,
|
|
||||||
save_names, score,
|
|
||||||
species_all, x_axis, alpha = alpha,
|
|
||||||
max_val=max_val, n = n, ylim = ylim_eigen, log = False, score_n = score_n)
|
|
||||||
tags.append(ax_j[-1])
|
|
||||||
axss[-1].set_title('')
|
|
||||||
ax_j[-1].set_title('')
|
|
||||||
counter+= 1#counterplus
|
|
||||||
|
|
||||||
#####################################################
|
|
||||||
#grid_lower_lower = gridspec.GridSpecFromSubplotSpec(1, 2, grid0[1], wspace = 0.5, hspace=0.55)#, height_ratios = [1,3]
|
|
||||||
cell_types = [' P-unit']#,' P-unit',' Ampullary', ]
|
|
||||||
|
|
||||||
restrict = False
|
|
||||||
if restrict:
|
|
||||||
ax_j, axls, axss, counter = modulation_restrict(ax_j, axls, axs, axss, cell_types, counter, cv_name,
|
|
||||||
frame_load_sp, grid0, log, max_val, score_burst_corr, score_n,
|
|
||||||
species, tags, top)
|
|
||||||
|
|
||||||
################################
|
|
||||||
# coherence
|
|
||||||
coherence_plot = False
|
|
||||||
if coherence_plot:
|
|
||||||
coherence_plot_modulation(ax_j, axls, axss, counter, frame_load_sp, grid0, max_val, tags, top)
|
|
||||||
|
|
||||||
##############################################
|
|
||||||
# jetzt kommen die extra P-unit Eigen statistiken
|
|
||||||
#species = ' Eigenmannia virescens'
|
|
||||||
|
|
||||||
#cv_name = 'cv_base'
|
|
||||||
#ax = plt.subplot(grid[4, 0])
|
|
||||||
#for c, cell_type_here in enumerate(cell_types):
|
|
||||||
# frame_file = setting_overview_score(cell_type_here, frame_load_sp, species=species)
|
|
||||||
# plt_eigen(cv_name, ax, c, cell_type_here, cells_extra, colors, frame_file, max_val, score,
|
|
||||||
# species, x_axis, y_axis)
|
|
||||||
|
|
||||||
|
|
||||||
########################
|
|
||||||
# modell
|
|
||||||
model_plot = False
|
|
||||||
if model_plot:
|
|
||||||
model_overview_plot(grid0, scoreall)
|
|
||||||
|
|
||||||
#ax_j[0].get_shared_y_axes().join(*[ax_j[0],ax_j[2],ax_j[3]])
|
|
||||||
#ax_j[0].get_shared_y_axes().join(*[ax_j[1], ax_j[3], ax_j[5], axls[0], axls[1], axls[2]])
|
|
||||||
|
|
||||||
#ax_j[0].get_shared_x_axes().join(*ax_j)
|
|
||||||
#ax_j[0].get_shared_x_axes().join(*[ax_j[0],ax_j[1]])
|
|
||||||
#ax_j[2].get_shared_x_axes().join(*[ax_j[2], ax_j[3]])
|
|
||||||
#ax_j[4].get_shared_x_axes().join(*[ax_j[4], ax_j[5]])
|
|
||||||
|
|
||||||
#plt.show()
|
|
||||||
fig = plt.gcf()
|
|
||||||
fig.tag([[tags[0], tags[1], tags[3], tags[4], tags[6], tags[7]],[tags[2], tags[5], tags[8]]], xoffs=-4.2, yoffs=1.12)
|
|
||||||
show = False#True
|
|
||||||
save_visualization(pdf = True, show = show)
|
|
||||||
|
|
||||||
|
|
||||||
def reset_xlims(axls, axss, xmax):
|
|
||||||
axss[-1].set_ylim(0.5, xmax)
|
|
||||||
axls[-1].get_shared_y_axes().join(*[axss[-1], axls[-1]])
|
|
||||||
|
|
||||||
|
|
||||||
def species_letter(ax_cv, letter = 'A', species = r'\textit{Apteronotus leptorhynchus}'):
|
|
||||||
ax_cv.text(-0.26, 1.8, letter, ha='left',
|
|
||||||
transform=ax_cv.transAxes, fontsize=13.5)
|
|
||||||
ax_cv.text(-0.1, 1.8, species, ha='left',
|
|
||||||
transform=ax_cv.transAxes) # va='center',
|
|
||||||
|
|
||||||
|
|
||||||
def text_punits(ax_cv, colors, xpos = 0.35, ypos = 0.85):
|
|
||||||
ax_cv.text(xpos, ypos, r'P-units', ha='left', va='center',
|
|
||||||
transform=ax_cv.transAxes, color=colors[' P-unit'])
|
|
||||||
|
|
||||||
|
|
||||||
def fish_plt_false(ax_j, axls, axss, cell_types, colors, counter, grid0, log, max_val, save_names, score_burst_corr):
|
|
||||||
#####################################################################
|
|
||||||
x_axis = ["cv_base"] # , "cv_base_w_burstcorr","cv_base", ]
|
|
||||||
cv_name_title = ['CV'] # ,'CV$_{BurstCorr}$','CV']
|
|
||||||
species_all = [' Apteronotus leptorhynchus'] # ,' Apteronotus leptorhynchus',' Eigenmannia virescens']
|
|
||||||
ax_j, axls, axss, cell_types, frame_load_sp, max_val, score_burst_corr = species_with_both_cells(grid0[counter],
|
|
||||||
cell_types, ax_j,
|
|
||||||
axls, axss, colors,
|
|
||||||
cv_name_title,
|
|
||||||
save_names,
|
|
||||||
score_burst_corr,
|
|
||||||
species_all,
|
|
||||||
x_axis, log=log,
|
|
||||||
max_val=max_val)
|
|
||||||
counter += 1
|
|
||||||
#####################################################################
|
|
||||||
x_axis = ["cv_base"] # , "cv_base_w_burstcorr","cv_base", ]
|
|
||||||
cv_name_title = ['CV'] # ,'CV$_{BurstCorr}$','CV']
|
|
||||||
# embed()
|
|
||||||
species_all = [' Apteronotus albifrons'] # ,' Apteronotus leptorhynchus',' Eigenmannia virescens']
|
|
||||||
ax_j, axls, axss, cell_types, frame_load_sp, max_val, score_burst_corr = species_with_both_cells(grid0[-2],
|
|
||||||
cell_types, ax_j,
|
|
||||||
axls, axss, colors,
|
|
||||||
cv_name_title,
|
|
||||||
save_names,
|
|
||||||
score_burst_corr,
|
|
||||||
species_all,
|
|
||||||
x_axis,
|
|
||||||
max_val=max_val)
|
|
||||||
return axls, axss, counter, frame_load_sp, max_val, score_burst_corr
|
|
||||||
|
|
||||||
|
|
||||||
def version_final_overview():
|
|
||||||
return 'calc_RAM_overview-_simplified_noise_data12_nfft0.5sec_original__StimPreSaved4__direct_'
|
|
||||||
|
|
||||||
|
|
||||||
def NLI_burstcorr_name():
|
|
||||||
return 'NLI$(f_{BaseCorrected})$'#f_{BaseCorr}
|
|
||||||
|
|
||||||
|
|
||||||
def test_eodfr(burst_fraction, var_item_names, var_types, x_axis, x_axis_names, y_axis, y_axis_name):
|
|
||||||
########################################
|
|
||||||
# test
|
|
||||||
var_types = ['response_modulation']
|
|
||||||
x_axis = ['burst_fraction_burst_corr_individual_base']
|
|
||||||
var_item_names = ['Response Modulation [Hz]'] # 'Modulatoin'
|
|
||||||
x_axis_names = ['Burst Fraction$_{Base}$']
|
|
||||||
burst_fraction = [1, 1, 1, 1] # burst_fraction_burst_corr_individual_base
|
|
||||||
y_axis = ['eod_fr']
|
|
||||||
y_axis_name = ['EOD Fr']
|
|
||||||
return burst_fraction, var_item_names, var_types, x_axis, x_axis_names, y_axis, y_axis_name
|
|
||||||
|
|
||||||
|
|
||||||
def model_overview_plot(grid0, scoreall):
|
|
||||||
model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
|
||||||
cells = model.cell.unique()
|
|
||||||
axm = plt.subplot(grid0[-3])
|
|
||||||
plt_model_overview2(axm, cells, scores=[scoreall + '_'])
|
|
||||||
plt.subplots_adjust(left=0.07, right=0.95, top=0.98, bottom=0.05, wspace=0.45, hspace=0.55)
|
|
||||||
|
|
||||||
|
|
||||||
def coherence_plot_modulation(ax_j, axls, axss, counter, frame_load_sp, grid0, max_val, tags, top):
|
|
||||||
cv_name = "cv_base"
|
|
||||||
species = ' Apteronotus leptorhynchus'
|
|
||||||
cell_type_here = ' P-unit'
|
|
||||||
# for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
var_types = ['burst_fraction_burst_corr_individual_base'] # ,'response_modulation']
|
|
||||||
x_axis = ['cv_base'] # ,'burst_fraction_burst_corr_individual_base']
|
|
||||||
var_item_names = ['Burst Fraction'] # , 'Modulatoin' ]
|
|
||||||
x_axis_names = ['Burst Fraction$_{Base}$'] # ,'Burst Fraction$_{Base}$']
|
|
||||||
burst_fraction = [1] # , 1, 1, 1]#burst_fraction_burst_corr_individual_base
|
|
||||||
y_axis = ['mutual_informaiton_'] # , 'coherence_''burst_fraction_burst_corr_individual_stim']
|
|
||||||
y_axis_name = ['Mutual Information'] # , 'coherence''Burst Fraction$_{Stim}$']
|
|
||||||
# embed()
|
|
||||||
for v, var_type in enumerate(var_types):
|
|
||||||
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
||||||
|
|
||||||
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[counter])
|
|
||||||
|
|
||||||
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
|
|
||||||
x_axis[v], frame_file, max_val, y_axis[v],
|
|
||||||
burst_fraction=burst_fraction[v], xmin=0, ymin=0, top=top,
|
|
||||||
var_item=var_type)
|
|
||||||
axs.set_ylabel(y_axis_name[v])
|
|
||||||
axs.set_xlabel(x_axis_names[v])
|
|
||||||
|
|
||||||
# if v == 1:
|
|
||||||
# axs.plot([0, 1], [0, 1], color='grey', linewidth=0.5)
|
|
||||||
|
|
||||||
tags.append(axk)
|
|
||||||
counter += 1
|
|
||||||
# ax_j
|
|
||||||
|
|
||||||
|
|
||||||
def modulation_restrict(ax_j, axls, axs, axss, cell_types, counter, cv_name, frame_load_sp, grid0, log, max_val,
|
|
||||||
score_burst_corr, score_n, species, tags, top):
|
|
||||||
burst_corr_reset = 'response_modulation'
|
|
||||||
burst_fraction = [50] # , 1000, 1000] # ,1,1]
|
|
||||||
burst_fraction = [0.01] # , 1, 1] # ,1,1]
|
|
||||||
burst_corr_reset = 'burst_fraction_burst_corr_individual_stim'
|
|
||||||
for c, cell_type_here in enumerate(cell_types):
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
|
||||||
|
|
||||||
##############################################
|
|
||||||
# modulatoin comparison for both cell_types
|
|
||||||
################################
|
|
||||||
# Modulation, cell type comparison
|
|
||||||
# todo: hier die diff werte über die zellen
|
|
||||||
|
|
||||||
# ax_here = []
|
|
||||||
# axd = plt.subplot(grid_lower_lower[0, c])
|
|
||||||
# embed()
|
|
||||||
# kernel_histogram(axk, colors[str(cell_type_here)], np.array(x_axis), norm=True, step=0.03, alpha=0.5)
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
# axk.show_spines('lb')
|
|
||||||
|
|
||||||
# axs = plt.subplot(grid0[6+c])
|
|
||||||
var_types = ['response_modulation']
|
|
||||||
x_axis = ['cv_base']
|
|
||||||
var_item_names = ['Response Modulation [Hz]', ] # 'Modulatoin'
|
|
||||||
x_axis_names = ['CV$_{Base}$']
|
|
||||||
|
|
||||||
y_axis = [score_burst_corr]
|
|
||||||
y_axis_name = [score_n]
|
|
||||||
for v, var_type in enumerate(var_types):
|
|
||||||
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
||||||
|
|
||||||
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[counter])
|
|
||||||
|
|
||||||
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
|
|
||||||
x_axis[v], frame_file, max_val, y_axis[v],
|
|
||||||
burst_fraction=burst_fraction[c], top=top,
|
|
||||||
burst_fraction_reset=burst_corr_reset, var_item=var_type)
|
|
||||||
axs.set_ylabel(y_axis_name[v])
|
|
||||||
axs.set_xlabel(x_axis_names[v])
|
|
||||||
# remove_yticks(axl)
|
|
||||||
|
|
||||||
if log:
|
|
||||||
axl.set_yscale('log')
|
|
||||||
axs.set_yscale('log')
|
|
||||||
axl.minorticks_off()
|
|
||||||
|
|
||||||
axl.set_yticks_blank()
|
|
||||||
tags.append(axk)
|
|
||||||
counter += 1
|
|
||||||
|
|
||||||
if c in [0, 2]:
|
|
||||||
######################################################
|
|
||||||
# hier kommen die kontrast Punkte dazu
|
|
||||||
# für die Zellen spielt Burst correctin ja keine Rolle
|
|
||||||
# if cv_n == 0:
|
|
||||||
if cell_type_here == ' P-unit':
|
|
||||||
cells_plot2 = p_units_to_show(type_here='contrasts')[0:2]
|
|
||||||
else:
|
|
||||||
cells_plot2 = [p_units_to_show(type_here='contrasts')[-1]]
|
|
||||||
|
|
||||||
# for cell_plt in cells_plot2:
|
|
||||||
cells_extra = frame_file[frame_file['cell'].isin(cells_plot2)].index
|
|
||||||
# ax = plt.subplot(grid[1, cv_n])
|
|
||||||
# todo: hier nur noch die kleinste und größte Amplitude nehmen
|
|
||||||
# embed()
|
|
||||||
axs.scatter(frame_file[cv_name].loc[cells_extra], frame_file[score_burst_corr].loc[cells_extra],
|
|
||||||
s=5, color='white', edgecolor='black', alpha=0.5, clip_on=False) # colors[str(cell_type_here)]
|
|
||||||
|
|
||||||
# cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
|
|
||||||
# cv_name, frame_file, max_val, score,
|
|
||||||
# species)
|
|
||||||
# axs.set_ylabel(score)
|
|
||||||
# embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
|
|
||||||
# axs.set_xlabel(cv_name)
|
|
||||||
|
|
||||||
# axs.get_shared_x_axes().join(*[axs, axd])
|
|
||||||
|
|
||||||
# elif species == ' Apteronotus albifrons':
|
|
||||||
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
|
|
||||||
|
|
||||||
# ax[1,cv_n].set_xlim(0, max_val)
|
|
||||||
# set_same_ylim(np.concatenate(ax[1::, :]))
|
|
||||||
# set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
|
|
||||||
# set_same_ylim(ax[0, :], ylim_type='xlim')
|
|
||||||
|
|
||||||
# set_ylim_same()
|
|
||||||
# ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
|
|
||||||
# embed()
|
|
||||||
# counter += 1
|
|
||||||
# embed()
|
|
||||||
return ax_j, axls, axss, counter
|
|
||||||
|
|
||||||
|
|
||||||
def plt_var_axis(ax_j, axls, axss,score_name, burst_fraction, cell_type_here, counter, cv_name, frame_file, grid0, max_val, score,
|
|
||||||
scores_here, var_item_names, var_types, x_axis, x_axis_names, ymaxs = ['no'], n = True,counterplus = 1, extra_cells_false = False, extra_cells = True, ymins = ['no'], xmins = [], xlim = None, log = [False], top = False):
|
|
||||||
for v, var_type in enumerate(var_types):
|
|
||||||
# ax = plt.subplot(grid0[1+v])#grid_lower[0, v]
|
|
||||||
|
|
||||||
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0[counter])
|
|
||||||
counter += counterplus
|
|
||||||
try:
|
|
||||||
cmap, _, y_axis = plt_burst_modulation_hists(axk, axl, var_item_names[v], axs, cell_type_here,
|
|
||||||
x_axis[v], frame_file, max_val, scores_here[v],
|
|
||||||
ymax = ymaxs[v], burst_fraction=burst_fraction[v], n = n, xlim = xlim, xmin = xmins[v],ymin =ymins[v], var_item=var_type, top = top)
|
|
||||||
except:
|
|
||||||
print('burst thing')
|
|
||||||
embed()
|
|
||||||
axk.show_spines('')
|
|
||||||
axl.show_spines('')
|
|
||||||
axs.set_ylabel(score_name[v])
|
|
||||||
axs.set_xlabel(x_axis_names[v])
|
|
||||||
if v in [0, 1]:
|
|
||||||
if log[v]:
|
|
||||||
axl.set_yscale('log')
|
|
||||||
axs.set_yscale('log')
|
|
||||||
axes = [axl, axs]
|
|
||||||
make_log_ticks(axes)
|
|
||||||
axl.set_yticks_blank()
|
|
||||||
# remove_yticks(axl)
|
|
||||||
axl.minorticks_off()
|
|
||||||
|
|
||||||
if extra_cells:
|
|
||||||
plot_extra_cells(axs, frame_file, scores_here, v, x_axis)
|
|
||||||
|
|
||||||
return ax_j, axls, axs, axss, counter
|
|
||||||
|
|
||||||
|
|
||||||
def plot_extra_cells(axs, frame_file, scores_here, v, x_axis, type_here = 'bursts'):
|
|
||||||
############################
|
|
||||||
# extra Zellen Scatter
|
|
||||||
# todo: diese Zellen müssen noch runter konvertiert werden
|
|
||||||
# todo: extra funktion für Zellen über 9 Snippets schreiben und die nochmal extra machen
|
|
||||||
cells_plot2 = p_units_to_show(type_here=type_here)
|
|
||||||
# for cell_plt in cells_plot2:
|
|
||||||
cells_extra = frame_file[frame_file['cell'].isin(cells_plot2)].index
|
|
||||||
# ax = plt.subplot(grid[1, cv_n])
|
|
||||||
#embed()
|
|
||||||
test_amps = False
|
|
||||||
if test_amps:
|
|
||||||
cells_here = frame_file.cell.unique()
|
|
||||||
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
|
|
||||||
'2010-06-21-ac']
|
|
||||||
cells_amp = update_cell_names(cells_amp)
|
|
||||||
# frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
|
|
||||||
for cell_amp in cells_amp:
|
|
||||||
if cell_amp in cells_here:
|
|
||||||
print(cell_amp)
|
|
||||||
# cells_plot = update_cell_names(cells_search)
|
|
||||||
try:
|
|
||||||
axs.scatter(frame_file[x_axis[v]].loc[cells_extra], frame_file[scores_here[v]].loc[cells_extra],
|
|
||||||
s=5, color='white', edgecolor='black', alpha=0.5,
|
|
||||||
clip_on=False) # colors[str(cell_type_here)]
|
|
||||||
except:
|
|
||||||
print('small things')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
def species_with_both_cells(grid0, cell_types, ax_j, axls, axss, colors, cv_name_title, save_names, score, species_all, x_axis, log = True, n = True,ylim = None, alpha = 1, max_val = 1.5, score_n ='Perc(99)/Median'):
|
|
||||||
for cv_n, cv_name in enumerate(x_axis):
|
|
||||||
if cv_n == 0:
|
|
||||||
redo = False
|
|
||||||
else:
|
|
||||||
redo = False
|
|
||||||
redo = False
|
|
||||||
frame_load_sp = load_overview_susept(save_names[0], redo=redo, redo_class=redo)
|
|
||||||
if len(frame_load_sp.cell.unique()) <470:
|
|
||||||
# double check if the file is the newest
|
|
||||||
|
|
||||||
#hostname, password, root, username = credencials0()
|
|
||||||
dated_up = update_ssh_file(load_folder_name('calc_RAM') + '/' + save_names[0] + '.csv')
|
|
||||||
if dated_up == 'yes':
|
|
||||||
frame_load_sp = load_overview_susept(save_names[0], redo=True, redo_class=redo)
|
|
||||||
|
|
||||||
#res = pysftp.put(filepath, destination)
|
|
||||||
#ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(cmd_to_execute)
|
|
||||||
#ssh
|
|
||||||
#embed()
|
|
||||||
# frame_file = setting_overview_score(cell_type_here, frame_load_sp, min_amp=True, species=species)
|
|
||||||
|
|
||||||
# print(np.isnan(species))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for c, cell_type_here in enumerate(cell_types):
|
|
||||||
#if c == 1:
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
species = species_all[cv_n]
|
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
|
||||||
|
|
||||||
##################################
|
|
||||||
# modulation and species comparison
|
|
||||||
# x_axis, y_axis = get_axis(cv_name, frame_file, score)
|
|
||||||
# if cv_n == 0:
|
|
||||||
|
|
||||||
###############################
|
|
||||||
#######################
|
|
||||||
# Kernel Histogram
|
|
||||||
|
|
||||||
# plot the histograms of the values above the according vals
|
|
||||||
# grid = gridspec.GridSpecFromSubplotSpec(1, 1, grid0[0],hspace=0, wspace = 0.15)#grid[0, cv_n]
|
|
||||||
#
|
|
||||||
if c == 0:
|
|
||||||
axk, axl, axs, axls, axss, ax_j = get_grid_4(ax_j, axls, axss, grid0)
|
|
||||||
|
|
||||||
if c in [0, 2]:
|
|
||||||
axk.set_title(species)
|
|
||||||
|
|
||||||
# embed()
|
|
||||||
if len(frame_file) > 0:
|
|
||||||
if log:
|
|
||||||
ymin = 'no'
|
|
||||||
else:
|
|
||||||
ymin = 0
|
|
||||||
xmin = 0
|
|
||||||
if ylim:
|
|
||||||
axs.set_ylim(ylim)
|
|
||||||
axs, x_axis = kernel_scatter(axl, cell_types, axk, axs, ax_j, c, cell_type_here, colors, cv_n, cv_name,
|
|
||||||
frame_file, grid0, max_val,
|
|
||||||
score, log = log,alpha = alpha, n = n,xmin = xmin, ymin = ymin)
|
|
||||||
if log:
|
|
||||||
axl.set_yscale('log')
|
|
||||||
make_log_ticks([axs])
|
|
||||||
axl.set_yticks_blank()
|
|
||||||
axl.minorticks_off()
|
|
||||||
axs.set_xlabel(cv_name_title[cv_n])
|
|
||||||
if cv_n == 0:
|
|
||||||
axs.set_ylabel(score_n)
|
|
||||||
axl.show_spines('')
|
|
||||||
axk.show_spines('')
|
|
||||||
if cv_n == 0:
|
|
||||||
axm = [axs]
|
|
||||||
return ax_j, axls, axss, cell_types, frame_load_sp, max_val, score
|
|
||||||
|
|
||||||
|
|
||||||
def get_grid_4(ax_j, axls, axss, grid0):
|
|
||||||
grid_k = gridspec.GridSpecFromSubplotSpec(2, 2, grid0,
|
|
||||||
hspace=0.1, wspace=0.1, height_ratios=[0.35, 3], width_ratios=[3, 0.5])
|
|
||||||
axk = plt.subplot(grid_k[0, 0])
|
|
||||||
ax_j.append(axk)
|
|
||||||
axs = plt.subplot(grid_k[1, 0])
|
|
||||||
axss.append(axs)
|
|
||||||
axl = plt.subplot(grid_k[1, 1])
|
|
||||||
axls.append(axl)
|
|
||||||
return axk, axl, axs, axls, axss, ax_j
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
data_overview2()
|
|
Binary file not shown.
@ -1,408 +0,0 @@
|
|||||||
#from utils_suseptibility import default_settings
|
|
||||||
#from plt_RAM import model_and_data_isi, model_cells
|
|
||||||
|
|
||||||
#from utils_suseptibility import model_and_data, remove_yticks
|
|
||||||
#from utils_suseptibility import *
|
|
||||||
#from utils_susept import nonlin_title, plt_data_susept, plt_single_square_modl, set_clim_same_here, set_xlabel_arrow, \
|
|
||||||
# set_ylabel_arrow, \
|
|
||||||
# xpos_y_modelanddata
|
|
||||||
|
|
||||||
#from utils_all import default_settings, find_cell_add, get_flowchart_params, load_folder_name, load_model_susept, \
|
|
||||||
# overlap_cells, \
|
|
||||||
# plot_lowpass2, plt_time_arrays, remove_xticks, remove_yticks, resave_small_files, save_visualization, set_same_ylim
|
|
||||||
from utils_suseptibility import *#model_and_data
|
|
||||||
|
|
||||||
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
|
|
||||||
|
|
||||||
def table_printen(table):
|
|
||||||
print(table.keys())
|
|
||||||
for l in range(len(table)):
|
|
||||||
list_here = np.array(table.iloc[l])
|
|
||||||
l1 = "& ".join(list_here)
|
|
||||||
print(l1)
|
|
||||||
|
|
||||||
|
|
||||||
def model_and_data2(width=0.005, nffts=['whole'], powers=[1], cells=["2013-01-08-aa-invivo-1"], show=False,
|
|
||||||
contrasts=[0], noises_added=[''], D_extraction_method=['additiv_cv_adapt_factor_scaled'],
|
|
||||||
internal_noise=['RAM'], external_noise=['RAM'], level_extraction=[''], receiver_contrast=[1],
|
|
||||||
dendrids=[''], ref_types=[''], adapt_types=[''], c_noises=[0.1], c_signal=[0.9], cut_offs1=[300],
|
|
||||||
label=r'$\frac{1}{mV^2S}$'): # ['eRAM']
|
|
||||||
# plot_style()#['_RAMscaled']'_RAMscaled'
|
|
||||||
|
|
||||||
duration_noise = '_short',
|
|
||||||
formula = 'code' ##'formula'
|
|
||||||
# ,int(2 ** 16) int(2 ** 16), int(2 ** 15),
|
|
||||||
stimulus_length = 1 # 20#550 # 30 # 15#45#0.5#1.5 15 45 100
|
|
||||||
trials_nrs = [1] # [100, 500, 1000, 3000, 10000, 100000, 1000000] # 500
|
|
||||||
stimulus_type = '_StimulusOrig_' # ,#
|
|
||||||
# ,3]#, 3, 1, 1.5, 0.5, ] # ,1,1.5, 0.5] #[1,1.5, 0.5] # 1.5,0.5]3, 1,
|
|
||||||
variant = 'sinz'
|
|
||||||
mimick = 'no'
|
|
||||||
cell_recording_save_name = ''
|
|
||||||
trans = 1 # 5
|
|
||||||
rep = 1000000 # 500000#0
|
|
||||||
repeats = [20, rep] # 250000
|
|
||||||
aa = 0
|
|
||||||
good_data, remaining = overlap_cells()
|
|
||||||
cells_all = [good_data[0]]
|
|
||||||
|
|
||||||
plot_style()
|
|
||||||
default_figsize(column=2, length=4.75) # 0.75
|
|
||||||
grid = gridspec.GridSpec(3, 4, wspace=0.85, bottom=0.07,
|
|
||||||
hspace=0.18, left=0.09, right=0.93, top=0.94)
|
|
||||||
|
|
||||||
a = 0
|
|
||||||
maxs = []
|
|
||||||
mins = []
|
|
||||||
mats = []
|
|
||||||
ims = []
|
|
||||||
perc05 = []
|
|
||||||
perc95 = []
|
|
||||||
iternames = [D_extraction_method, external_noise,
|
|
||||||
internal_noise, powers, nffts, dendrids, cut_offs1, trials_nrs, c_signal,
|
|
||||||
c_noises,
|
|
||||||
ref_types, adapt_types, noises_added, level_extraction, receiver_contrast, contrasts, ]
|
|
||||||
|
|
||||||
nr = '2'
|
|
||||||
# embed()
|
|
||||||
# cell_contrasts = ["2013-01-08-aa-invivo-1"]
|
|
||||||
# cells_triangl_contrast = np.concatenate([cells_all,cell_contrasts])
|
|
||||||
# cells_triangl_contrast = 1
|
|
||||||
# cell_contrasts = 1
|
|
||||||
|
|
||||||
rows = len(cells_all) # len(good_data)+len(cell_contrasts)
|
|
||||||
perc = 'perc'
|
|
||||||
lp = 2
|
|
||||||
label_model = r'Nonlinearity $\frac{1}{S}$'
|
|
||||||
for all in it.product(*iternames):
|
|
||||||
|
|
||||||
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
|
|
||||||
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
|
|
||||||
fig = plt.figure()
|
|
||||||
|
|
||||||
hs = 0.45
|
|
||||||
|
|
||||||
#################################
|
|
||||||
# data cells
|
|
||||||
# embed()
|
|
||||||
grid_data = gridspec.GridSpecFromSubplotSpec(1, 1, grid[0, 1],
|
|
||||||
hspace=hs)
|
|
||||||
|
|
||||||
#ypos_x_modelanddata()
|
|
||||||
nr = 1
|
|
||||||
ax_data, stack_spikes_all, eod_frs = plt_data_susept(fig, grid_data, cells_all, cell_type='p-unit', width=width,
|
|
||||||
cbar_label=True, nr = nr, amp_given = 1,xlabel = False, lp=lp, title=True)
|
|
||||||
for ax_external in ax_data:
|
|
||||||
# ax.set_ylabel(F2_xlabel())
|
|
||||||
# remove_xticks(ax)
|
|
||||||
ax_external.set_xticks_delta(100)
|
|
||||||
set_ylabel_arrow(ax_external, xpos=xpos_y_modelanddata(), ypos=0.87)
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
set_xlabel_arrow(ax_external, ypos=ypos_x_modelanddata())
|
|
||||||
# ax.text(-0.42, 0.87, F2_xlabel(), ha='center', va='center',
|
|
||||||
# transform=ax.transAxes, rotation = 90)
|
|
||||||
# ax.text(1.66, 0.5, nonlin_title(), rotation=90, ha='center', va='center',
|
|
||||||
# transform=ax.transAxes)
|
|
||||||
|
|
||||||
ax_external.arrow_spines('lb')
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
#plt.show()
|
|
||||||
##################################
|
|
||||||
# model part
|
|
||||||
|
|
||||||
trial_nr = 500000
|
|
||||||
cell = '2013-01-08-aa-invivo-1'
|
|
||||||
cell = '2012-07-03-ak-invivo-1'
|
|
||||||
print('cell'+str(cell))
|
|
||||||
cells_given = [cell]
|
|
||||||
save_name_rev = load_folder_name(
|
|
||||||
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
|
||||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_revQuadrant_'
|
|
||||||
# for trial in trials:#.009
|
|
||||||
trial_nr = 1000000#1000000
|
|
||||||
save_names = [
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
|
||||||
|
|
||||||
]
|
|
||||||
|
|
||||||
nrs_s = [2, 3, 6, 7, 10, 11]
|
|
||||||
#embed()
|
|
||||||
tr_name = trial_nr/1000000
|
|
||||||
if tr_name == 1:
|
|
||||||
tr_name = 1
|
|
||||||
titles = ['Model\n$N=11$ \n $c=1\,\%$', 'Model\n$N=%s $' % (tr_name) +'\,million \n $c=1\,\%$',
|
|
||||||
'Model\,('+noise_name().lower()+')' + '\n' + '$N=11$\n $c=0\,\%$',
|
|
||||||
'Model\,('+noise_name().lower()+')' + '\n' + '$N=%s$' % (tr_name) + '\,million \n $c=0\,\%$',
|
|
||||||
'Model\,('+noise_name().lower()+')' + '\n' + '$N=11$\n $c=1\,\%$',
|
|
||||||
'Model\,('+noise_name().lower()+')' + '\n' + '$N=%s$' % (tr_name) + '\,million\n $c=1\,\%$ ']#%
|
|
||||||
ax_model = []
|
|
||||||
|
|
||||||
for s, sav_name in enumerate(save_names):
|
|
||||||
try:
|
|
||||||
ax_external = plt.subplot(grid[nrs_s[s]])
|
|
||||||
except:
|
|
||||||
print('vers something')
|
|
||||||
embed()
|
|
||||||
ax_model.append(ax_external)
|
|
||||||
|
|
||||||
save_name = load_folder_name('calc_model') + '/' + sav_name
|
|
||||||
|
|
||||||
cell_add, cells_save = find_cell_add(cells_given)
|
|
||||||
perc = 'perc'
|
|
||||||
|
|
||||||
path = save_name + '.pkl' # '../'+
|
|
||||||
# stack = get_stack_one_quadrant(cell, cell_add, cells_save, path, save_name)
|
|
||||||
|
|
||||||
# full_matrix = create_full_matrix2(np.array(stack), np.array(stack_rev))
|
|
||||||
# stack_final = get_axis_on_full_matrix(full_matrix, stack)
|
|
||||||
# im = plt_RAM_perc(ax, perc, np.abs(stack))
|
|
||||||
# embed()
|
|
||||||
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
|
|
||||||
|
|
||||||
if len(stack)> 0:
|
|
||||||
add_nonlin_title, cbar, fig, stack_plot, im = plt_single_square_modl(ax_external, cell, stack, perc, titles[s],
|
|
||||||
width, titles_plot=True,
|
|
||||||
resize=True, nr = nr)
|
|
||||||
|
|
||||||
# if s in [1,3,5]:
|
|
||||||
|
|
||||||
ims.append(im)
|
|
||||||
mats.append(stack_plot)
|
|
||||||
maxs.append(np.max(np.array(stack_plot)))
|
|
||||||
mins.append(np.min(np.array(stack_plot)))
|
|
||||||
col = 2
|
|
||||||
row = 3
|
|
||||||
ax_external.set_xticks_delta(100)
|
|
||||||
ax_external.set_yticks_delta(100)
|
|
||||||
# cbar[0].set_label(nonlin_title(add_nonlin_title)) # , labelpad=100
|
|
||||||
cbar.set_label(nonlin_title(' ['+add_nonlin_title), labelpad=lp) # rotation=270,
|
|
||||||
|
|
||||||
if (s in np.arange(col - 1, 100, col)) | (s == 0):
|
|
||||||
remove_yticks(ax_external)
|
|
||||||
else:
|
|
||||||
set_ylabel_arrow(ax_external, xpos=xpos_y_modelanddata(), ypos=0.87)
|
|
||||||
|
|
||||||
if s >= row * col - col:
|
|
||||||
set_xlabel_arrow(ax_external, ypos=ypos_x_modelanddata())
|
|
||||||
# ax.set_xlabel(F1_xlabel(), labelpad=20)
|
|
||||||
else:
|
|
||||||
remove_xticks(ax_external)
|
|
||||||
|
|
||||||
if len(cells) > 1:
|
|
||||||
a += 1
|
|
||||||
|
|
||||||
set_clim_same_here(ims, mats=mats, lim_type='up', nr_clim='perc', clims='', percnr=95)
|
|
||||||
|
|
||||||
#################################################
|
|
||||||
# Flowcharts
|
|
||||||
|
|
||||||
var_types = ['', 'additiv_cv_adapt_factor_scaled', 'additiv_cv_adapt_factor_scaled']
|
|
||||||
##additiv_cv_adapt_factor_scaled
|
|
||||||
a_fes = [0.009, 0, 0.009]
|
|
||||||
eod_fe = [750, 750, 750]
|
|
||||||
ylim = [-0.5, 0.5]
|
|
||||||
c_sigs = [0, 0.9, 0.9]
|
|
||||||
grid_left = [[], grid[1, 0], grid[2, 0]]
|
|
||||||
ax_ams = []
|
|
||||||
for g, grid_here in enumerate([grid[0, 0], grid[1, 0], grid[2, 0]]):
|
|
||||||
grid_lowpass = gridspec.GridSpecFromSubplotSpec(4, 1,
|
|
||||||
subplot_spec=grid_here, hspace=0.3,
|
|
||||||
height_ratios=[1, 1,1, 0.1])
|
|
||||||
|
|
||||||
models = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
|
||||||
model_params = models[models['cell'] == '2012-07-03-ak-invivo-1'].iloc[0]
|
|
||||||
cell = model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
|
|
||||||
eod_fr = model_params['EODf'] # .iloc[0]
|
|
||||||
deltat = model_params.pop("deltat") # .iloc[0]
|
|
||||||
v_offset = model_params.pop("v_offset") # .iloc[0]
|
|
||||||
# embed()eod_fr = stack.eod_fr.iloc[0]
|
|
||||||
print(var_types[g] + ' a_fe ' + str(a_fes[g]))
|
|
||||||
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
|
|
||||||
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
|
|
||||||
eod_fe=eod_fe)
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
|
|
||||||
grid_lowpass2 = gridspec.GridSpecFromSubplotSpec(4, 1,
|
|
||||||
subplot_spec=grid_here,height_ratios=[1, 1,1, 0.1], hspace=0.2)
|
|
||||||
|
|
||||||
# if (np.unique(frame.RAM_afe) != 0):grid_left[g]
|
|
||||||
|
|
||||||
ax_external = plt_time_arrays('red', grid_lowpass2, 1, (frame.RAM_afe)*100, time=time, nr=0)
|
|
||||||
# if (np.unique(frame.RAM_noise) != 0):
|
|
||||||
remove_xticks(ax_external)
|
|
||||||
ax_intrinsic = plt_time_arrays('purple', grid_lowpass2, 1, (frame.RAM_noise)*100, time=time, nr=1)
|
|
||||||
ax_intrinsic.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=ax_intrinsic.transAxes)
|
|
||||||
ax_intrinsic.show_spines('l')
|
|
||||||
ax_external.show_spines('l')
|
|
||||||
# ax_ams.append(axt_p2)
|
|
||||||
#color_timeseries = 'black'
|
|
||||||
#axt_p2.set_xlabel('Time [ms]')
|
|
||||||
#axt_p2.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=axt_p2.transAxes)
|
|
||||||
#ax_ams.append(axt_p2)
|
|
||||||
vers = 'all'
|
|
||||||
elif (len(np.unique(frame.RAM_afe)) > 1):
|
|
||||||
color_timeseries = 'red'
|
|
||||||
nr_plot = 0
|
|
||||||
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
|
||||||
try:
|
|
||||||
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
|
||||||
(frame.RAM_afe + frame.RAM_noise)*100,
|
|
||||||
deltat, eod_fr,
|
|
||||||
color1=color_timeseries, lw=1, extract=False)
|
|
||||||
except:
|
|
||||||
print('add up thing')
|
|
||||||
embed()
|
|
||||||
ax_external.show_spines('l')
|
|
||||||
|
|
||||||
ax_intrinsic = plt.subplot(grid_lowpass[1])
|
|
||||||
ax_intrinsic.show_spines('l')
|
|
||||||
ax_intrinsic.axhline(0, color='black', lw=0.5)
|
|
||||||
ax_intrinsic.axhline(0, color='purple', lw=0.5)
|
|
||||||
|
|
||||||
remove_xticks(ax_external)
|
|
||||||
remove_xticks(ax_intrinsic)
|
|
||||||
join_x([ax_intrinsic, ax_external])
|
|
||||||
join_y([ax_intrinsic, ax_external])
|
|
||||||
vers = 'first'
|
|
||||||
elif (len(np.unique(frame.RAM_noise)) > 1):
|
|
||||||
color_timeseries = 'purple'
|
|
||||||
nr_plot = 1
|
|
||||||
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
|
||||||
try:
|
|
||||||
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time, (frame.RAM_afe + frame.RAM_noise)*100,
|
|
||||||
deltat, eod_fr,
|
|
||||||
color1=color_timeseries, lw=1, extract=False)
|
|
||||||
except:
|
|
||||||
print('add up thing')
|
|
||||||
embed()
|
|
||||||
|
|
||||||
ax_external = plt.subplot(grid_lowpass[0])
|
|
||||||
ax_external.show_spines('l')
|
|
||||||
ax_intrinsic.show_spines('l')
|
|
||||||
ax_external.axhline(0, color='black', lw=0.5)
|
|
||||||
ax_external.axhline(0, color='red', lw=0.5)
|
|
||||||
join_x([ax_intrinsic,ax_external])
|
|
||||||
join_y([ax_intrinsic, ax_external])
|
|
||||||
vers = 'second'
|
|
||||||
ax_external.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_external.transAxes)
|
|
||||||
ax_intrinsic.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_intrinsic.transAxes)
|
|
||||||
remove_xticks(ax_intrinsic)
|
|
||||||
# if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
|
|
||||||
ax_external.set_xlabel('')
|
|
||||||
# remove_yticks(ax)
|
|
||||||
|
|
||||||
ax_ams.append(ax_external)
|
|
||||||
remove_xticks(ax_external)
|
|
||||||
# embed()
|
|
||||||
ax_n, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[2]], time, noise_final_c, deltat, eod_fr,
|
|
||||||
extract=False, color1='grey', lw=1)
|
|
||||||
remove_yticks(ax_n)
|
|
||||||
if g == 2:
|
|
||||||
ax_n.set_xlabel('Time [ms]', labelpad = -0.5)
|
|
||||||
else:
|
|
||||||
remove_xticks(ax_n)
|
|
||||||
ax_n.set_ylim(ylim)
|
|
||||||
|
|
||||||
|
|
||||||
if vers == 'first':
|
|
||||||
ax_external.text(1, 1, 'RAM', ha='right', color='red', transform=ax_external.transAxes)
|
|
||||||
ax_n.text(start_pos_modeldata(), 1.1, noise_component_name(), ha='right', color='gray',
|
|
||||||
transform=ax_n.transAxes)
|
|
||||||
elif vers == 'second':
|
|
||||||
ax_external.text(1, 1, 'RAM', ha='right', color='red', transform=ax_external.transAxes)
|
|
||||||
ax_intrinsic.text(start_pos_modeldata(), 1, signal_component_name(), ha='right', color='purple',
|
|
||||||
transform=ax_intrinsic.transAxes)
|
|
||||||
ax_n.text(start_pos_modeldata(), 0.8, noise_component_name(), ha='right', color='gray',
|
|
||||||
transform=ax_n.transAxes)
|
|
||||||
else:
|
|
||||||
ax_n.text(start_pos_modeldata(), 0.8, noise_component_name(), ha='right', color='gray',
|
|
||||||
transform=ax_n.transAxes)
|
|
||||||
ax_external.text(1, 1, 'RAM', ha='right', color='red', transform=ax_external.transAxes)
|
|
||||||
ax_intrinsic.text(start_pos_modeldata(), 1, signal_component_name(), ha='right', color='purple',
|
|
||||||
transform=ax_intrinsic.transAxes)
|
|
||||||
|
|
||||||
set_same_ylim(ax_ams, up='up')
|
|
||||||
# embed()
|
|
||||||
axes = np.concatenate([ax_data, ax_model])
|
|
||||||
|
|
||||||
axes = [ax_ams[0], axes[0], axes[1], axes[2], ax_ams[1], axes[3], axes[4], ax_ams[2], axes[5],
|
|
||||||
axes[6], ]
|
|
||||||
axd1 = plt.subplot(grid[1, 1])
|
|
||||||
axd2 = plt.subplot(grid[2, 1])
|
|
||||||
#ax_data.extend([,])
|
|
||||||
axd1.show_spines('')
|
|
||||||
axd2.show_spines('')
|
|
||||||
#embed()
|
|
||||||
#axes = [[ax_ams[0],ax_data[0],axes[2], axes[3]],[ax_ams[1],axd1,axes[4], axes[5]],[axd2,axd2, axes[6], axes[7]]]
|
|
||||||
fig.tag([axes[0:4]], xoffs=-3, yoffs=1.6) # ax_ams[3],
|
|
||||||
fig.tag([[axes[4]]], xoffs=-3, yoffs=1.6, minor_index=0) # ax_ams[3],
|
|
||||||
fig.tag([axes[5:7]], xoffs=-3, yoffs=1.6, major_index = 1, minor_index = 2) # ax_ams[3],
|
|
||||||
fig.tag([[axes[7]]], xoffs=-3, yoffs=1.6, major_index=2,minor_index=0) # ax_ams[3],
|
|
||||||
fig.tag([axes[8::]], xoffs=-3, yoffs=1.6, major_index=2, minor_index=2) # ax_ams[3],
|
|
||||||
#fig.tag([axes[7::]], xoffs=-3, yoffs=1.6) # ax_ams[3],
|
|
||||||
|
|
||||||
#fig.tag([ax_ams[0],ax_data[0],axes[2], axes[3]], xoffs=-3, yoffs=1.6)#ax_ams[3],
|
|
||||||
|
|
||||||
save_visualization(pdf=True)
|
|
||||||
|
|
||||||
|
|
||||||
def start_pos_modeldata():
|
|
||||||
return 1.03
|
|
||||||
|
|
||||||
|
|
||||||
def signal_component_name():
|
|
||||||
return 'Signal component'#'signal noise'
|
|
||||||
|
|
||||||
|
|
||||||
def noise_component_name():
|
|
||||||
return 'Noise component'#'intrinsic noise'
|
|
||||||
|
|
||||||
|
|
||||||
def ypos_x_modelanddata():
|
|
||||||
return -0.45
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
|
||||||
|
|
||||||
model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
|
||||||
cells = model.cell.unique()
|
|
||||||
# embed()
|
|
||||||
params = {'cells': cells}
|
|
||||||
|
|
||||||
show = True
|
|
||||||
# if show == False:
|
|
||||||
|
|
||||||
# low CV: cells = ['2012-07-03-ak-invivo-1']
|
|
||||||
plot_style()
|
|
||||||
default_settings(lw=0.5, column=2, length=3.35) #8.5
|
|
||||||
redo = False
|
|
||||||
D_extraction_method = ['additiv_cv_adapt_factor_scaled']
|
|
||||||
# D_extraction_method = ['additiv_visual_d_4_scaled']
|
|
||||||
|
|
||||||
##########################
|
|
||||||
# hier printen wir die table Werte zum kopieren in den Text
|
|
||||||
table = pd.read_csv('print_table_suscept-model_params_suscept_table.csv')
|
|
||||||
table_printen(table)
|
|
||||||
|
|
||||||
table = pd.read_csv('print_table_all-model_params_suscept_table.csv')
|
|
||||||
print('model big')
|
|
||||||
table_printen(table)
|
|
||||||
#embed()
|
|
||||||
|
|
||||||
##########################
|
|
||||||
#embed()
|
|
||||||
model_and_data2(width=0.005, show=show, D_extraction_method=D_extraction_method,
|
|
||||||
label=r'$\frac{1}{mV^2S}$') #r'$\frac{1}{mV^2S}$'
|
|
||||||
|
|
||||||
|
|
BIN
model_full.pdf
BIN
model_full.pdf
Binary file not shown.
108
model_full.py
108
model_full.py
@ -1,108 +0,0 @@
|
|||||||
from utils_suseptibility import *
|
|
||||||
|
|
||||||
def model_full():
|
|
||||||
|
|
||||||
plot_style()
|
|
||||||
default_figsize(column=2, length=2.3)
|
|
||||||
grid = gridspec.GridSpec(1, 2, wspace=0.6, bottom = 0.1,hspace=0.15, top=0.95, left=0.075, right=0.87)
|
|
||||||
|
|
||||||
axes = []
|
|
||||||
##################################
|
|
||||||
# model part
|
|
||||||
ls = '--'
|
|
||||||
lw = 0.5
|
|
||||||
ax = plt.subplot(grid[1])
|
|
||||||
|
|
||||||
axes.append(ax)
|
|
||||||
|
|
||||||
perc,im,stack_final = plt_model_big(ax, ls = ls, lw = 0.5)
|
|
||||||
|
|
||||||
# if len(cbar) > 0:
|
|
||||||
###############################
|
|
||||||
# data part
|
|
||||||
|
|
||||||
|
|
||||||
ax = plt.subplot(grid[0])
|
|
||||||
axes.append(ax)
|
|
||||||
cell = '2012-07-03-ak-invivo-1'
|
|
||||||
mat_rev,stack_final_rev = load_stack_data_susept(cell, save_name = version_final(), end = '_revQuadrant_')
|
|
||||||
mat, stack = load_stack_data_susept(cell, save_name=version_final(), end = '')
|
|
||||||
#embed()
|
|
||||||
#try:
|
|
||||||
full_matrix = create_full_matrix2(np.array(mat),np.array(mat_rev))
|
|
||||||
#except:
|
|
||||||
# print('full matrix something')
|
|
||||||
# embed()
|
|
||||||
|
|
||||||
stack_final = get_axis_on_full_matrix(full_matrix, mat)
|
|
||||||
|
|
||||||
abs_matrix = np.abs(stack_final)
|
|
||||||
#embed()
|
|
||||||
#if np.
|
|
||||||
abs_matrix, add_nonlin_title, resize_val = rescale_colorbar_and_values(abs_matrix)
|
|
||||||
|
|
||||||
|
|
||||||
ax.axhline(0, color = 'white', linestyle = ls, linewidth = lw)
|
|
||||||
ax.axvline(0, color='white', linestyle = ls, linewidth = lw)
|
|
||||||
im = plt_RAM_perc(ax, perc, abs_matrix)
|
|
||||||
cbar, left, bottom, width, height = colorbar_outside(ax, im, add=5, width=0.01)
|
|
||||||
|
|
||||||
set_clim_same_here([im], mats=[abs_matrix], lim_type='up', nr_clim='perc', clims='', percnr=95)
|
|
||||||
|
|
||||||
#clim = im.get_clim()
|
|
||||||
#if clim[1]> 1000:
|
|
||||||
#todo: change clim values with different Hz values
|
|
||||||
#embed()
|
|
||||||
cbar.set_label(nonlin_title(add_nonlin_title = ' ['+add_nonlin_title), rotation=90, labelpad=8)
|
|
||||||
|
|
||||||
set_ylabel_arrow(ax, xpos = -0.07, ypos = 0.97)
|
|
||||||
set_xlabel_arrow(ax, xpos=1, ypos=-0.07)
|
|
||||||
''' eod_fr, stack_spikes = plt_data_suscept_single(ax, cbar_label, cell, cells, f, fig, file_names_exclude, lp, title,
|
|
||||||
width)'''
|
|
||||||
cbar, left, bottom, width, height = colorbar_outside(ax, im, add=5, width=0.01)
|
|
||||||
|
|
||||||
#print('finished model_full')
|
|
||||||
fig = plt.gcf()
|
|
||||||
#axes = plt.gca()
|
|
||||||
fig.tag(axes[::-1], xoffs=-4.5, yoffs=0.4) # ax_ams[3],
|
|
||||||
|
|
||||||
save_visualization()
|
|
||||||
|
|
||||||
|
|
||||||
def load_stack_data_susept(cell, save_name, end = ''):
|
|
||||||
load_name = load_folder_name('calc_RAM') + '/' + save_name+end
|
|
||||||
add = '_cell' + cell +end# str(f) # + '_amp_' + str(amp)
|
|
||||||
#embed()
|
|
||||||
stack_cell = load_data_susept(load_name + '_' + cell + '.pkl', load_name + '_' + cell, add=add,
|
|
||||||
load_version='csv')
|
|
||||||
file_names_exclude = get_file_names_exclude()
|
|
||||||
stack_cell = stack_cell[~stack_cell['file_name'].isin(file_names_exclude)]
|
|
||||||
# if len(stack_cell):
|
|
||||||
file_names = stack_cell.file_name.unique()
|
|
||||||
#embed()
|
|
||||||
file_names = exclude_file_name_short(file_names)
|
|
||||||
cut_off_nr = get_cutoffs_nr(file_names)
|
|
||||||
try:
|
|
||||||
maxs = list(map(float, cut_off_nr))
|
|
||||||
except:
|
|
||||||
embed()
|
|
||||||
file_names = file_names[np.argmax(maxs)]
|
|
||||||
#embed()
|
|
||||||
stack_file = stack_cell[stack_cell['file_name'] == file_names]
|
|
||||||
amps = [np.min(stack_file.amp.unique())]
|
|
||||||
amps = restrict_punits(cell, amps)
|
|
||||||
amp = np.min(amps)#[0]
|
|
||||||
# for amp in amps:
|
|
||||||
stack_amps = stack_file[stack_file['amp'] == amp]
|
|
||||||
|
|
||||||
lengths = stack_amps.stimulus_length.unique()
|
|
||||||
trial_nr_double = stack_amps.trial_nr.unique()
|
|
||||||
trial_nr = np.max(trial_nr_double)
|
|
||||||
stack_final = stack_amps[
|
|
||||||
(stack_amps['stimulus_length'] == np.max(lengths)) & (stack_amps.trial_nr == trial_nr)]
|
|
||||||
mat, new_keys = get_mat_susept(stack_final)
|
|
||||||
return mat,stack_final
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
model_full()
|
|
@ -1,4 +1,4 @@
|
|||||||
This is pdfTeX, Version 3.141592653-2.6-1.40.22 (MiKTeX 21.2) (preloaded format=pdflatex 2021.5.16) 22 FEB 2024 22:43
|
This is pdfTeX, Version 3.141592653-2.6-1.40.22 (MiKTeX 21.2) (preloaded format=pdflatex 2021.5.16) 23 FEB 2024 13:46
|
||||||
entering extended mode
|
entering extended mode
|
||||||
**./susceptibility1.tex
|
**./susceptibility1.tex
|
||||||
(susceptibility1.tex
|
(susceptibility1.tex
|
||||||
@ -1004,61 +1004,97 @@ Package natbib Warning: Citation `Neiman2011fish' on page 10 undefined on input
|
|||||||
line 631.
|
line 631.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Maler2009a' on page 10 undefined on input lin
|
||||||
|
e 641.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Hladnik2023' on page 10 undefined on input li
|
Package natbib Warning: Citation `Hladnik2023' on page 10 undefined on input li
|
||||||
ne 645.
|
ne 641.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Stamper2012Envelope' on page 10 undefined on
|
Package natbib Warning: Citation `Beiran2018' on page 10 undefined on input lin
|
||||||
input line 652.
|
e 641.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Middleton2006' on page 10 undefined on input
|
Package natbib Warning: Citation `Hladnik2023' on page 10 undefined on input li
|
||||||
line 652.
|
ne 641.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Middleton2007' on page 10 undefined on input
|
LaTeX Warning: Reference `ROC_with_nonlin' on page 10 undefined on input line 6
|
||||||
line 652.
|
45.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Savard2011' on page 10 undefined on input lin
|
Package natbib Warning: Citation `Schlungbaum2023' on page 10 undefined on inpu
|
||||||
e 652.
|
t line 645.
|
||||||
|
|
||||||
|
|
||||||
LaTeX Warning: Reference `data_overview' on page 10 undefined on input line 652
|
LaTeX Warning: Reference `ROC_with_nonlin' on page 10 undefined on input line 6
|
||||||
.
|
45.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Grewe2017' on page 10 undefined on input line
|
||||||
|
645.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Hladnik2023' on page 10 undefined on input li
|
||||||
|
ne 645.
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Reference `ROC_with_nonlin' on page 10 undefined on input line 6
|
||||||
|
45.
|
||||||
|
|
||||||
[10]
|
[10]
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Stamper2012Envelope' on page 11 undefined on
|
||||||
|
input line 660.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Middleton2006' on page 11 undefined on input
|
||||||
|
line 660.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Middleton2007' on page 11 undefined on input
|
||||||
|
line 660.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Middleton2007' on page 11 undefined on input
|
||||||
|
line 660.
|
||||||
|
|
||||||
|
|
||||||
|
Package natbib Warning: Citation `Savard2011' on page 11 undefined on input lin
|
||||||
|
e 660.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Tan2005' on page 11 undefined on input line 6
|
Package natbib Warning: Citation `Tan2005' on page 11 undefined on input line 6
|
||||||
56.
|
64.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Stamper2010' on page 11 undefined on input li
|
Package natbib Warning: Citation `Stamper2010' on page 11 undefined on input li
|
||||||
ne 656.
|
ne 664.
|
||||||
|
|
||||||
|
|
||||||
LaTeX Warning: Reference `cocktail party' on page 11 undefined on input line 65
|
LaTeX Warning: Reference `cocktail party' on page 11 undefined on input line 66
|
||||||
6.
|
4.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Henninger2018' on page 11 undefined on input
|
Package natbib Warning: Citation `Henninger2018' on page 11 undefined on input
|
||||||
line 656.
|
line 664.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Voronenko2017' on page 11 undefined on input
|
Package natbib Warning: Citation `Voronenko2017' on page 11 undefined on input
|
||||||
line 659.
|
line 667.
|
||||||
|
|
||||||
[11]
|
[11]
|
||||||
|
|
||||||
Package natbib Warning: Citation `Grewe2017' on page 12 undefined on input line
|
Package natbib Warning: Citation `Grewe2017' on page 12 undefined on input line
|
||||||
704.
|
712.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Hladnik2023' on page 12 undefined on input li
|
Package natbib Warning: Citation `Hladnik2023' on page 12 undefined on input li
|
||||||
ne 704.
|
ne 712.
|
||||||
|
|
||||||
|
|
||||||
LaTeX Warning: Reference `heterogeneity' on page 12 undefined on input line 704
|
LaTeX Warning: Reference `heterogeneity' on page 12 undefined on input line 712
|
||||||
.
|
.
|
||||||
|
|
||||||
|
|
||||||
@ -1068,97 +1104,99 @@ pdfTeX warning: pdflatex (file ./Settup.pdf): PDF inclusion: found PDF version
|
|||||||
<Settup.pdf, id=507, 963.6pt x 414.22754pt>
|
<Settup.pdf, id=507, 963.6pt x 414.22754pt>
|
||||||
File: Settup.pdf Graphic file (type pdf)
|
File: Settup.pdf Graphic file (type pdf)
|
||||||
<use Settup.pdf>
|
<use Settup.pdf>
|
||||||
Package pdftex.def Info: Settup.pdf used on input line 730.
|
Package pdftex.def Info: Settup.pdf used on input line 738.
|
||||||
(pdftex.def) Requested size: 468.0pt x 201.1782pt.
|
(pdftex.def) Requested size: 468.0pt x 201.1782pt.
|
||||||
|
|
||||||
LaTeX Warning: `!h' float specifier changed to `!ht'.
|
LaTeX Warning: `!h' float specifier changed to `!ht'.
|
||||||
|
|
||||||
|
[12]
|
||||||
|
|
||||||
Package natbib Warning: Citation `Stoewer2014' on page 12 undefined on input li
|
Package natbib Warning: Citation `Stoewer2014' on page 13 undefined on input li
|
||||||
ne 767.
|
ne 775.
|
||||||
|
|
||||||
[12] [13 <./Settup.pdf>]
|
[13 <./Settup.pdf>]
|
||||||
|
|
||||||
LaTeX Warning: Reference `data_overview' on page 14 undefined on input line 877
|
LaTeX Warning: Reference `data_overview' on page 14 undefined on input line 885
|
||||||
.
|
.
|
||||||
|
|
||||||
|
|
||||||
LaTeX Warning: Reference `burst_cells_suscept' on page 14 undefined on input li
|
LaTeX Warning: Reference `burst_cells_suscept' on page 14 undefined on input li
|
||||||
ne 877.
|
ne 885.
|
||||||
|
|
||||||
|
|
||||||
LaTeX Warning: Reference `cells_eigen' on page 14 undefined on input line 877.
|
LaTeX Warning: Reference `cells_eigen' on page 14 undefined on input line 885.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Chacron2001' on page 14 undefined on input li
|
Package natbib Warning: Citation `Chacron2001' on page 14 undefined on input li
|
||||||
ne 890.
|
ne 898.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Sinz2020' on page 14 undefined on input line
|
Package natbib Warning: Citation `Sinz2020' on page 14 undefined on input line
|
||||||
890.
|
898.
|
||||||
|
|
||||||
[14]
|
[14]
|
||||||
|
|
||||||
Package natbib Warning: Citation `Fourcaud-Trocme2003' on page 15 undefined on
|
Package natbib Warning: Citation `Fourcaud-Trocme2003' on page 15 undefined on
|
||||||
input line 940.
|
input line 948.
|
||||||
|
|
||||||
<flowchart.pdf, id=560, 489.3874pt x 339.66899pt>
|
<flowchart.pdf, id=558, 489.3874pt x 339.66899pt>
|
||||||
File: flowchart.pdf Graphic file (type pdf)
|
File: flowchart.pdf Graphic file (type pdf)
|
||||||
<use flowchart.pdf>
|
<use flowchart.pdf>
|
||||||
Package pdftex.def Info: flowchart.pdf used on input line 944.
|
Package pdftex.def Info: flowchart.pdf used on input line 952.
|
||||||
(pdftex.def) Requested size: 468.0pt x 324.82944pt.
|
(pdftex.def) Requested size: 468.0pt x 324.82944pt.
|
||||||
|
|
||||||
Package natbib Warning: Citation `Ott2020' on page 15 undefined on input line 9
|
Package natbib Warning: Citation `Ott2020' on page 15 undefined on input line 9
|
||||||
74.
|
82.
|
||||||
|
|
||||||
|
[15]
|
||||||
|
|
||||||
LaTeX Warning: Reference `beat' on page 15 undefined on input line 985.
|
LaTeX Warning: Reference `beat' on page 16 undefined on input line 993.
|
||||||
|
|
||||||
[15] [16 <./flowchart.pdf>]
|
[16 <./flowchart.pdf>]
|
||||||
|
|
||||||
Package natbib Warning: Citation `Novikov1965' on page 17 undefined on input li
|
Package natbib Warning: Citation `Novikov1965' on page 17 undefined on input li
|
||||||
ne 1005.
|
ne 1013.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Furutsu1963' on page 17 undefined on input li
|
Package natbib Warning: Citation `Furutsu1963' on page 17 undefined on input li
|
||||||
ne 1005.
|
ne 1013.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Egerland2020' on page 17 undefined on input l
|
Package natbib Warning: Citation `Egerland2020' on page 17 undefined on input l
|
||||||
ine 1005.
|
ine 1013.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Novikov1965' on page 17 undefined on input li
|
Package natbib Warning: Citation `Novikov1965' on page 17 undefined on input li
|
||||||
ne 1029.
|
ne 1037.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Furutsu1963' on page 17 undefined on input li
|
Package natbib Warning: Citation `Furutsu1963' on page 17 undefined on input li
|
||||||
ne 1029.
|
ne 1037.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Egerland2020' on page 17 undefined on input l
|
Package natbib Warning: Citation `Egerland2020' on page 17 undefined on input l
|
||||||
ine 1029.
|
ine 1037.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Ott2020' on page 17 undefined on input line 1
|
Package natbib Warning: Citation `Ott2020' on page 17 undefined on input line 1
|
||||||
043.
|
051.
|
||||||
|
|
||||||
|
|
||||||
Package natbib Warning: Citation `Ott2020' on page 17 undefined on input line 1
|
Package natbib Warning: Citation `Ott2020' on page 17 undefined on input line 1
|
||||||
043.
|
051.
|
||||||
|
|
||||||
[17]
|
[17]
|
||||||
<cells_suscept_high_CV.pdf, id=629, 489.3874pt x 267.39899pt>
|
<cells_suscept_high_CV.pdf, id=629, 489.3874pt x 267.39899pt>
|
||||||
File: cells_suscept_high_CV.pdf Graphic file (type pdf)
|
File: cells_suscept_high_CV.pdf Graphic file (type pdf)
|
||||||
<use cells_suscept_high_CV.pdf>
|
<use cells_suscept_high_CV.pdf>
|
||||||
Package pdftex.def Info: cells_suscept_high_CV.pdf used on input line 1090.
|
Package pdftex.def Info: cells_suscept_high_CV.pdf used on input line 1098.
|
||||||
(pdftex.def) Requested size: 489.38622pt x 267.39833pt.
|
(pdftex.def) Requested size: 489.38622pt x 267.39833pt.
|
||||||
|
|
||||||
Overfull \hbox (21.38622pt too wide) in paragraph at lines 1090--1093
|
Overfull \hbox (21.38622pt too wide) in paragraph at lines 1098--1101
|
||||||
[][]
|
[][]
|
||||||
[]
|
[]
|
||||||
|
|
||||||
(susceptibility1.bbl) [18 <./cells_suscept_high_CV.pdf>]
|
(susceptibility1.bbl) [18 <./cells_suscept_high_CV.pdf>] [19]
|
||||||
|
|
||||||
Package natbib Warning: There were undefined citations.
|
Package natbib Warning: There were undefined citations.
|
||||||
|
|
||||||
@ -1170,14 +1208,23 @@ See the caption package documentation for explanation.
|
|||||||
|
|
||||||
LaTeX Warning: There were undefined references.
|
LaTeX Warning: There were undefined references.
|
||||||
|
|
||||||
Package rerunfilecheck Info: File `susceptibility1.out' has not changed.
|
|
||||||
(rerunfilecheck) Checksum: 86758D0DA4F18F509F918859B173A0F4;7460.
|
LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
|
||||||
|
|
||||||
|
|
||||||
|
Package rerunfilecheck Warning: File `susceptibility1.out' has changed.
|
||||||
|
(rerunfilecheck) Rerun to get outlines right
|
||||||
|
(rerunfilecheck) or use package `bookmark'.
|
||||||
|
|
||||||
|
Package rerunfilecheck Info: Checksums for `susceptibility1.out':
|
||||||
|
(rerunfilecheck) Before: 86758D0DA4F18F509F918859B173A0F4;7460
|
||||||
|
(rerunfilecheck) After: 1F46864C96A9861AD5E13A6956E744D8;7514.
|
||||||
)
|
)
|
||||||
Here is how much of TeX's memory you used:
|
Here is how much of TeX's memory you used:
|
||||||
13372 strings out of 479334
|
13374 strings out of 479334
|
||||||
196704 string characters out of 2857084
|
196728 string characters out of 2857084
|
||||||
547701 words of memory out of 3000000
|
547701 words of memory out of 3000000
|
||||||
30535 multiletter control sequences out of 15000+200000
|
30536 multiletter control sequences out of 15000+200000
|
||||||
415007 words of font info for 70 fonts, out of 3000000 for 9000
|
415007 words of font info for 70 fonts, out of 3000000 for 9000
|
||||||
1141 hyphenation exceptions out of 8191
|
1141 hyphenation exceptions out of 8191
|
||||||
83i,17n,88p,2575b,440s stack positions out of 5000i,500n,10000p,200000b,50000s
|
83i,17n,88p,2575b,440s stack positions out of 5000i,500n,10000p,200000b,50000s
|
||||||
@ -1219,9 +1266,9 @@ c/cm-super/sfrm1000.pfb><C:/Users/alexi/AppData/Local/Programs/MiKTeX/fonts/typ
|
|||||||
e1/urw/helvetic/uhvr8a.pfb><C:/Users/alexi/AppData/Local/Programs/MiKTeX/fonts/
|
e1/urw/helvetic/uhvr8a.pfb><C:/Users/alexi/AppData/Local/Programs/MiKTeX/fonts/
|
||||||
type1/urw/helvetic/uhvro8a.pfb><C:/Users/alexi/AppData/Local/Programs/MiKTeX/fo
|
type1/urw/helvetic/uhvro8a.pfb><C:/Users/alexi/AppData/Local/Programs/MiKTeX/fo
|
||||||
nts/type1/urw/symbol/usyr.pfb>
|
nts/type1/urw/symbol/usyr.pfb>
|
||||||
Output written on susceptibility1.pdf (18 pages, 1546206 bytes).
|
Output written on susceptibility1.pdf (19 pages, 1548534 bytes).
|
||||||
PDF statistics:
|
PDF statistics:
|
||||||
774 PDF objects out of 1000 (max. 8388607)
|
779 PDF objects out of 1000 (max. 8388607)
|
||||||
91 named destinations out of 1000 (max. 500000)
|
92 named destinations out of 1000 (max. 500000)
|
||||||
310 words of extra memory for PDF output out of 10000 (max. 10000000)
|
310 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||||
|
|
||||||
|
2536
susceptibility1.pdf
2536
susceptibility1.pdf
File diff suppressed because it is too large
Load Diff
1756
susceptibility2.log
1756
susceptibility2.log
File diff suppressed because it is too large
Load Diff
Binary file not shown.
1146
susceptibility2.tex
1146
susceptibility2.tex
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user