updating figures
This commit is contained in:
parent
39e5146ade
commit
1309e4cfca
BIN
ampullary.pdf
BIN
ampullary.pdf
Binary file not shown.
@ -51,5 +51,5 @@ if __name__ == '__main__':
|
|||||||
ampullary_punit(cells_plot2=cells_plot2, RAM=False)
|
ampullary_punit(cells_plot2=cells_plot2, RAM=False)
|
||||||
else:
|
else:
|
||||||
cells_plot2 = p_units_to_show(type_here='amp')#permuted = True,
|
cells_plot2 = p_units_to_show(type_here='amp')#permuted = True,
|
||||||
print(cells_plot2)
|
#print(cells_plot2)
|
||||||
ampullary_punit(eod_metrice = False, base_extra = True,color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, titles=[''],cells_plot2=cells_plot2, RAM=False, scale_val = False, add_texts = [0.25,1.3])#Low-CV ampullary cell,
|
ampullary_punit(eod_metrice = False, base_extra = True,color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, titles=[''],cells_plot2=cells_plot2, RAM=False, scale_val = False, add_texts = [0.25,1.3])#Low-CV ampullary cell,
|
Binary file not shown.
@ -7,5 +7,5 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
#stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv')
|
#stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv')
|
||||||
cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True,
|
cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True,
|
||||||
print(cells_plot2)
|
#print(cells_plot2)
|
||||||
ampullary_punit(eod_metrice = False, color_same = False, base_extra = True, fr_name = label_fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''], tags_individual = True, xlim_p = [0, 1.15])#Low-CV P-unit,
|
ampullary_punit(eod_metrice = False, color_same = False, base_extra = True, fr_name = label_fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''], tags_individual = True, xlim_p = [0, 1.15])#Low-CV P-unit,
|
Binary file not shown.
@ -6,5 +6,5 @@ from threefish.RAM.plots import ampullary_punit
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True,
|
cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True,
|
||||||
print(cells_plot2)
|
#print(cells_plot2)
|
||||||
ampullary_punit(base_extra = True, eod_metrice = False, color_same = False, fr_name = label_fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'], )#High-CV P-unit,
|
ampullary_punit(base_extra = True, eod_metrice = False, color_same = False, fr_name = label_fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'], )#High-CV P-unit,
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,243 +1,242 @@
|
|||||||
,spikes
|
,spikes
|
||||||
0,0.0029000000000000002
|
0,0.007
|
||||||
1,0.00915
|
1,0.013600000000000001
|
||||||
2,0.015700000000000002
|
2,0.020050000000000002
|
||||||
3,0.026500000000000003
|
3,0.03065
|
||||||
4,0.0318
|
4,0.0383
|
||||||
5,0.0383
|
5,0.0448
|
||||||
6,0.05435
|
6,0.0577
|
||||||
7,0.06525
|
7,0.06515
|
||||||
8,0.06960000000000001
|
8,0.0728
|
||||||
9,0.076
|
9,0.08135
|
||||||
10,0.08465
|
10,0.08895
|
||||||
11,0.09335
|
11,0.09435
|
||||||
12,0.09975
|
12,0.10395
|
||||||
13,0.10515000000000001
|
13,0.1126
|
||||||
14,0.11910000000000001
|
14,0.1213
|
||||||
15,0.1245
|
15,0.12765
|
||||||
16,0.13525
|
16,0.13525
|
||||||
17,0.14165
|
17,0.1481
|
||||||
18,0.14825000000000002
|
18,0.15455000000000002
|
||||||
19,0.15675
|
19,0.1623
|
||||||
20,0.16425
|
20,0.1762
|
||||||
21,0.16975
|
21,0.1836
|
||||||
22,0.18375
|
22,0.18705000000000002
|
||||||
23,0.18815
|
23,0.1978
|
||||||
24,0.19565000000000002
|
24,0.20735
|
||||||
25,0.20220000000000002
|
25,0.2139
|
||||||
26,0.2096
|
26,0.21925
|
||||||
27,0.22030000000000002
|
27,0.2311
|
||||||
28,0.22795
|
28,0.23765
|
||||||
29,0.23970000000000002
|
29,0.24295
|
||||||
30,0.24505000000000002
|
30,0.25485
|
||||||
31,0.25045
|
31,0.25915
|
||||||
32,0.2602
|
32,0.26555
|
||||||
33,0.2666
|
33,0.2806
|
||||||
34,0.27640000000000003
|
34,0.2871
|
||||||
35,0.2838
|
35,0.29675
|
||||||
36,0.29375
|
36,0.30210000000000004
|
||||||
37,0.30545
|
37,0.30755
|
||||||
38,0.312
|
38,0.3173
|
||||||
39,0.31945
|
39,0.3302
|
||||||
40,0.3302
|
40,0.3366
|
||||||
41,0.342
|
41,0.34205
|
||||||
42,0.34845000000000004
|
42,0.35595000000000004
|
||||||
43,0.35385
|
43,0.36355000000000004
|
||||||
44,0.35935
|
44,0.37010000000000004
|
||||||
45,0.37320000000000003
|
45,0.3788
|
||||||
46,0.3841
|
46,0.38835000000000003
|
||||||
47,0.38945
|
47,0.39585000000000004
|
||||||
48,0.39580000000000004
|
48,0.40125
|
||||||
49,0.40235000000000004
|
49,0.4141
|
||||||
50,0.4121
|
50,0.42500000000000004
|
||||||
51,0.42510000000000003
|
51,0.43370000000000003
|
||||||
52,0.43245
|
52,0.44010000000000005
|
||||||
53,0.4368
|
53,0.4455
|
||||||
54,0.44320000000000004
|
54,0.45405
|
||||||
55,0.4562
|
55,0.4616
|
||||||
56,0.46375
|
56,0.46915
|
||||||
57,0.47125
|
57,0.47665
|
||||||
58,0.47775
|
58,0.48855000000000004
|
||||||
59,0.48745000000000005
|
59,0.49495
|
||||||
60,0.49605000000000005
|
60,0.5025000000000001
|
||||||
61,0.5047
|
61,0.5133
|
||||||
62,0.5112
|
62,0.52075
|
||||||
63,0.5197
|
63,0.53285
|
||||||
64,0.52525
|
64,0.5391
|
||||||
65,0.5347500000000001
|
65,0.5445
|
||||||
66,0.5477500000000001
|
66,0.55855
|
||||||
67,0.55425
|
67,0.5628500000000001
|
||||||
68,0.5619000000000001
|
68,0.5683
|
||||||
69,0.5692
|
69,0.5780500000000001
|
||||||
70,0.5757
|
70,0.5908
|
||||||
71,0.5834
|
71,0.5973
|
||||||
72,0.59295
|
72,0.60265
|
||||||
73,0.60385
|
73,0.6091
|
||||||
74,0.6124
|
74,0.61775
|
||||||
75,0.62005
|
75,0.6263500000000001
|
||||||
76,0.6265000000000001
|
76,0.63705
|
||||||
77,0.63075
|
77,0.64685
|
||||||
78,0.6437
|
78,0.65215
|
||||||
79,0.6544
|
79,0.6586500000000001
|
||||||
80,0.66085
|
80,0.67155
|
||||||
81,0.6684
|
81,0.6792
|
||||||
82,0.67695
|
82,0.6867000000000001
|
||||||
83,0.6835
|
83,0.6963
|
||||||
84,0.6888000000000001
|
84,0.7040000000000001
|
||||||
85,0.6965
|
85,0.7093
|
||||||
86,0.7115
|
86,0.71685
|
||||||
87,0.7210500000000001
|
87,0.72655
|
||||||
88,0.72975
|
88,0.732
|
||||||
89,0.7341000000000001
|
89,0.74905
|
||||||
90,0.7394000000000001
|
90,0.7546
|
||||||
91,0.7482000000000001
|
91,0.7589
|
||||||
92,0.7599
|
92,0.77185
|
||||||
93,0.7663500000000001
|
93,0.77615
|
||||||
94,0.7739
|
94,0.7858
|
||||||
95,0.7815000000000001
|
95,0.7975500000000001
|
||||||
96,0.7912
|
96,0.803
|
||||||
97,0.7988000000000001
|
97,0.8105
|
||||||
98,0.80525
|
98,0.82235
|
||||||
99,0.8214
|
99,0.82665
|
||||||
100,0.8256
|
100,0.8332
|
||||||
101,0.8310500000000001
|
101,0.8428
|
||||||
102,0.8449500000000001
|
102,0.8493
|
||||||
103,0.85035
|
103,0.8602500000000001
|
||||||
104,0.8580000000000001
|
104,0.8709
|
||||||
105,0.8643500000000001
|
105,0.8774000000000001
|
||||||
106,0.8742000000000001
|
106,0.8828
|
||||||
107,0.8849
|
107,0.8989
|
||||||
108,0.8935000000000001
|
108,0.90535
|
||||||
109,0.8999
|
109,0.9107000000000001
|
||||||
110,0.9053
|
110,0.91715
|
||||||
111,0.9171
|
111,0.9246500000000001
|
||||||
112,0.9279000000000001
|
112,0.9365
|
||||||
113,0.9323
|
113,0.94535
|
||||||
114,0.9419500000000001
|
114,0.9516
|
||||||
115,0.94745
|
115,0.96355
|
||||||
116,0.9581000000000001
|
116,0.9678500000000001
|
||||||
117,0.9645
|
117,0.9807
|
||||||
118,0.97645
|
118,0.9882500000000001
|
||||||
119,0.9839
|
119,0.99365
|
||||||
120,0.9904000000000001
|
120,1.0012
|
||||||
121,1.00435
|
121,1.00885
|
||||||
122,1.00885
|
122,1.0163
|
||||||
123,1.0152
|
123,1.0228000000000002
|
||||||
124,1.026
|
124,1.03145
|
||||||
125,1.03235
|
125,1.0390000000000001
|
||||||
126,1.03685
|
126,1.0463500000000001
|
||||||
127,1.04755
|
127,1.0593000000000001
|
||||||
128,1.0626
|
128,1.06915
|
||||||
129,1.06895
|
129,1.07775
|
||||||
130,1.0744500000000001
|
130,1.08315
|
||||||
131,1.08525
|
131,1.0928
|
||||||
132,1.0938
|
132,1.09915
|
||||||
133,1.1003
|
133,1.1056000000000001
|
||||||
134,1.1057000000000001
|
134,1.1186
|
||||||
135,1.1186500000000001
|
135,1.12605
|
||||||
136,1.124
|
136,1.1338000000000001
|
||||||
137,1.13365
|
137,1.1423
|
||||||
138,1.14115
|
138,1.1520000000000001
|
||||||
139,1.1476
|
139,1.1563
|
||||||
140,1.1562000000000001
|
140,1.16605
|
||||||
141,1.1617
|
141,1.17885
|
||||||
142,1.16595
|
142,1.1853500000000001
|
||||||
143,1.1757
|
143,1.1918
|
||||||
144,1.1886
|
144,1.20265
|
||||||
145,1.1993
|
145,1.208
|
||||||
146,1.2027
|
146,1.21985
|
||||||
147,1.21015
|
147,1.2274500000000002
|
||||||
148,1.22085
|
148,1.23275
|
||||||
149,1.2338500000000001
|
149,1.24035
|
||||||
150,1.2394500000000002
|
150,1.2521
|
||||||
151,1.2447000000000001
|
151,1.2576500000000002
|
||||||
152,1.2554
|
152,1.26505
|
||||||
153,1.26495
|
153,1.27265
|
||||||
154,1.2695
|
154,1.28435
|
||||||
155,1.2758500000000002
|
155,1.2961500000000001
|
||||||
156,1.28445
|
156,1.30065
|
||||||
157,1.2941500000000001
|
157,1.3059500000000002
|
||||||
158,1.3050000000000002
|
158,1.31355
|
||||||
159,1.3093000000000001
|
159,1.3264500000000001
|
||||||
160,1.3189
|
160,1.33185
|
||||||
161,1.335
|
161,1.3383
|
||||||
162,1.3405
|
162,1.3512
|
||||||
163,1.34805
|
163,1.36095
|
||||||
164,1.3544
|
164,1.3685
|
||||||
165,1.36535
|
165,1.3749
|
||||||
166,1.37385
|
166,1.3857000000000002
|
||||||
167,1.3836000000000002
|
167,1.3900000000000001
|
||||||
168,1.3889500000000001
|
168,1.3988
|
||||||
169,1.39535
|
169,1.40955
|
||||||
170,1.4019000000000001
|
170,1.41595
|
||||||
171,1.4094
|
171,1.4246
|
||||||
172,1.4255
|
172,1.43625
|
||||||
173,1.42985
|
173,1.44275
|
||||||
174,1.4375
|
174,1.4526000000000001
|
||||||
175,1.4439
|
175,1.45785
|
||||||
176,1.459
|
176,1.4675500000000001
|
||||||
177,1.46655
|
177,1.47405
|
||||||
178,1.4729
|
178,1.4815500000000001
|
||||||
179,1.48275
|
179,1.4912
|
||||||
180,1.48905
|
180,1.5030000000000001
|
||||||
181,1.49665
|
181,1.5086000000000002
|
||||||
182,1.5053
|
182,1.5139
|
||||||
183,1.5117
|
183,1.5225
|
||||||
184,1.5172
|
184,1.5344
|
||||||
185,1.5311000000000001
|
185,1.54095
|
||||||
186,1.5355
|
186,1.5462500000000001
|
||||||
187,1.5441
|
187,1.5592000000000001
|
||||||
188,1.5558500000000002
|
188,1.56675
|
||||||
189,1.5623500000000001
|
189,1.5720500000000002
|
||||||
190,1.56985
|
190,1.5882
|
||||||
191,1.5775000000000001
|
191,1.5936000000000001
|
||||||
192,1.586
|
192,1.601
|
||||||
193,1.59345
|
193,1.6055000000000001
|
||||||
194,1.6021500000000002
|
194,1.6151
|
||||||
195,1.61195
|
195,1.6259000000000001
|
||||||
196,1.6226500000000001
|
196,1.63235
|
||||||
197,1.62705
|
197,1.6378000000000001
|
||||||
198,1.63235
|
198,1.64845
|
||||||
199,1.641
|
199,1.6549
|
||||||
200,1.6549500000000001
|
200,1.66255
|
||||||
201,1.66355
|
201,1.6712
|
||||||
202,1.67015
|
202,1.6808500000000002
|
||||||
203,1.6788
|
203,1.6873
|
||||||
204,1.68405
|
204,1.6970500000000002
|
||||||
205,1.6917
|
205,1.70565
|
||||||
206,1.6980000000000002
|
206,1.7099
|
||||||
207,1.7130500000000002
|
207,1.7174
|
||||||
208,1.7228
|
208,1.7271
|
||||||
209,1.7313500000000002
|
209,1.7379
|
||||||
210,1.73675
|
210,1.74875
|
||||||
211,1.7433
|
211,1.75725
|
||||||
212,1.74875
|
212,1.7616500000000002
|
||||||
213,1.76055
|
213,1.77235
|
||||||
214,1.7670000000000001
|
214,1.78095
|
||||||
215,1.7734500000000002
|
215,1.78645
|
||||||
216,1.7811000000000001
|
216,1.7982
|
||||||
217,1.7918500000000002
|
217,1.80895
|
||||||
218,1.7993000000000001
|
218,1.8133000000000001
|
||||||
219,1.8143
|
219,1.8241500000000002
|
||||||
220,1.8210000000000002
|
220,1.8305500000000001
|
||||||
221,1.8251000000000002
|
221,1.8380500000000002
|
||||||
222,1.8318
|
222,1.84565
|
||||||
223,1.8446
|
223,1.8543500000000002
|
||||||
224,1.8500500000000002
|
224,1.8629
|
||||||
225,1.8585500000000001
|
225,1.87155
|
||||||
226,1.8703500000000002
|
226,1.8801
|
||||||
227,1.88115
|
227,1.88775
|
||||||
228,1.8866
|
228,1.9005500000000002
|
||||||
229,1.8929500000000001
|
229,1.907
|
||||||
230,1.9027
|
230,1.91235
|
||||||
231,1.91245
|
231,1.9242000000000001
|
||||||
232,1.9232500000000001
|
232,1.92965
|
||||||
233,1.9286
|
233,1.9371
|
||||||
234,1.9371
|
234,1.9458000000000002
|
||||||
235,1.9425000000000001
|
235,1.95435
|
||||||
236,1.9491
|
236,1.96635
|
||||||
237,1.95875
|
237,1.977
|
||||||
238,1.9694
|
238,1.9813500000000002
|
||||||
239,1.97595
|
239,1.9898500000000001
|
||||||
240,1.9835
|
240,1.9943000000000002
|
||||||
241,1.9985000000000002
|
|
||||||
|
|
@ -1,241 +1,242 @@
|
|||||||
,spikes
|
,spikes
|
||||||
0,0.00165
|
0,0.007
|
||||||
1,0.00825
|
1,0.012450000000000001
|
||||||
2,0.01895
|
2,0.0211
|
||||||
3,0.02645
|
3,0.02755
|
||||||
4,0.035050000000000005
|
4,0.039400000000000004
|
||||||
5,0.0437
|
5,0.0449
|
||||||
6,0.049100000000000005
|
6,0.053250000000000006
|
||||||
7,0.0609
|
7,0.0621
|
||||||
8,0.06845
|
8,0.07055
|
||||||
9,0.07495
|
9,0.0782
|
||||||
10,0.0815
|
10,0.08785
|
||||||
11,0.09430000000000001
|
11,0.09330000000000001
|
||||||
12,0.0998
|
12,0.10505
|
||||||
13,0.10725000000000001
|
13,0.1126
|
||||||
14,0.1169
|
14,0.12125000000000001
|
||||||
15,0.12555
|
15,0.13095
|
||||||
16,0.1353
|
16,0.1385
|
||||||
17,0.14385
|
17,0.14705000000000001
|
||||||
18,0.15255000000000002
|
18,0.15465
|
||||||
19,0.16325
|
19,0.16335
|
||||||
20,0.16865
|
20,0.17175
|
||||||
21,0.17825000000000002
|
21,0.18150000000000002
|
||||||
22,0.18380000000000002
|
22,0.187
|
||||||
23,0.19445
|
23,0.19460000000000002
|
||||||
24,0.20095000000000002
|
24,0.20425000000000001
|
||||||
25,0.20955000000000001
|
25,0.20975000000000002
|
||||||
26,0.22025
|
26,0.2204
|
||||||
27,0.2268
|
27,0.2278
|
||||||
28,0.2333
|
28,0.2354
|
||||||
29,0.2419
|
29,0.24085
|
||||||
30,0.25045
|
30,0.25170000000000003
|
||||||
31,0.258
|
31,0.25805
|
||||||
32,0.26665
|
32,0.2667
|
||||||
33,0.2732
|
33,0.2785
|
||||||
34,0.28175
|
34,0.2892
|
||||||
35,0.29145
|
35,0.2957
|
||||||
36,0.30215000000000003
|
36,0.3043
|
||||||
37,0.30865000000000004
|
37,0.3119
|
||||||
38,0.31725000000000003
|
38,0.3205
|
||||||
39,0.32265
|
39,0.3291
|
||||||
40,0.3345
|
40,0.3356
|
||||||
41,0.342
|
41,0.34525
|
||||||
42,0.3496
|
42,0.35075
|
||||||
43,0.3561
|
43,0.35925
|
||||||
44,0.37115000000000004
|
44,0.37110000000000004
|
||||||
45,0.37765000000000004
|
45,0.37870000000000004
|
||||||
46,0.38405
|
46,0.38730000000000003
|
||||||
47,0.39265
|
47,0.39690000000000003
|
||||||
48,0.40025
|
48,0.40345000000000003
|
||||||
49,0.40775
|
49,0.41205
|
||||||
50,0.4153
|
50,0.42175
|
||||||
51,0.42710000000000004
|
51,0.4282
|
||||||
52,0.43365000000000004
|
52,0.43475
|
||||||
53,0.44545
|
53,0.44325000000000003
|
||||||
54,0.4519
|
54,0.45405
|
||||||
55,0.46045
|
55,0.46365
|
||||||
56,0.4692
|
56,0.46925
|
||||||
57,0.47465
|
57,0.47675
|
||||||
58,0.48315
|
58,0.48425
|
||||||
59,0.49075
|
59,0.49605000000000005
|
||||||
60,0.50255
|
60,0.5037
|
||||||
61,0.51015
|
61,0.51115
|
||||||
62,0.51765
|
62,0.51865
|
||||||
63,0.5231
|
63,0.5273
|
||||||
64,0.5326500000000001
|
64,0.537
|
||||||
65,0.5456
|
65,0.5456500000000001
|
||||||
66,0.552
|
66,0.5532
|
||||||
67,0.5629000000000001
|
67,0.56065
|
||||||
68,0.5683
|
68,0.56935
|
||||||
69,0.5748
|
69,0.5779000000000001
|
||||||
70,0.5833
|
70,0.58545
|
||||||
71,0.5909
|
71,0.5931000000000001
|
||||||
72,0.5974
|
72,0.60375
|
||||||
73,0.6091500000000001
|
73,0.6113500000000001
|
||||||
74,0.61775
|
74,0.62005
|
||||||
75,0.6264000000000001
|
75,0.6285000000000001
|
||||||
76,0.635
|
76,0.63625
|
||||||
77,0.6446000000000001
|
77,0.64685
|
||||||
78,0.65225
|
78,0.6544
|
||||||
79,0.6577000000000001
|
79,0.662
|
||||||
80,0.6673
|
80,0.6706000000000001
|
||||||
81,0.676
|
81,0.6802
|
||||||
82,0.6834
|
82,0.6857000000000001
|
||||||
83,0.6921
|
83,0.6943
|
||||||
84,0.7018500000000001
|
84,0.70075
|
||||||
85,0.7104
|
85,0.7072
|
||||||
86,0.7212000000000001
|
86,0.7211500000000001
|
||||||
87,0.72765
|
87,0.72885
|
||||||
88,0.7351500000000001
|
88,0.7363000000000001
|
||||||
89,0.74175
|
89,0.7438
|
||||||
90,0.7534000000000001
|
90,0.7534500000000001
|
||||||
91,0.75895
|
91,0.761
|
||||||
92,0.7675500000000001
|
92,0.7707
|
||||||
93,0.7751
|
93,0.77815
|
||||||
94,0.7827000000000001
|
94,0.7848
|
||||||
95,0.79225
|
95,0.79225
|
||||||
96,0.80195
|
96,0.8009000000000001
|
||||||
97,0.8116
|
97,0.80945
|
||||||
98,0.8171
|
98,0.8182
|
||||||
99,0.82675
|
99,0.8267
|
||||||
100,0.8365
|
100,0.83425
|
||||||
101,0.8429500000000001
|
101,0.8440500000000001
|
||||||
102,0.8514
|
102,0.8515
|
||||||
103,0.8612000000000001
|
103,0.8601000000000001
|
||||||
104,0.86765
|
104,0.8688
|
||||||
105,0.8752000000000001
|
105,0.8763500000000001
|
||||||
106,0.88375
|
106,0.88385
|
||||||
107,0.8924000000000001
|
107,0.8935000000000001
|
||||||
108,0.901
|
108,0.9021
|
||||||
109,0.9076000000000001
|
109,0.9106500000000001
|
||||||
110,0.91925
|
110,0.91925
|
||||||
111,0.9248000000000001
|
111,0.9248000000000001
|
||||||
112,0.93655
|
112,0.9366000000000001
|
||||||
113,0.9441
|
113,0.94415
|
||||||
114,0.9517
|
114,0.95055
|
||||||
115,0.96035
|
115,0.96255
|
||||||
116,0.9678
|
116,0.9689000000000001
|
||||||
117,0.9787
|
117,0.9743
|
||||||
118,0.9840000000000001
|
118,0.9819500000000001
|
||||||
119,0.99155
|
119,0.9893500000000001
|
||||||
120,1.00015
|
120,1.00335
|
||||||
121,1.0099500000000001
|
121,1.0098
|
||||||
122,1.01635
|
122,1.01845
|
||||||
123,1.0238500000000001
|
123,1.02505
|
||||||
124,1.03465
|
124,1.03035
|
||||||
125,1.0433000000000001
|
125,1.04
|
||||||
126,1.04865
|
126,1.0497
|
||||||
127,1.0582500000000001
|
127,1.0583
|
||||||
128,1.0669
|
128,1.07005
|
||||||
129,1.0767
|
129,1.0765500000000001
|
||||||
130,1.0831
|
130,1.0842
|
||||||
131,1.0917000000000001
|
131,1.0906500000000001
|
||||||
132,1.1003500000000002
|
132,1.10025
|
||||||
133,1.1078000000000001
|
133,1.11005
|
||||||
134,1.11755
|
134,1.1186
|
||||||
135,1.12505
|
135,1.12615
|
||||||
136,1.13375
|
136,1.1348
|
||||||
137,1.14235
|
137,1.14115
|
||||||
138,1.1499000000000001
|
138,1.14995
|
||||||
139,1.15955
|
139,1.15635
|
||||||
140,1.1660000000000001
|
140,1.16395
|
||||||
141,1.1756
|
141,1.1736
|
||||||
142,1.1812
|
142,1.1832
|
||||||
143,1.19285
|
143,1.18855
|
||||||
144,1.2015
|
144,1.1993500000000001
|
||||||
145,1.20905
|
145,1.2058
|
||||||
146,1.2176500000000001
|
146,1.21455
|
||||||
147,1.22525
|
147,1.2231
|
||||||
148,1.2339
|
148,1.2327000000000001
|
||||||
149,1.2425000000000002
|
149,1.2436
|
||||||
150,1.24895
|
150,1.2501
|
||||||
151,1.2586000000000002
|
151,1.2575500000000002
|
||||||
152,1.2683
|
152,1.26505
|
||||||
153,1.27695
|
153,1.2737
|
||||||
154,1.2855
|
154,1.28235
|
||||||
155,1.29095
|
155,1.29095
|
||||||
156,1.2996
|
156,1.29855
|
||||||
157,1.3083
|
157,1.3071000000000002
|
||||||
158,1.31465
|
158,1.3136
|
||||||
159,1.3243500000000001
|
159,1.3254000000000001
|
||||||
160,1.33195
|
160,1.3319
|
||||||
161,1.34145
|
161,1.34155
|
||||||
162,1.348
|
162,1.349
|
||||||
163,1.3567
|
163,1.3587500000000001
|
||||||
164,1.362
|
164,1.3674000000000002
|
||||||
165,1.3749
|
165,1.374
|
||||||
166,1.3825
|
166,1.38355
|
||||||
167,1.3911
|
167,1.3910500000000001
|
||||||
168,1.3987
|
168,1.40185
|
||||||
169,1.4083
|
169,1.4094
|
||||||
170,1.41585
|
170,1.41585
|
||||||
171,1.4245
|
171,1.4245
|
||||||
172,1.43425
|
172,1.4288500000000002
|
||||||
173,1.43955
|
173,1.44175
|
||||||
174,1.4526000000000001
|
174,1.44825
|
||||||
175,1.4612
|
175,1.4579
|
||||||
176,1.4676500000000001
|
176,1.4654
|
||||||
177,1.474
|
177,1.47405
|
||||||
178,1.4815
|
178,1.4859
|
||||||
179,1.49235
|
179,1.49235
|
||||||
180,1.502
|
180,1.49885
|
||||||
181,1.5106000000000002
|
181,1.50525
|
||||||
182,1.51815
|
182,1.51495
|
||||||
183,1.52465
|
183,1.5215
|
||||||
184,1.53435
|
184,1.5301
|
||||||
185,1.54075
|
185,1.53965
|
||||||
186,1.5494
|
186,1.5494
|
||||||
187,1.5591000000000002
|
187,1.558
|
||||||
188,1.5709000000000002
|
188,1.5646
|
||||||
189,1.57525
|
189,1.5731000000000002
|
||||||
190,1.5849
|
190,1.58175
|
||||||
191,1.5904500000000001
|
191,1.58935
|
||||||
192,1.60125
|
192,1.5979
|
||||||
193,1.6086500000000001
|
193,1.6087
|
||||||
194,1.6152
|
194,1.6152
|
||||||
195,1.6248500000000001
|
195,1.6226500000000001
|
||||||
196,1.63135
|
196,1.63025
|
||||||
197,1.6388
|
197,1.6388500000000001
|
||||||
198,1.6496000000000002
|
198,1.6507500000000002
|
||||||
199,1.6593
|
199,1.6572
|
||||||
200,1.6669
|
200,1.6667500000000002
|
||||||
201,1.6743000000000001
|
201,1.67445
|
||||||
202,1.68405
|
202,1.67975
|
||||||
203,1.6926
|
203,1.6926
|
||||||
204,1.70025
|
204,1.6981000000000002
|
||||||
205,1.7077
|
205,1.7046000000000001
|
||||||
206,1.7153
|
206,1.7153500000000002
|
||||||
207,1.72395
|
207,1.726
|
||||||
208,1.73475
|
208,1.7335500000000001
|
||||||
209,1.7412
|
209,1.74115
|
||||||
210,1.75075
|
210,1.7476500000000001
|
||||||
211,1.7573500000000002
|
211,1.7562
|
||||||
212,1.7670000000000001
|
212,1.7670000000000001
|
||||||
213,1.7714
|
213,1.77455
|
||||||
214,1.7842
|
214,1.7820500000000001
|
||||||
215,1.7939
|
215,1.78855
|
||||||
216,1.8004
|
216,1.79515
|
||||||
217,1.80895
|
217,1.8026
|
||||||
218,1.81755
|
218,1.8144
|
||||||
219,1.8262500000000002
|
219,1.82295
|
||||||
220,1.83475
|
220,1.83165
|
||||||
221,1.8456000000000001
|
221,1.84345
|
||||||
222,1.8511000000000002
|
222,1.851
|
||||||
223,1.8607
|
223,1.8565500000000001
|
||||||
224,1.8661
|
224,1.8661
|
||||||
225,1.8737000000000001
|
225,1.8747500000000001
|
||||||
226,1.88545
|
226,1.8833000000000002
|
||||||
227,1.8929500000000001
|
227,1.8919000000000001
|
||||||
228,1.8984500000000002
|
228,1.8995000000000002
|
||||||
229,1.9070500000000001
|
229,1.90805
|
||||||
230,1.91565
|
230,1.9146
|
||||||
231,1.9253
|
231,1.9253500000000001
|
||||||
232,1.935
|
232,1.93175
|
||||||
233,1.9415
|
233,1.9393500000000001
|
||||||
234,1.9491
|
234,1.94585
|
||||||
235,1.9597
|
235,1.9544000000000001
|
||||||
236,1.96625
|
236,1.96615
|
||||||
237,1.9759
|
237,1.9748
|
||||||
238,1.9825000000000002
|
238,1.9814
|
||||||
239,1.98995
|
239,1.99105
|
||||||
|
240,1.9986000000000002
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
@ -1,241 +1,239 @@
|
|||||||
,spikes
|
,spikes
|
||||||
0,0.0006500000000000001
|
0,0.007050000000000001
|
||||||
1,0.009300000000000001
|
1,0.015700000000000002
|
||||||
2,0.015700000000000002
|
2,0.025400000000000002
|
||||||
3,0.0275
|
3,0.03615
|
||||||
4,0.034050000000000004
|
4,0.0448
|
||||||
5,0.041600000000000005
|
5,0.051250000000000004
|
||||||
6,0.0545
|
6,0.05775
|
||||||
7,0.05985
|
7,0.06745000000000001
|
||||||
8,0.06745000000000001
|
8,0.0771
|
||||||
9,0.0771
|
9,0.08365
|
||||||
10,0.08675000000000001
|
10,0.09430000000000001
|
||||||
11,0.0944
|
11,0.10185000000000001
|
||||||
12,0.10295
|
12,0.1116
|
||||||
13,0.11045
|
13,0.11805
|
||||||
14,0.11705
|
14,0.12445
|
||||||
15,0.12875
|
15,0.13745000000000002
|
||||||
16,0.1342
|
16,0.14395
|
||||||
17,0.14175000000000001
|
17,0.15245
|
||||||
18,0.1514
|
18,0.16010000000000002
|
||||||
19,0.16110000000000002
|
19,0.16970000000000002
|
||||||
20,0.16965
|
20,0.1784
|
||||||
21,0.17835
|
21,0.18485000000000001
|
||||||
22,0.18585000000000002
|
22,0.1945
|
||||||
23,0.19345
|
23,0.19985
|
||||||
24,0.19985
|
24,0.2107
|
||||||
25,0.2096
|
25,0.22035000000000002
|
||||||
26,0.21715
|
26,0.22790000000000002
|
||||||
27,0.23115000000000002
|
27,0.2376
|
||||||
28,0.23650000000000002
|
28,0.2441
|
||||||
29,0.24515
|
29,0.25270000000000004
|
||||||
30,0.25270000000000004
|
30,0.26015
|
||||||
31,0.2591
|
31,0.26990000000000003
|
||||||
32,0.26990000000000003
|
32,0.2775
|
||||||
33,0.27740000000000004
|
33,0.28715
|
||||||
34,0.28395000000000004
|
34,0.2947
|
||||||
35,0.29255000000000003
|
35,0.30225
|
||||||
36,0.30115000000000003
|
36,0.30865000000000004
|
||||||
37,0.3109
|
37,0.3194
|
||||||
38,0.31735
|
38,0.32815
|
||||||
39,0.32805
|
39,0.33455
|
||||||
40,0.33665
|
40,0.34315
|
||||||
41,0.34425
|
41,0.3539
|
||||||
42,0.3528
|
42,0.3603
|
||||||
43,0.36150000000000004
|
43,0.3679
|
||||||
44,0.36895
|
44,0.37645
|
||||||
45,0.3765
|
45,0.38405
|
||||||
46,0.3831
|
46,0.39380000000000004
|
||||||
47,0.3937
|
47,0.4045
|
||||||
48,0.40130000000000005
|
48,0.41425
|
||||||
49,0.40885000000000005
|
49,0.42175
|
||||||
50,0.41645000000000004
|
50,0.42715000000000003
|
||||||
51,0.42710000000000004
|
51,0.43575
|
||||||
52,0.43570000000000003
|
52,0.44755
|
||||||
53,0.44545
|
53,0.4531
|
||||||
54,0.45085000000000003
|
54,0.45955
|
||||||
55,0.45735000000000003
|
55,0.47240000000000004
|
||||||
56,0.4713
|
56,0.47885
|
||||||
57,0.47675
|
57,0.48535
|
||||||
58,0.48425
|
58,0.49610000000000004
|
||||||
59,0.49175
|
59,0.5036
|
||||||
60,0.5025000000000001
|
60,0.5101
|
||||||
61,0.509
|
61,0.5187
|
||||||
62,0.5165500000000001
|
62,0.52945
|
||||||
63,0.5263
|
63,0.5391
|
||||||
64,0.53695
|
64,0.54445
|
||||||
65,0.54455
|
65,0.5543
|
||||||
66,0.55325
|
66,0.5628000000000001
|
||||||
67,0.5596
|
67,0.5704
|
||||||
68,0.5672
|
68,0.5790000000000001
|
||||||
69,0.57475
|
69,0.58765
|
||||||
70,0.58335
|
70,0.5973
|
||||||
71,0.5941000000000001
|
71,0.60375
|
||||||
72,0.60275
|
72,0.61345
|
||||||
73,0.6081500000000001
|
73,0.6199
|
||||||
74,0.61775
|
74,0.63175
|
||||||
75,0.6264000000000001
|
75,0.6371
|
||||||
76,0.635
|
76,0.64695
|
||||||
77,0.64575
|
77,0.65435
|
||||||
78,0.65225
|
78,0.6641
|
||||||
79,0.66405
|
79,0.67055
|
||||||
80,0.6705
|
80,0.68025
|
||||||
81,0.6759000000000001
|
81,0.6878000000000001
|
||||||
82,0.68455
|
82,0.6975
|
||||||
83,0.69315
|
83,0.7040000000000001
|
||||||
84,0.7029000000000001
|
84,0.7126
|
||||||
85,0.7115
|
85,0.7212500000000001
|
||||||
86,0.7189500000000001
|
86,0.7298
|
||||||
87,0.72655
|
87,0.7373000000000001
|
||||||
88,0.7352000000000001
|
88,0.7481
|
||||||
89,0.74485
|
89,0.75565
|
||||||
90,0.75455
|
90,0.76425
|
||||||
91,0.7621
|
91,0.77295
|
||||||
92,0.77075
|
92,0.7815500000000001
|
||||||
93,0.7782
|
93,0.788
|
||||||
94,0.7869
|
94,0.7955500000000001
|
||||||
95,0.7965500000000001
|
95,0.8063
|
||||||
96,0.80305
|
96,0.8127000000000001
|
||||||
97,0.8116500000000001
|
97,0.82455
|
||||||
98,0.8181
|
98,0.8321500000000001
|
||||||
99,0.8257
|
99,0.83855
|
||||||
100,0.83745
|
100,0.8450500000000001
|
||||||
101,0.8451000000000001
|
101,0.85585
|
||||||
102,0.8558
|
102,0.8645
|
||||||
103,0.8601500000000001
|
103,0.8731
|
||||||
104,0.8687
|
104,0.87955
|
||||||
105,0.8773500000000001
|
105,0.8914000000000001
|
||||||
106,0.8881
|
106,0.8989
|
||||||
107,0.89575
|
107,0.9064000000000001
|
||||||
108,0.90325
|
108,0.91295
|
||||||
109,0.91395
|
109,0.9258500000000001
|
||||||
110,0.9193
|
110,0.9312
|
||||||
111,0.928
|
111,0.94305
|
||||||
112,0.9376000000000001
|
112,0.9484
|
||||||
113,0.9463
|
113,0.9592
|
||||||
114,0.9538000000000001
|
114,0.9657
|
||||||
115,0.9635
|
115,0.9732000000000001
|
||||||
116,0.9700000000000001
|
116,0.9830000000000001
|
||||||
117,0.9786
|
117,0.9894000000000001
|
||||||
118,0.9883000000000001
|
118,0.9969
|
||||||
119,0.99795
|
119,1.0055
|
||||||
120,1.0044
|
120,1.01415
|
||||||
121,1.01095
|
121,1.02275
|
||||||
122,1.0207
|
122,1.03145
|
||||||
123,1.0324
|
123,1.03895
|
||||||
124,1.0379
|
124,1.04755
|
||||||
125,1.0475
|
125,1.05295
|
||||||
126,1.0551000000000001
|
126,1.0637
|
||||||
127,1.06155
|
127,1.0755000000000001
|
||||||
128,1.0712000000000002
|
128,1.082
|
||||||
129,1.0788
|
129,1.0885500000000001
|
||||||
130,1.08955
|
130,1.0971
|
||||||
131,1.09705
|
131,1.1046500000000001
|
||||||
132,1.1068
|
132,1.11535
|
||||||
133,1.1122
|
133,1.12395
|
||||||
134,1.11975
|
134,1.13155
|
||||||
135,1.1305
|
135,1.14015
|
||||||
136,1.1401000000000001
|
136,1.1509500000000001
|
||||||
137,1.14445
|
137,1.1574
|
||||||
138,1.1541000000000001
|
138,1.1682000000000001
|
||||||
139,1.1617
|
139,1.1735
|
||||||
140,1.1693
|
140,1.1811
|
||||||
141,1.1789
|
141,1.18975
|
||||||
142,1.18645
|
142,1.1972500000000001
|
||||||
143,1.1951
|
143,1.2059
|
||||||
144,1.2015500000000001
|
144,1.2177
|
||||||
145,1.2112500000000002
|
145,1.22525
|
||||||
146,1.21775
|
146,1.235
|
||||||
147,1.2316500000000001
|
147,1.2425000000000002
|
||||||
148,1.2371
|
148,1.25
|
||||||
149,1.24675
|
149,1.25655
|
||||||
150,1.2544
|
150,1.2673
|
||||||
151,1.2619
|
151,1.2758
|
||||||
152,1.2726
|
152,1.2856
|
||||||
153,1.2791000000000001
|
153,1.29305
|
||||||
154,1.2867
|
154,1.3017
|
||||||
155,1.2942
|
155,1.3071000000000002
|
||||||
156,1.30275
|
156,1.31475
|
||||||
157,1.3146
|
157,1.3233000000000001
|
||||||
158,1.3233000000000001
|
158,1.33295
|
||||||
159,1.3308
|
159,1.34275
|
||||||
160,1.33945
|
160,1.3523500000000002
|
||||||
161,1.347
|
161,1.35775
|
||||||
162,1.3566500000000001
|
162,1.36415
|
||||||
163,1.3631
|
163,1.3728
|
||||||
164,1.3707
|
164,1.3793
|
||||||
165,1.3793
|
165,1.3911
|
||||||
166,1.38565
|
166,1.4029500000000001
|
||||||
167,1.39545
|
167,1.4094
|
||||||
168,1.4029500000000001
|
168,1.41805
|
||||||
169,1.41165
|
169,1.4245
|
||||||
170,1.4234
|
170,1.4331500000000001
|
||||||
171,1.4288500000000002
|
171,1.44175
|
||||||
172,1.43645
|
172,1.45025
|
||||||
173,1.4460000000000002
|
173,1.45795
|
||||||
174,1.45245
|
174,1.4676
|
||||||
175,1.45895
|
175,1.47615
|
||||||
176,1.4719
|
176,1.4826000000000001
|
||||||
177,1.4794500000000002
|
177,1.49125
|
||||||
178,1.48595
|
178,1.4999500000000001
|
||||||
179,1.4934
|
179,1.5064
|
||||||
180,1.50215
|
180,1.5172
|
||||||
181,1.51075
|
181,1.5257500000000002
|
||||||
182,1.51935
|
182,1.5322
|
||||||
183,1.5279500000000001
|
183,1.5419
|
||||||
184,1.53755
|
184,1.54945
|
||||||
185,1.5452000000000001
|
185,1.5602500000000001
|
||||||
186,1.5558500000000002
|
186,1.5656
|
||||||
187,1.5624
|
187,1.5742500000000001
|
||||||
188,1.5678
|
188,1.5839
|
||||||
189,1.5763500000000001
|
189,1.59365
|
||||||
190,1.58395
|
190,1.60005
|
||||||
191,1.59575
|
191,1.60765
|
||||||
192,1.60335
|
192,1.6173000000000002
|
||||||
193,1.61195
|
193,1.6226500000000001
|
||||||
194,1.6184
|
194,1.6324
|
||||||
195,1.62815
|
195,1.6389500000000001
|
||||||
196,1.63995
|
196,1.64965
|
||||||
197,1.64635
|
197,1.65815
|
||||||
198,1.6528500000000002
|
198,1.66575
|
||||||
199,1.6647
|
199,1.6776
|
||||||
200,1.6711
|
200,1.683
|
||||||
201,1.67655
|
201,1.69055
|
||||||
202,1.6852
|
202,1.70235
|
||||||
203,1.69375
|
203,1.7089
|
||||||
204,1.7034500000000001
|
204,1.7174500000000001
|
||||||
205,1.711
|
205,1.7261000000000002
|
||||||
206,1.7186000000000001
|
206,1.7336
|
||||||
207,1.72615
|
207,1.74115
|
||||||
208,1.7357500000000001
|
208,1.7519500000000001
|
||||||
209,1.7454500000000002
|
209,1.7615500000000002
|
||||||
210,1.75515
|
210,1.7692
|
||||||
211,1.7627000000000002
|
211,1.7799500000000001
|
||||||
212,1.7703
|
212,1.7864
|
||||||
213,1.77885
|
213,1.79285
|
||||||
214,1.7885
|
214,1.80045
|
||||||
215,1.7972000000000001
|
215,1.8101
|
||||||
216,1.8036
|
216,1.8187
|
||||||
217,1.8122500000000001
|
217,1.8284
|
||||||
218,1.8177
|
218,1.83485
|
||||||
219,1.8274000000000001
|
219,1.8425
|
||||||
220,1.838
|
220,1.8542
|
||||||
221,1.8457000000000001
|
221,1.86175
|
||||||
222,1.8564
|
222,1.8672000000000002
|
||||||
223,1.86175
|
223,1.8758000000000001
|
||||||
224,1.8747
|
224,1.8865500000000002
|
||||||
225,1.8801
|
225,1.8941000000000001
|
||||||
226,1.88775
|
226,1.9006500000000002
|
||||||
227,1.8963
|
227,1.9081000000000001
|
||||||
228,1.90595
|
228,1.91995
|
||||||
229,1.9146
|
229,1.92755
|
||||||
230,1.9222000000000001
|
230,1.9350500000000002
|
||||||
231,1.9286
|
231,1.9437
|
||||||
232,1.9383000000000001
|
232,1.95015
|
||||||
233,1.9501000000000002
|
233,1.9619000000000002
|
||||||
234,1.9577
|
234,1.9695500000000001
|
||||||
235,1.96415
|
235,1.9760000000000002
|
||||||
236,1.97055
|
236,1.9846000000000001
|
||||||
237,1.9792
|
237,1.99425
|
||||||
238,1.99
|
|
||||||
239,1.99855
|
|
||||||
|
|
Binary file not shown.
@ -21,45 +21,20 @@ except:
|
|||||||
|
|
||||||
|
|
||||||
def data_overview3():
|
def data_overview3():
|
||||||
# calcdf_RAM_overview()
|
|
||||||
|
|
||||||
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s'
|
|
||||||
|
|
||||||
col = 4
|
|
||||||
row = 2 # sharex=True,
|
|
||||||
|
|
||||||
plot_style()
|
plot_style()
|
||||||
default_figsize(column=2, length=6.2) #65.5
|
default_figsize(column=2, length=6.2) #65.5
|
||||||
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
|
|
||||||
var_it = 'Response Modulation [Hz]'
|
var_it = 'Response Modulation [Hz]'
|
||||||
var_it2 = ''
|
var_it2 = ''
|
||||||
if var_it == '':
|
|
||||||
ws = 0.35
|
|
||||||
|
|
||||||
else:
|
|
||||||
ws = 0.65
|
|
||||||
if var_it2 != '':
|
|
||||||
right = 0.9
|
|
||||||
else:
|
|
||||||
right = 0.98
|
|
||||||
right = 0.85
|
right = 0.85
|
||||||
ws = 0.75
|
ws = 0.75
|
||||||
print(right)
|
#print(right)
|
||||||
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07,
|
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07,
|
||||||
hspace=0.45, left=0.1, right=right, top=0.95)
|
hspace=0.45, left=0.1, right=right, top=0.95)
|
||||||
|
|
||||||
###################################
|
|
||||||
###############################
|
|
||||||
# Das ist der Finale Score
|
|
||||||
scoreall = 'perc99/med_diagonal_proj'
|
|
||||||
scoreall = 'max(diag5Hz)/med_diagonal_proj_fr'#'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'#'perc99/med_diagonal_proj'
|
|
||||||
#'max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr',
|
|
||||||
###################################
|
|
||||||
#scores = [scoreall+'_diagonal_proj']
|
|
||||||
|
|
||||||
##########################
|
##########################
|
||||||
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
|
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
|
||||||
|
|
||||||
@ -88,7 +63,7 @@ def data_overview3():
|
|||||||
'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj'
|
'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj'
|
||||||
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
|
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
|
||||||
] # + '_diagonal_proj'
|
] # + '_diagonal_proj'
|
||||||
|
printing = False # print values for paper
|
||||||
max_xs = [[[],[],[]],[[],[],[]]]
|
max_xs = [[[],[],[]],[[],[],[]]]
|
||||||
for c, cell_type_here in enumerate(cell_types):
|
for c, cell_type_here in enumerate(cell_types):
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
||||||
@ -105,19 +80,7 @@ def data_overview3():
|
|||||||
# modulatoin comparison for both cell_types
|
# modulatoin comparison for both cell_types
|
||||||
################################
|
################################
|
||||||
# Modulation, cell type comparison
|
# Modulation, cell type comparison
|
||||||
# todo: hier die diff werte über die zellen
|
|
||||||
|
|
||||||
#ax_here = []
|
|
||||||
#axd = plt.subplot(grid_lower_lower[0, c])
|
|
||||||
|
|
||||||
#kernel_histogram(axk, colors[str(cell_type_here)], np.array(x_axis), norm=True, step=0.03, alpha=0.5)
|
|
||||||
#embed()
|
|
||||||
|
|
||||||
#axk.show_spines('lb')
|
|
||||||
|
|
||||||
#axs = plt.subplot(grid0[6+c])
|
|
||||||
colorbar = False
|
|
||||||
#if colorbar:
|
|
||||||
|
|
||||||
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
|
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
|
||||||
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
|
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
|
||||||
@ -154,10 +117,6 @@ def data_overview3():
|
|||||||
ymin = 0
|
ymin = 0
|
||||||
xmin = 0
|
xmin = 0
|
||||||
|
|
||||||
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
|
|
||||||
xlimk = [0, 2]
|
|
||||||
else:
|
|
||||||
xlimk = None
|
|
||||||
xlimk = None
|
xlimk = None
|
||||||
|
|
||||||
labelpad = 0.5#-1
|
labelpad = 0.5#-1
|
||||||
@ -168,8 +127,9 @@ def data_overview3():
|
|||||||
xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c],
|
xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c],
|
||||||
ha='right')
|
ha='right')
|
||||||
|
|
||||||
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
|
if printing:
|
||||||
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
|
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
|
||||||
|
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
|
||||||
|
|
||||||
if v == 0:
|
if v == 0:
|
||||||
colors = colors_overview()
|
colors = colors_overview()
|
||||||
@ -208,44 +168,61 @@ def data_overview3():
|
|||||||
tags.append(axx)
|
tags.append(axx)
|
||||||
counter += 1
|
counter += 1
|
||||||
#plt.show()
|
#plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if printing:
|
||||||
|
printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis)
|
||||||
|
|
||||||
|
show = False#True
|
||||||
|
fig = plt.gcf()
|
||||||
|
#embed()
|
||||||
|
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
|
||||||
|
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
|
||||||
|
save_visualization(pdf = True, show = show)
|
||||||
|
|
||||||
|
|
||||||
|
def printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis):
|
||||||
############################
|
############################
|
||||||
# 1 Print scores
|
# 1 Print scores
|
||||||
print('\n')
|
print('\n')
|
||||||
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
||||||
#for species in speciess:
|
# for species in speciess:
|
||||||
for c, cell_type_here in enumerate(cell_types):
|
for c, cell_type_here in enumerate(cell_types):
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
||||||
print(cell_type_here + str(len(frame_file.cell.unique())))
|
print(cell_type_here + str(len(frame_file.cell.unique())))
|
||||||
#embed()
|
# embed()
|
||||||
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
|
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
|
||||||
'2010-06-21-ac']
|
'2010-06-21-ac']
|
||||||
cells_amp = update_cell_names(cells_amp)
|
cells_amp = update_cell_names(cells_amp)
|
||||||
frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
|
frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
|
||||||
frame_amps.cell.unique()
|
frame_amps.cell.unique()
|
||||||
#['2012-05-07-ac-invivo-1', '2012-04-26-ae','2012-05-15-ac-invivo-1', '2010-06-21-ac-invivo-1','2010-06-21-am-invivo-1', '2011-09-21-ab-invivo-1']
|
# ['2012-05-07-ac-invivo-1', '2012-04-26-ae','2012-05-15-ac-invivo-1', '2010-06-21-ac-invivo-1','2010-06-21-am-invivo-1', '2011-09-21-ab-invivo-1']
|
||||||
#embed()
|
# embed()
|
||||||
#if len(frame_amps)
|
# if len(frame_amps)
|
||||||
#################################################################
|
#################################################################
|
||||||
# print the corrs
|
# print the corrs
|
||||||
score = scores[c]#'ser_base',
|
score = scores[c] # 'ser_base',
|
||||||
score_print = [score]
|
score_print = [score]
|
||||||
score_print = [scores[c],scores[c],scores[c],scores[c],scores[c],'burst_fraction_burst_corr_individual_base']
|
score_print = [scores[c], scores[c], scores[c], scores[c], scores[c],
|
||||||
corr_vars = ['cv_base','response_modulation','fr_base','ser_first_base','burst_fraction_burst_corr_individual_stim','cv_base']
|
'burst_fraction_burst_corr_individual_base']
|
||||||
#for score in score_print:
|
corr_vars = ['cv_base', 'response_modulation', 'fr_base', 'ser_first_base',
|
||||||
for c_nr, corr_var in enumerate(corr_vars):#,'ser_sum_corr'
|
'burst_fraction_burst_corr_individual_stim', 'cv_base']
|
||||||
|
# for score in score_print:
|
||||||
|
for c_nr, corr_var in enumerate(corr_vars): # ,'ser_sum_corr'
|
||||||
score = score_print[c_nr]
|
score = score_print[c_nr]
|
||||||
x = frame_file['fr_base']
|
x = frame_file['fr_base']
|
||||||
y = frame_file['ser_first']
|
y = frame_file['ser_first']
|
||||||
c = frame_file['cv_base']
|
c = frame_file['cv_base']
|
||||||
try:
|
try:
|
||||||
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var , score=score)
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var,
|
||||||
|
score=score)
|
||||||
except:
|
except:
|
||||||
print('frame file lost')
|
print('frame file lost')
|
||||||
embed()
|
embed()
|
||||||
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
||||||
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
||||||
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to '+str(score) + pears_l)
|
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to ' + str(score) + pears_l)
|
||||||
#if corr_var == 'ser_first_base':#
|
# if corr_var == 'ser_first_base':#
|
||||||
# embed()
|
# embed()
|
||||||
print('\n')
|
print('\n')
|
||||||
################################
|
################################
|
||||||
@ -254,17 +231,20 @@ def data_overview3():
|
|||||||
score='cv_base')
|
score='cv_base')
|
||||||
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
||||||
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
||||||
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
|
|
||||||
|
|
||||||
|
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
|
||||||
|
|
||||||
################################
|
################################
|
||||||
# cv to fr correlation
|
# cv to fr correlation
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
|
||||||
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'burst_fraction_burst_corr_individual_base', cv_name='burst_fraction_burst_corr_individual_base',
|
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file,
|
||||||
|
'burst_fraction_burst_corr_individual_base',
|
||||||
|
cv_name='burst_fraction_burst_corr_individual_base',
|
||||||
score='cv_base')
|
score='cv_base')
|
||||||
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
corr, p_value = stats.pearsonr(x_axis, y_axis)
|
||||||
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
pears_l = label_pearson(corr, p_value, y_axis, n=True)
|
||||||
print(start_name(cell_type_here, species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
|
print(start_name(cell_type_here,
|
||||||
|
species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
|
||||||
###############################
|
###############################
|
||||||
# fr to nonline but for both modulations
|
# fr to nonline but for both modulations
|
||||||
|
|
||||||
@ -275,29 +255,25 @@ def data_overview3():
|
|||||||
print(start_name(cell_type_here, species) + ' amprange: ' + ' ' + 'fr_base' + ' to score' + pears_l)
|
print(start_name(cell_type_here, species) + ' amprange: ' + ' ' + 'fr_base' + ' to score' + pears_l)
|
||||||
##################################
|
##################################
|
||||||
print('\n')
|
print('\n')
|
||||||
#embed()
|
# embed()
|
||||||
#todo: hier noch die Werte für die Methodik printen
|
# todo: hier noch die Werte für die Methodik printen
|
||||||
test = False
|
test = False
|
||||||
#embed()
|
# embed()
|
||||||
|
|
||||||
if test:
|
if test:
|
||||||
plt.hist(frame_file['lim_individual'])
|
plt.hist(frame_file['lim_individual'])
|
||||||
#print(frame_file['lim_individual'])
|
# print(frame_file['lim_individual'])
|
||||||
|
|
||||||
############################################
|
############################################
|
||||||
############################
|
############################
|
||||||
# 2 Print names
|
# 2 Print names
|
||||||
# printe um welchen Zeitraum es sich handelt
|
# printe um welchen Zeitraum es sich handelt
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
|
||||||
species='')
|
species='')
|
||||||
|
|
||||||
print('\n')
|
print('\n')
|
||||||
print('From ' +str(np.sort(frame_file.cell)[0])+' to '+str(np.sort(frame_file.cell)[-1])+' nr '+str(len(frame_file.cell)))
|
print('From ' + str(np.sort(frame_file.cell)[0]) + ' to ' + str(np.sort(frame_file.cell)[-1]) + ' nr ' + str(
|
||||||
#embed()
|
len(frame_file.cell)))
|
||||||
|
# embed()
|
||||||
|
# embed()
|
||||||
#embed()
|
|
||||||
|
|
||||||
#####################################################################
|
#####################################################################
|
||||||
############################
|
############################
|
||||||
# 3 Print , EODF
|
# 3 Print , EODF
|
||||||
@ -308,12 +284,14 @@ def data_overview3():
|
|||||||
for c, cell_type_here in enumerate(cell_types):
|
for c, cell_type_here in enumerate(cell_types):
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
|
||||||
|
|
||||||
if len(frame_file)> 0:
|
if len(frame_file) > 0:
|
||||||
# ja der fisch hatte halt eine ziemlich niedriege EODf
|
# ja der fisch hatte halt eine ziemlich niedriege EODf
|
||||||
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
|
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
|
||||||
try:
|
try:
|
||||||
print(start_name(cell_type_here,
|
print(start_name(cell_type_here,
|
||||||
species) + ' eodf_min ' + str(int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(int(np.round(np.nanmax(frame_here.eod_fr))))+' n '+str(len(frame_here)))
|
species) + ' eodf_min ' + str(
|
||||||
|
int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(
|
||||||
|
int(np.round(np.nanmax(frame_here.eod_fr)))) + ' n ' + str(len(frame_here)))
|
||||||
except:
|
except:
|
||||||
print('eodf thing')
|
print('eodf thing')
|
||||||
embed()
|
embed()
|
||||||
@ -321,9 +299,7 @@ def data_overview3():
|
|||||||
new_list = [item[0:10] for item in my_list]
|
new_list = [item[0:10] for item in my_list]
|
||||||
fish.extend(new_list)
|
fish.extend(new_list)
|
||||||
|
|
||||||
|
print(species[0:7] + ' n_fish ' + str(len(np.unique(fish))))
|
||||||
print(species[0:7]+' n_fish '+str(len(np.unique(fish))))
|
|
||||||
|
|
||||||
#####################################################################
|
#####################################################################
|
||||||
# Burst corr limits
|
# Burst corr limits
|
||||||
print('\n')
|
print('\n')
|
||||||
@ -336,8 +312,7 @@ def data_overview3():
|
|||||||
lims_name = ''
|
lims_name = ''
|
||||||
for lim in lims:
|
for lim in lims:
|
||||||
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
|
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
|
||||||
print(start_name(cell_type_here, species) + ' ' + lims_name)
|
print(start_name(cell_type_here, species) + ' ' + lims_name)
|
||||||
|
|
||||||
#####################################################################
|
#####################################################################
|
||||||
############################
|
############################
|
||||||
# 3 Print , EODF
|
# 3 Print , EODF
|
||||||
@ -346,18 +321,13 @@ def data_overview3():
|
|||||||
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
|
||||||
for species in speciess:
|
for species in speciess:
|
||||||
for c, cell_type_here in enumerate(cell_types):
|
for c, cell_type_here in enumerate(cell_types):
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here,min_amp = '',species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='', species=species)
|
||||||
|
|
||||||
if len(frame_file)> 0:
|
if len(frame_file) > 0:
|
||||||
#embed()
|
# embed()
|
||||||
print(start_name(cell_type_here, species) + ' amp_min ' + str(
|
print(start_name(cell_type_here, species) + ' amp_min ' + str(
|
||||||
np.nanmin(frame_file.amp)) + ' amp_max ' + str(np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
|
np.nanmin(frame_file.amp)) + ' amp_max ' + str(
|
||||||
test = False
|
np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
|
||||||
#embed()
|
|
||||||
if test:
|
|
||||||
frame_file[['cv_stim','cv_base']]
|
|
||||||
frame_file['cv_stim']
|
|
||||||
embed()
|
|
||||||
############################
|
############################
|
||||||
# CVs min max
|
# CVs min max
|
||||||
for species in speciess:
|
for species in speciess:
|
||||||
@ -366,11 +336,14 @@ def data_overview3():
|
|||||||
|
|
||||||
if len(frame_file) > 0:
|
if len(frame_file) > 0:
|
||||||
try:
|
try:
|
||||||
print(start_name(cell_type_here, species) + ' CV_min ' + str(np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(np.round(np.nanmax(frame_file.fr_base))))
|
print(start_name(cell_type_here, species) + ' CV_min ' + str(
|
||||||
|
np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(
|
||||||
|
np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(
|
||||||
|
np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(
|
||||||
|
np.round(np.nanmax(frame_file.fr_base))))
|
||||||
except:
|
except:
|
||||||
print('min here')
|
print('min here')
|
||||||
embed()
|
embed()
|
||||||
|
|
||||||
############################################
|
############################################
|
||||||
#######
|
#######
|
||||||
# N
|
# N
|
||||||
@ -380,51 +353,42 @@ def data_overview3():
|
|||||||
for c, cell_type_here in enumerate(cell_types):
|
for c, cell_type_here in enumerate(cell_types):
|
||||||
##################
|
##################
|
||||||
# printe wie viele Zellen es am Anfang gab
|
# printe wie viele Zellen es am Anfang gab
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude = False, snippet = None, min_amp='min', species=species)
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude=False, snippet=None,
|
||||||
|
min_amp='min', species=species)
|
||||||
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
|
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
|
||||||
#embed()
|
# embed()
|
||||||
#if c in [0,2]:
|
# if c in [0,2]:
|
||||||
|
|
||||||
|
|
||||||
#cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
|
# cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
|
||||||
# cv_name, frame_file, max_val, score,
|
# cv_name, frame_file, max_val, score,
|
||||||
# species)
|
# species)
|
||||||
#axs.set_ylabel(score)
|
# axs.set_ylabel(score)
|
||||||
#embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
|
# embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
|
||||||
#axs.set_xlabel(cv_name)
|
# axs.set_xlabel(cv_name)
|
||||||
|
|
||||||
#axs.get_shared_x_axes().join(*[axs, axd])
|
|
||||||
|
|
||||||
|
# axs.get_shared_x_axes().join(*[axs, axd])
|
||||||
|
|
||||||
# elif species == ' Apteronotus albifrons':
|
# elif species == ' Apteronotus albifrons':
|
||||||
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
|
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
|
||||||
|
|
||||||
#ax[1,cv_n].set_xlim(0, max_val)
|
# ax[1,cv_n].set_xlim(0, max_val)
|
||||||
#set_same_ylim(np.concatenate(ax[1::, :]))
|
# set_same_ylim(np.concatenate(ax[1::, :]))
|
||||||
#set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
|
# set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
|
||||||
#set_same_ylim(ax[0, :], ylim_type='xlim')
|
# set_same_ylim(ax[0, :], ylim_type='xlim')
|
||||||
|
|
||||||
#set_ylim_same()
|
# set_ylim_same()
|
||||||
#ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
|
# ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
|
||||||
|
|
||||||
#counter += 1
|
|
||||||
#embed()
|
|
||||||
|
|
||||||
|
# counter += 1
|
||||||
|
# embed()
|
||||||
############################################
|
############################################
|
||||||
# printe um welchen Zeitraum es sich handelt
|
# printe um welchen Zeitraum es sich handelt
|
||||||
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
|
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
|
||||||
species='')
|
species='')
|
||||||
print('\n sampling'+str(frame_file.sampling.unique()))
|
print('\n sampling' + str(frame_file.sampling.unique()))
|
||||||
|
|
||||||
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
|
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
|
||||||
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
|
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
|
||||||
#plt.show()
|
# plt.show()
|
||||||
show = False#True
|
|
||||||
fig = plt.gcf()
|
|
||||||
#embed()
|
|
||||||
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
|
|
||||||
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
|
|
||||||
save_visualization(pdf = True, show = show)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
BIN
flowchart.pdf
BIN
flowchart.pdf
Binary file not shown.
BIN
flowchart.png
BIN
flowchart.png
Binary file not shown.
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 54 KiB |
Binary file not shown.
@ -74,7 +74,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
|||||||
for all in it.product(*iternames):
|
for all in it.product(*iternames):
|
||||||
|
|
||||||
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
|
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
|
||||||
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
|
|
||||||
hs = 0.45
|
hs = 0.45
|
||||||
@ -103,7 +102,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
|||||||
trial_nr = 500000
|
trial_nr = 500000
|
||||||
cell = '2013-01-08-aa-invivo-1'
|
cell = '2013-01-08-aa-invivo-1'
|
||||||
cell = '2012-07-03-ak-invivo-1'
|
cell = '2012-07-03-ak-invivo-1'
|
||||||
print('cell' + str(cell))
|
|
||||||
cells_given = [cell]
|
cells_given = [cell]
|
||||||
save_name_rev = find_folder_name(
|
save_name_rev = find_folder_name(
|
||||||
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||||
@ -287,7 +286,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
|
|||||||
deltat = model_params.pop("deltat") # .iloc[0]
|
deltat = model_params.pop("deltat") # .iloc[0]
|
||||||
v_offset = model_params.pop("v_offset") # .iloc[0]
|
v_offset = model_params.pop("v_offset") # .iloc[0]
|
||||||
eod_fr = stack.eod_fr.iloc[0]
|
eod_fr = stack.eod_fr.iloc[0]
|
||||||
print(var_types[g] + ' a_fe ' + str(a_fes[g]))
|
|
||||||
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
|
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
|
||||||
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
|
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
|
||||||
eod_fe=eod_fe)
|
eod_fe=eod_fe)
|
||||||
@ -315,7 +314,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
|
|||||||
elif len(np.unique(frame.RAM_afe)) > 1:
|
elif len(np.unique(frame.RAM_afe)) > 1:
|
||||||
color_timeseries = 'red'
|
color_timeseries = 'red'
|
||||||
nr_plot = 0
|
nr_plot = 0
|
||||||
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
||||||
try:
|
try:
|
||||||
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
||||||
(frame.RAM_afe + frame.RAM_noise) * 100,
|
(frame.RAM_afe + frame.RAM_noise) * 100,
|
||||||
@ -339,7 +338,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
|
|||||||
elif len(np.unique(frame.RAM_noise)) > 1:
|
elif len(np.unique(frame.RAM_noise)) > 1:
|
||||||
color_timeseries = 'purple'
|
color_timeseries = 'purple'
|
||||||
nr_plot = 1
|
nr_plot = 1
|
||||||
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
||||||
try:
|
try:
|
||||||
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
||||||
(frame.RAM_afe + frame.RAM_noise) * 100,
|
(frame.RAM_afe + frame.RAM_noise) * 100,
|
||||||
@ -454,5 +453,5 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
##########################
|
##########################
|
||||||
#embed()
|
#embed()
|
||||||
print('hi')
|
#print('hi')
|
||||||
model_and_data2(eod_metrice=False, width=0.005, D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$'
|
model_and_data2(eod_metrice=False, width=0.005, D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$'
|
||||||
|
BIN
model_full.pdf
BIN
model_full.pdf
Binary file not shown.
BIN
model_full.png
BIN
model_full.png
Binary file not shown.
Before Width: | Height: | Size: 194 KiB After Width: | Height: | Size: 194 KiB |
BIN
motivation.pdf
BIN
motivation.pdf
Binary file not shown.
BIN
plot_chi2.pdf
BIN
plot_chi2.pdf
Binary file not shown.
BIN
trialnr.pdf
BIN
trialnr.pdf
Binary file not shown.
59
trialnr.py
59
trialnr.py
@ -86,7 +86,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
|||||||
trial_nr = 500000
|
trial_nr = 500000
|
||||||
cell = '2013-01-08-aa-invivo-1'
|
cell = '2013-01-08-aa-invivo-1'
|
||||||
cell = '2012-07-03-ak-invivo-1'
|
cell = '2012-07-03-ak-invivo-1'
|
||||||
print('cell'+str(cell))
|
#print('cell'+str(cell))
|
||||||
cells_given = [cell]
|
cells_given = [cell]
|
||||||
save_name_rev = find_folder_name(
|
save_name_rev = find_folder_name(
|
||||||
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||||
@ -127,12 +127,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
|||||||
]
|
]
|
||||||
nrs_s = [3, 4, 8, 9]#, 10, 11
|
nrs_s = [3, 4, 8, 9]#, 10, 11
|
||||||
save_name = save_names[s]
|
save_name = save_names[s]
|
||||||
#embed()
|
|
||||||
tr_name = trial_nr/1000000
|
tr_name = trial_nr/1000000
|
||||||
if tr_name == 1:
|
if tr_name == 1:
|
||||||
tr_name = 1
|
|
||||||
ax_model = []
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
save_name = find_folder_name('calc_model') + '/' + save_name
|
save_name = find_folder_name('calc_model') + '/' + save_name
|
||||||
@ -141,12 +137,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
|||||||
perc = 'perc'
|
perc = 'perc'
|
||||||
|
|
||||||
path = save_name + '.pkl' # '../'+
|
path = save_name + '.pkl' # '../'+
|
||||||
# stack = get_stack_one_quadrant(cell, cell_add, cells_save, path, save_name)
|
|
||||||
|
|
||||||
# full_matrix = create_full_matrix2(np.array(stack), np.array(stack_rev))
|
|
||||||
# stack_final = get_axis_on_full_matrix(full_matrix, stack)
|
|
||||||
# im = plt_RAM_perc(ax, perc, np.abs(stack))
|
|
||||||
#
|
|
||||||
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
|
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
|
||||||
|
|
||||||
if len(stack)> 0:
|
if len(stack)> 0:
|
||||||
@ -184,14 +175,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
|||||||
perc05_wo_norm.append(float('nan'))
|
perc05_wo_norm.append(float('nan'))
|
||||||
median_wo_norm.append(float('nan'))
|
median_wo_norm.append(float('nan'))
|
||||||
counter.append(float('nan'))
|
counter.append(float('nan'))
|
||||||
# vars, cv_stims, fr_stims
|
|
||||||
print((np.array(counter)+1)/trial_nrs_here)
|
|
||||||
print((np.array(counter)) / trial_nrs_here)
|
|
||||||
#embed()
|
|
||||||
#ax.plot(trial_nrs_here, perc05, color = 'grey')
|
|
||||||
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s])
|
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s])
|
||||||
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
|
|
||||||
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
|
|
||||||
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
|
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
|
||||||
ax[0].set_xscale('log')#colors[s]
|
ax[0].set_xscale('log')#colors[s]
|
||||||
ax[0].set_yscale('log')
|
ax[0].set_yscale('log')
|
||||||
@ -203,52 +188,12 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
|||||||
if s == 1:
|
if s == 1:
|
||||||
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
|
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
|
||||||
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
|
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
|
||||||
|
|
||||||
|
|
||||||
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
|
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
|
||||||
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
|
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
|
||||||
ax[0].legend()
|
ax[0].legend()
|
||||||
#ax[0].set_xscale('log')
|
|
||||||
#ax[0].set_yscale('log')
|
|
||||||
#ax[0].set_xlabel('Trials [$N$]')
|
|
||||||
#ax[0].set_ylabel('$\chi_{2}$\,[Hz]')
|
|
||||||
#ax[0].legend()
|
|
||||||
|
|
||||||
''' ax = plt.subplot(1,3,2)
|
|
||||||
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
|
|
||||||
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
|
|
||||||
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
|
|
||||||
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
|
|
||||||
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
|
|
||||||
|
|
||||||
ax = plt.subplot(1,3,3)
|
|
||||||
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
|
|
||||||
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
|
|
||||||
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
|
|
||||||
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
|
|
||||||
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
ax.legend()
|
|
||||||
ax.set_xscale('log')
|
|
||||||
ax.set_yscale('log')
|
|
||||||
|
|
||||||
'''
|
|
||||||
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
|
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
|
||||||
#plt.set_scale
|
|
||||||
#embed()
|
|
||||||
#embed()
|
|
||||||
#fig.tag([axes[0:3]], xoffs=-3, yoffs=1.6) # ax_ams[3],
|
|
||||||
#fig.tag([[axes[4]]], xoffs=-3, yoffs=1.6, minor_index=0) # ax_ams[3],
|
|
||||||
#fig.tag([axes[3:6]], xoffs=-3, yoffs=1.6) #, major_index = 1, minor_index = 2 ax_ams[3],
|
|
||||||
#fig.tag([[axes[7]]], xoffs=-3, yoffs=1.6, major_index=2,minor_index=0) # ax_ams[3],
|
|
||||||
#fig.tag([axes[8::]], xoffs=-3, yoffs=1.6, major_index=2, minor_index=2) # ax_ams[3],
|
|
||||||
#fig.tag([axes[7::]], xoffs=-3, yoffs=1.6) # ax_ams[3],
|
|
||||||
|
|
||||||
#fig.tag([ax_ams[0],ax_data[0],axes[2], axes[3]], xoffs=-3, yoffs=1.6)#ax_ams[3],
|
|
||||||
|
|
||||||
#plt.show()
|
|
||||||
save_visualization(pdf=True)
|
save_visualization(pdf=True)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,188 +0,0 @@
|
|||||||
'''import os
|
|
||||||
|
|
||||||
try:
|
|
||||||
from numba import jit
|
|
||||||
|
|
||||||
except ImportError:
|
|
||||||
def jit(nopython):
|
|
||||||
def decorator_jit(func):
|
|
||||||
return func
|
|
||||||
|
|
||||||
return decorator_jit
|
|
||||||
|
|
||||||
import inspect
|
|
||||||
if 'cv_cell_types' not in inspect.stack()[-1][1]:
|
|
||||||
try:
|
|
||||||
from plotstyle import plot_style, spines_params
|
|
||||||
except:
|
|
||||||
a = 5
|
|
||||||
|
|
||||||
import sys
|
|
||||||
from IPython import embed
|
|
||||||
|
|
||||||
|
|
||||||
# utils susept wird in utils paper copiert und von utisl_susepitbility gestartet
|
|
||||||
utils_suseptibility_name = 'utils1'
|
|
||||||
utils_susept_name = 'utils1_project'
|
|
||||||
|
|
||||||
utils_suseptibility_name2 = 'utils_susept2'
|
|
||||||
utils_susept_name2 = 'utils_paper2'
|
|
||||||
|
|
||||||
utils_suseptibility_name_all = 'utils0'
|
|
||||||
utils_susept_name_all = 'utils0_project'#_down
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
try:# this will not load but I want this to be reference for the refractoring in pycharm
|
|
||||||
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
cont_other_dir = True#
|
|
||||||
except:
|
|
||||||
cont_other_dir = False#then I know that I am on alexandras PC and I can update my code
|
|
||||||
|
|
||||||
#embed()
|
|
||||||
if cont_other_dir == False:
|
|
||||||
import filecmp
|
|
||||||
# I can also update the folder in another directy to double check its dependencies
|
|
||||||
|
|
||||||
|
|
||||||
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
|
|
||||||
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
|
|
||||||
else:
|
|
||||||
#embed()
|
|
||||||
if filecmp.cmp('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py'):
|
|
||||||
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
|
|
||||||
if os.path.exists('../'+utils_suseptibility_name+'.py'):# das mache ich um in dem richtigen embed zu arbeiten
|
|
||||||
sys.path.insert(0, '..')
|
|
||||||
from threefish.utils1 import *#resave_small_files,remove_yticks, unify_cell_names,load_cv_table, colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
|
|
||||||
else:
|
|
||||||
# wir schauen erstmal ohne sys dass das immer zu teilen da ist
|
|
||||||
import shutil
|
|
||||||
if os.path.exists('../'+utils_suseptibility_name+'.py'):
|
|
||||||
shutil.copyfile('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py')
|
|
||||||
import shutil
|
|
||||||
if os.path.exists('../' + utils_suseptibility_name + '.py'):
|
|
||||||
shutil.copyfile('../' + utils_suseptibility_name_all + '.py', utils_susept_name_all + '.py')
|
|
||||||
print('copied utils all')
|
|
||||||
# wenn wir auf meinem Computer sind ziehen wir es aber immer vom code
|
|
||||||
# damit das refractors und wenn wir wo anders sind von dem extra kopierten file
|
|
||||||
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
|
|
||||||
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
|
|
||||||
sys.path.insert(0, '..')
|
|
||||||
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
else:
|
|
||||||
|
|
||||||
sys.path.insert(0, '..')
|
|
||||||
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
|
|
||||||
|
|
||||||
##############################
|
|
||||||
# find out if we are in the code or develop mode (alexandra) or the public mode!
|
|
||||||
names_extra_modules = []
|
|
||||||
version = 'code'
|
|
||||||
# for name in names_extra_modules:
|
|
||||||
if 'suseptibility' in inspect.stack()[-1][1]: # 'code' not in # da ist jetzt die Starter Directory
|
|
||||||
version = 'develop'
|
|
||||||
if ('code' not in inspect.stack()[-1][1]) | (not (('alex' in os.getlogin()) | ('rudnaya' in os.getlogin()))):
|
|
||||||
version = 'public' # für alle sollte version public sein!
|
|
||||||
|
|
||||||
|
|
||||||
# this we do only in the develop mode
|
|
||||||
if version == 'develop': #
|
|
||||||
copy = True
|
|
||||||
if copy:
|
|
||||||
if __name__ == '__main__':
|
|
||||||
from distutils.dir_util import copy_tree
|
|
||||||
import time
|
|
||||||
import shutil
|
|
||||||
#shutil.rmtree("../../make_folder/suseptibility")#delet
|
|
||||||
t1 = time.time()
|
|
||||||
dirs = os.listdir("../suseptibility")
|
|
||||||
d_count = 0
|
|
||||||
for d, directory in enumerate(dirs):
|
|
||||||
if (('.csv' in directory) | ('.npy' in directory) | ('.pkl' in directory) | ('.py' in directory)| ('suseptibility' in directory)| ('make' in dir.lower()) | ('.dat' in directory)) & ('__pycache__' not in directory):
|
|
||||||
new_folder_make = '../../../make_folder'
|
|
||||||
if not os.path.exists(new_folder_make):
|
|
||||||
os.mkdir(new_folder_make)
|
|
||||||
new_dir = new_folder_make+"/suseptibility/"
|
|
||||||
if not os.path.exists(new_dir):
|
|
||||||
|
|
||||||
os.mkdir(new_dir)
|
|
||||||
# clean the previous directory
|
|
||||||
#embed()
|
|
||||||
if d_count == 0:
|
|
||||||
dirs_new = os.listdir(new_dir)
|
|
||||||
for dir_n in dirs_new:
|
|
||||||
if '__pycache__' not in dir_n:
|
|
||||||
os.remove(new_dir + dir_n)
|
|
||||||
# nicht remove three sonst macht es alles weg
|
|
||||||
#shutil.rmtree(new_dir)
|
|
||||||
#os.mkdir(new_dir)
|
|
||||||
# redo the directory
|
|
||||||
|
|
||||||
#
|
|
||||||
if os.path.exists(new_dir + directory):
|
|
||||||
embed()
|
|
||||||
#print(new_dir+dir)
|
|
||||||
#try:
|
|
||||||
shutil.copy2("../suseptibility/" + directory,new_dir + directory)
|
|
||||||
#print(new_dir + directory)
|
|
||||||
#shutil.copy("../suseptibility/" + directory,new_dir + directory)
|
|
||||||
#shutil.copyfile("../suseptibility/"+dir, new_dir+dir)
|
|
||||||
#except:
|
|
||||||
# print('shutil stuff')
|
|
||||||
# embed()
|
|
||||||
d_count += 1
|
|
||||||
t2 = time.time() -t1
|
|
||||||
|
|
||||||
print('Time='+str(t2))
|
|
||||||
print('copied')
|
|
||||||
#copy_tree("../suseptibility", "../../make_folder/suseptibility")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def plt_scatter_four(grid, frame, cell_types, cell_type_type, annotate, colors):
|
|
||||||
grid2 = gridspec.GridSpecFromSubplotSpec(1, 4, grid[0], wspace=0.4,
|
|
||||||
hspace=0.2)
|
|
||||||
add = ['', '_burst_corr', ]
|
|
||||||
ax0 = plt.subplot(grid2[0])
|
|
||||||
|
|
||||||
# ok hier plotten wir nur den scatter der auch ein gwn hat, aber was ist wenn es mehr sind?
|
|
||||||
# ok im prinzip sollte das zwar schon stimmen aber für das Bild kann man wirklich mehr machen
|
|
||||||
for c, cell_type_it in enumerate(cell_types):
|
|
||||||
frame_g = frame[
|
|
||||||
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
|
|
||||||
|
|
||||||
plt_cv_fr(annotate, ax0, add[0], frame_g, colors, cell_type_it)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
ax1 = plt.subplot(grid2[1])
|
|
||||||
for c, cell_type_it in enumerate(cell_types):
|
|
||||||
frame_g = frame[
|
|
||||||
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
|
|
||||||
plt_cv_vs(frame_g, ax1, add[0], annotate, colors, cell_type_it)
|
|
||||||
|
|
||||||
|
|
||||||
ax2 = plt.subplot(grid2[2])
|
|
||||||
ax2.set_title('burst')
|
|
||||||
for c, cell_type_it in enumerate(cell_types):
|
|
||||||
# frame_all = frame[(frame[cell_type_type] == cell_type)]
|
|
||||||
frame_g = frame[
|
|
||||||
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
|
|
||||||
|
|
||||||
plt_cv_fr(annotate, ax2, add[1], frame_g, colors, cell_type_it)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return ax0, ax1, ax2,'''
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user