updating figures

This commit is contained in:
saschuta 2024-06-06 21:10:19 +02:00
parent 39e5146ade
commit 1309e4cfca
25 changed files with 120804 additions and 121086 deletions

Binary file not shown.

View File

@ -51,5 +51,5 @@ if __name__ == '__main__':
ampullary_punit(cells_plot2=cells_plot2, RAM=False) ampullary_punit(cells_plot2=cells_plot2, RAM=False)
else: else:
cells_plot2 = p_units_to_show(type_here='amp')#permuted = True, cells_plot2 = p_units_to_show(type_here='amp')#permuted = True,
print(cells_plot2) #print(cells_plot2)
ampullary_punit(eod_metrice = False, base_extra = True,color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, titles=[''],cells_plot2=cells_plot2, RAM=False, scale_val = False, add_texts = [0.25,1.3])#Low-CV ampullary cell, ampullary_punit(eod_metrice = False, base_extra = True,color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, titles=[''],cells_plot2=cells_plot2, RAM=False, scale_val = False, add_texts = [0.25,1.3])#Low-CV ampullary cell,

Binary file not shown.

View File

@ -7,5 +7,5 @@ if __name__ == '__main__':
#stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv') #stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv')
cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True, cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True,
print(cells_plot2) #print(cells_plot2)
ampullary_punit(eod_metrice = False, color_same = False, base_extra = True, fr_name = label_fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''], tags_individual = True, xlim_p = [0, 1.15])#Low-CV P-unit, ampullary_punit(eod_metrice = False, color_same = False, base_extra = True, fr_name = label_fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''], tags_individual = True, xlim_p = [0, 1.15])#Low-CV P-unit,

Binary file not shown.

View File

@ -6,5 +6,5 @@ from threefish.RAM.plots import ampullary_punit
if __name__ == '__main__': if __name__ == '__main__':
cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True, cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True,
print(cells_plot2) #print(cells_plot2)
ampullary_punit(base_extra = True, eod_metrice = False, color_same = False, fr_name = label_fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'], )#High-CV P-unit, ampullary_punit(base_extra = True, eod_metrice = False, color_same = False, fr_name = label_fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'], )#High-CV P-unit,

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,243 +1,242 @@
,spikes ,spikes
0,0.0029000000000000002 0,0.007
1,0.00915 1,0.013600000000000001
2,0.015700000000000002 2,0.020050000000000002
3,0.026500000000000003 3,0.03065
4,0.0318 4,0.0383
5,0.0383 5,0.0448
6,0.05435 6,0.0577
7,0.06525 7,0.06515
8,0.06960000000000001 8,0.0728
9,0.076 9,0.08135
10,0.08465 10,0.08895
11,0.09335 11,0.09435
12,0.09975 12,0.10395
13,0.10515000000000001 13,0.1126
14,0.11910000000000001 14,0.1213
15,0.1245 15,0.12765
16,0.13525 16,0.13525
17,0.14165 17,0.1481
18,0.14825000000000002 18,0.15455000000000002
19,0.15675 19,0.1623
20,0.16425 20,0.1762
21,0.16975 21,0.1836
22,0.18375 22,0.18705000000000002
23,0.18815 23,0.1978
24,0.19565000000000002 24,0.20735
25,0.20220000000000002 25,0.2139
26,0.2096 26,0.21925
27,0.22030000000000002 27,0.2311
28,0.22795 28,0.23765
29,0.23970000000000002 29,0.24295
30,0.24505000000000002 30,0.25485
31,0.25045 31,0.25915
32,0.2602 32,0.26555
33,0.2666 33,0.2806
34,0.27640000000000003 34,0.2871
35,0.2838 35,0.29675
36,0.29375 36,0.30210000000000004
37,0.30545 37,0.30755
38,0.312 38,0.3173
39,0.31945 39,0.3302
40,0.3302 40,0.3366
41,0.342 41,0.34205
42,0.34845000000000004 42,0.35595000000000004
43,0.35385 43,0.36355000000000004
44,0.35935 44,0.37010000000000004
45,0.37320000000000003 45,0.3788
46,0.3841 46,0.38835000000000003
47,0.38945 47,0.39585000000000004
48,0.39580000000000004 48,0.40125
49,0.40235000000000004 49,0.4141
50,0.4121 50,0.42500000000000004
51,0.42510000000000003 51,0.43370000000000003
52,0.43245 52,0.44010000000000005
53,0.4368 53,0.4455
54,0.44320000000000004 54,0.45405
55,0.4562 55,0.4616
56,0.46375 56,0.46915
57,0.47125 57,0.47665
58,0.47775 58,0.48855000000000004
59,0.48745000000000005 59,0.49495
60,0.49605000000000005 60,0.5025000000000001
61,0.5047 61,0.5133
62,0.5112 62,0.52075
63,0.5197 63,0.53285
64,0.52525 64,0.5391
65,0.5347500000000001 65,0.5445
66,0.5477500000000001 66,0.55855
67,0.55425 67,0.5628500000000001
68,0.5619000000000001 68,0.5683
69,0.5692 69,0.5780500000000001
70,0.5757 70,0.5908
71,0.5834 71,0.5973
72,0.59295 72,0.60265
73,0.60385 73,0.6091
74,0.6124 74,0.61775
75,0.62005 75,0.6263500000000001
76,0.6265000000000001 76,0.63705
77,0.63075 77,0.64685
78,0.6437 78,0.65215
79,0.6544 79,0.6586500000000001
80,0.66085 80,0.67155
81,0.6684 81,0.6792
82,0.67695 82,0.6867000000000001
83,0.6835 83,0.6963
84,0.6888000000000001 84,0.7040000000000001
85,0.6965 85,0.7093
86,0.7115 86,0.71685
87,0.7210500000000001 87,0.72655
88,0.72975 88,0.732
89,0.7341000000000001 89,0.74905
90,0.7394000000000001 90,0.7546
91,0.7482000000000001 91,0.7589
92,0.7599 92,0.77185
93,0.7663500000000001 93,0.77615
94,0.7739 94,0.7858
95,0.7815000000000001 95,0.7975500000000001
96,0.7912 96,0.803
97,0.7988000000000001 97,0.8105
98,0.80525 98,0.82235
99,0.8214 99,0.82665
100,0.8256 100,0.8332
101,0.8310500000000001 101,0.8428
102,0.8449500000000001 102,0.8493
103,0.85035 103,0.8602500000000001
104,0.8580000000000001 104,0.8709
105,0.8643500000000001 105,0.8774000000000001
106,0.8742000000000001 106,0.8828
107,0.8849 107,0.8989
108,0.8935000000000001 108,0.90535
109,0.8999 109,0.9107000000000001
110,0.9053 110,0.91715
111,0.9171 111,0.9246500000000001
112,0.9279000000000001 112,0.9365
113,0.9323 113,0.94535
114,0.9419500000000001 114,0.9516
115,0.94745 115,0.96355
116,0.9581000000000001 116,0.9678500000000001
117,0.9645 117,0.9807
118,0.97645 118,0.9882500000000001
119,0.9839 119,0.99365
120,0.9904000000000001 120,1.0012
121,1.00435 121,1.00885
122,1.00885 122,1.0163
123,1.0152 123,1.0228000000000002
124,1.026 124,1.03145
125,1.03235 125,1.0390000000000001
126,1.03685 126,1.0463500000000001
127,1.04755 127,1.0593000000000001
128,1.0626 128,1.06915
129,1.06895 129,1.07775
130,1.0744500000000001 130,1.08315
131,1.08525 131,1.0928
132,1.0938 132,1.09915
133,1.1003 133,1.1056000000000001
134,1.1057000000000001 134,1.1186
135,1.1186500000000001 135,1.12605
136,1.124 136,1.1338000000000001
137,1.13365 137,1.1423
138,1.14115 138,1.1520000000000001
139,1.1476 139,1.1563
140,1.1562000000000001 140,1.16605
141,1.1617 141,1.17885
142,1.16595 142,1.1853500000000001
143,1.1757 143,1.1918
144,1.1886 144,1.20265
145,1.1993 145,1.208
146,1.2027 146,1.21985
147,1.21015 147,1.2274500000000002
148,1.22085 148,1.23275
149,1.2338500000000001 149,1.24035
150,1.2394500000000002 150,1.2521
151,1.2447000000000001 151,1.2576500000000002
152,1.2554 152,1.26505
153,1.26495 153,1.27265
154,1.2695 154,1.28435
155,1.2758500000000002 155,1.2961500000000001
156,1.28445 156,1.30065
157,1.2941500000000001 157,1.3059500000000002
158,1.3050000000000002 158,1.31355
159,1.3093000000000001 159,1.3264500000000001
160,1.3189 160,1.33185
161,1.335 161,1.3383
162,1.3405 162,1.3512
163,1.34805 163,1.36095
164,1.3544 164,1.3685
165,1.36535 165,1.3749
166,1.37385 166,1.3857000000000002
167,1.3836000000000002 167,1.3900000000000001
168,1.3889500000000001 168,1.3988
169,1.39535 169,1.40955
170,1.4019000000000001 170,1.41595
171,1.4094 171,1.4246
172,1.4255 172,1.43625
173,1.42985 173,1.44275
174,1.4375 174,1.4526000000000001
175,1.4439 175,1.45785
176,1.459 176,1.4675500000000001
177,1.46655 177,1.47405
178,1.4729 178,1.4815500000000001
179,1.48275 179,1.4912
180,1.48905 180,1.5030000000000001
181,1.49665 181,1.5086000000000002
182,1.5053 182,1.5139
183,1.5117 183,1.5225
184,1.5172 184,1.5344
185,1.5311000000000001 185,1.54095
186,1.5355 186,1.5462500000000001
187,1.5441 187,1.5592000000000001
188,1.5558500000000002 188,1.56675
189,1.5623500000000001 189,1.5720500000000002
190,1.56985 190,1.5882
191,1.5775000000000001 191,1.5936000000000001
192,1.586 192,1.601
193,1.59345 193,1.6055000000000001
194,1.6021500000000002 194,1.6151
195,1.61195 195,1.6259000000000001
196,1.6226500000000001 196,1.63235
197,1.62705 197,1.6378000000000001
198,1.63235 198,1.64845
199,1.641 199,1.6549
200,1.6549500000000001 200,1.66255
201,1.66355 201,1.6712
202,1.67015 202,1.6808500000000002
203,1.6788 203,1.6873
204,1.68405 204,1.6970500000000002
205,1.6917 205,1.70565
206,1.6980000000000002 206,1.7099
207,1.7130500000000002 207,1.7174
208,1.7228 208,1.7271
209,1.7313500000000002 209,1.7379
210,1.73675 210,1.74875
211,1.7433 211,1.75725
212,1.74875 212,1.7616500000000002
213,1.76055 213,1.77235
214,1.7670000000000001 214,1.78095
215,1.7734500000000002 215,1.78645
216,1.7811000000000001 216,1.7982
217,1.7918500000000002 217,1.80895
218,1.7993000000000001 218,1.8133000000000001
219,1.8143 219,1.8241500000000002
220,1.8210000000000002 220,1.8305500000000001
221,1.8251000000000002 221,1.8380500000000002
222,1.8318 222,1.84565
223,1.8446 223,1.8543500000000002
224,1.8500500000000002 224,1.8629
225,1.8585500000000001 225,1.87155
226,1.8703500000000002 226,1.8801
227,1.88115 227,1.88775
228,1.8866 228,1.9005500000000002
229,1.8929500000000001 229,1.907
230,1.9027 230,1.91235
231,1.91245 231,1.9242000000000001
232,1.9232500000000001 232,1.92965
233,1.9286 233,1.9371
234,1.9371 234,1.9458000000000002
235,1.9425000000000001 235,1.95435
236,1.9491 236,1.96635
237,1.95875 237,1.977
238,1.9694 238,1.9813500000000002
239,1.97595 239,1.9898500000000001
240,1.9835 240,1.9943000000000002
241,1.9985000000000002

1 spikes
2 0 0.0029000000000000002 0.007
3 1 0.00915 0.013600000000000001
4 2 0.015700000000000002 0.020050000000000002
5 3 0.026500000000000003 0.03065
6 4 0.0318 0.0383
7 5 0.0383 0.0448
8 6 0.05435 0.0577
9 7 0.06525 0.06515
10 8 0.06960000000000001 0.0728
11 9 0.076 0.08135
12 10 0.08465 0.08895
13 11 0.09335 0.09435
14 12 0.09975 0.10395
15 13 0.10515000000000001 0.1126
16 14 0.11910000000000001 0.1213
17 15 0.1245 0.12765
18 16 0.13525
19 17 0.14165 0.1481
20 18 0.14825000000000002 0.15455000000000002
21 19 0.15675 0.1623
22 20 0.16425 0.1762
23 21 0.16975 0.1836
24 22 0.18375 0.18705000000000002
25 23 0.18815 0.1978
26 24 0.19565000000000002 0.20735
27 25 0.20220000000000002 0.2139
28 26 0.2096 0.21925
29 27 0.22030000000000002 0.2311
30 28 0.22795 0.23765
31 29 0.23970000000000002 0.24295
32 30 0.24505000000000002 0.25485
33 31 0.25045 0.25915
34 32 0.2602 0.26555
35 33 0.2666 0.2806
36 34 0.27640000000000003 0.2871
37 35 0.2838 0.29675
38 36 0.29375 0.30210000000000004
39 37 0.30545 0.30755
40 38 0.312 0.3173
41 39 0.31945 0.3302
42 40 0.3302 0.3366
43 41 0.342 0.34205
44 42 0.34845000000000004 0.35595000000000004
45 43 0.35385 0.36355000000000004
46 44 0.35935 0.37010000000000004
47 45 0.37320000000000003 0.3788
48 46 0.3841 0.38835000000000003
49 47 0.38945 0.39585000000000004
50 48 0.39580000000000004 0.40125
51 49 0.40235000000000004 0.4141
52 50 0.4121 0.42500000000000004
53 51 0.42510000000000003 0.43370000000000003
54 52 0.43245 0.44010000000000005
55 53 0.4368 0.4455
56 54 0.44320000000000004 0.45405
57 55 0.4562 0.4616
58 56 0.46375 0.46915
59 57 0.47125 0.47665
60 58 0.47775 0.48855000000000004
61 59 0.48745000000000005 0.49495
62 60 0.49605000000000005 0.5025000000000001
63 61 0.5047 0.5133
64 62 0.5112 0.52075
65 63 0.5197 0.53285
66 64 0.52525 0.5391
67 65 0.5347500000000001 0.5445
68 66 0.5477500000000001 0.55855
69 67 0.55425 0.5628500000000001
70 68 0.5619000000000001 0.5683
71 69 0.5692 0.5780500000000001
72 70 0.5757 0.5908
73 71 0.5834 0.5973
74 72 0.59295 0.60265
75 73 0.60385 0.6091
76 74 0.6124 0.61775
77 75 0.62005 0.6263500000000001
78 76 0.6265000000000001 0.63705
79 77 0.63075 0.64685
80 78 0.6437 0.65215
81 79 0.6544 0.6586500000000001
82 80 0.66085 0.67155
83 81 0.6684 0.6792
84 82 0.67695 0.6867000000000001
85 83 0.6835 0.6963
86 84 0.6888000000000001 0.7040000000000001
87 85 0.6965 0.7093
88 86 0.7115 0.71685
89 87 0.7210500000000001 0.72655
90 88 0.72975 0.732
91 89 0.7341000000000001 0.74905
92 90 0.7394000000000001 0.7546
93 91 0.7482000000000001 0.7589
94 92 0.7599 0.77185
95 93 0.7663500000000001 0.77615
96 94 0.7739 0.7858
97 95 0.7815000000000001 0.7975500000000001
98 96 0.7912 0.803
99 97 0.7988000000000001 0.8105
100 98 0.80525 0.82235
101 99 0.8214 0.82665
102 100 0.8256 0.8332
103 101 0.8310500000000001 0.8428
104 102 0.8449500000000001 0.8493
105 103 0.85035 0.8602500000000001
106 104 0.8580000000000001 0.8709
107 105 0.8643500000000001 0.8774000000000001
108 106 0.8742000000000001 0.8828
109 107 0.8849 0.8989
110 108 0.8935000000000001 0.90535
111 109 0.8999 0.9107000000000001
112 110 0.9053 0.91715
113 111 0.9171 0.9246500000000001
114 112 0.9279000000000001 0.9365
115 113 0.9323 0.94535
116 114 0.9419500000000001 0.9516
117 115 0.94745 0.96355
118 116 0.9581000000000001 0.9678500000000001
119 117 0.9645 0.9807
120 118 0.97645 0.9882500000000001
121 119 0.9839 0.99365
122 120 0.9904000000000001 1.0012
123 121 1.00435 1.00885
124 122 1.00885 1.0163
125 123 1.0152 1.0228000000000002
126 124 1.026 1.03145
127 125 1.03235 1.0390000000000001
128 126 1.03685 1.0463500000000001
129 127 1.04755 1.0593000000000001
130 128 1.0626 1.06915
131 129 1.06895 1.07775
132 130 1.0744500000000001 1.08315
133 131 1.08525 1.0928
134 132 1.0938 1.09915
135 133 1.1003 1.1056000000000001
136 134 1.1057000000000001 1.1186
137 135 1.1186500000000001 1.12605
138 136 1.124 1.1338000000000001
139 137 1.13365 1.1423
140 138 1.14115 1.1520000000000001
141 139 1.1476 1.1563
142 140 1.1562000000000001 1.16605
143 141 1.1617 1.17885
144 142 1.16595 1.1853500000000001
145 143 1.1757 1.1918
146 144 1.1886 1.20265
147 145 1.1993 1.208
148 146 1.2027 1.21985
149 147 1.21015 1.2274500000000002
150 148 1.22085 1.23275
151 149 1.2338500000000001 1.24035
152 150 1.2394500000000002 1.2521
153 151 1.2447000000000001 1.2576500000000002
154 152 1.2554 1.26505
155 153 1.26495 1.27265
156 154 1.2695 1.28435
157 155 1.2758500000000002 1.2961500000000001
158 156 1.28445 1.30065
159 157 1.2941500000000001 1.3059500000000002
160 158 1.3050000000000002 1.31355
161 159 1.3093000000000001 1.3264500000000001
162 160 1.3189 1.33185
163 161 1.335 1.3383
164 162 1.3405 1.3512
165 163 1.34805 1.36095
166 164 1.3544 1.3685
167 165 1.36535 1.3749
168 166 1.37385 1.3857000000000002
169 167 1.3836000000000002 1.3900000000000001
170 168 1.3889500000000001 1.3988
171 169 1.39535 1.40955
172 170 1.4019000000000001 1.41595
173 171 1.4094 1.4246
174 172 1.4255 1.43625
175 173 1.42985 1.44275
176 174 1.4375 1.4526000000000001
177 175 1.4439 1.45785
178 176 1.459 1.4675500000000001
179 177 1.46655 1.47405
180 178 1.4729 1.4815500000000001
181 179 1.48275 1.4912
182 180 1.48905 1.5030000000000001
183 181 1.49665 1.5086000000000002
184 182 1.5053 1.5139
185 183 1.5117 1.5225
186 184 1.5172 1.5344
187 185 1.5311000000000001 1.54095
188 186 1.5355 1.5462500000000001
189 187 1.5441 1.5592000000000001
190 188 1.5558500000000002 1.56675
191 189 1.5623500000000001 1.5720500000000002
192 190 1.56985 1.5882
193 191 1.5775000000000001 1.5936000000000001
194 192 1.586 1.601
195 193 1.59345 1.6055000000000001
196 194 1.6021500000000002 1.6151
197 195 1.61195 1.6259000000000001
198 196 1.6226500000000001 1.63235
199 197 1.62705 1.6378000000000001
200 198 1.63235 1.64845
201 199 1.641 1.6549
202 200 1.6549500000000001 1.66255
203 201 1.66355 1.6712
204 202 1.67015 1.6808500000000002
205 203 1.6788 1.6873
206 204 1.68405 1.6970500000000002
207 205 1.6917 1.70565
208 206 1.6980000000000002 1.7099
209 207 1.7130500000000002 1.7174
210 208 1.7228 1.7271
211 209 1.7313500000000002 1.7379
212 210 1.73675 1.74875
213 211 1.7433 1.75725
214 212 1.74875 1.7616500000000002
215 213 1.76055 1.77235
216 214 1.7670000000000001 1.78095
217 215 1.7734500000000002 1.78645
218 216 1.7811000000000001 1.7982
219 217 1.7918500000000002 1.80895
220 218 1.7993000000000001 1.8133000000000001
221 219 1.8143 1.8241500000000002
222 220 1.8210000000000002 1.8305500000000001
223 221 1.8251000000000002 1.8380500000000002
224 222 1.8318 1.84565
225 223 1.8446 1.8543500000000002
226 224 1.8500500000000002 1.8629
227 225 1.8585500000000001 1.87155
228 226 1.8703500000000002 1.8801
229 227 1.88115 1.88775
230 228 1.8866 1.9005500000000002
231 229 1.8929500000000001 1.907
232 230 1.9027 1.91235
233 231 1.91245 1.9242000000000001
234 232 1.9232500000000001 1.92965
235 233 1.9286 1.9371
236 234 1.9371 1.9458000000000002
237 235 1.9425000000000001 1.95435
238 236 1.9491 1.96635
239 237 1.95875 1.977
240 238 1.9694 1.9813500000000002
241 239 1.97595 1.9898500000000001
242 240 1.9835 1.9943000000000002
241 1.9985000000000002

View File

@ -1,241 +1,242 @@
,spikes ,spikes
0,0.00165 0,0.007
1,0.00825 1,0.012450000000000001
2,0.01895 2,0.0211
3,0.02645 3,0.02755
4,0.035050000000000005 4,0.039400000000000004
5,0.0437 5,0.0449
6,0.049100000000000005 6,0.053250000000000006
7,0.0609 7,0.0621
8,0.06845 8,0.07055
9,0.07495 9,0.0782
10,0.0815 10,0.08785
11,0.09430000000000001 11,0.09330000000000001
12,0.0998 12,0.10505
13,0.10725000000000001 13,0.1126
14,0.1169 14,0.12125000000000001
15,0.12555 15,0.13095
16,0.1353 16,0.1385
17,0.14385 17,0.14705000000000001
18,0.15255000000000002 18,0.15465
19,0.16325 19,0.16335
20,0.16865 20,0.17175
21,0.17825000000000002 21,0.18150000000000002
22,0.18380000000000002 22,0.187
23,0.19445 23,0.19460000000000002
24,0.20095000000000002 24,0.20425000000000001
25,0.20955000000000001 25,0.20975000000000002
26,0.22025 26,0.2204
27,0.2268 27,0.2278
28,0.2333 28,0.2354
29,0.2419 29,0.24085
30,0.25045 30,0.25170000000000003
31,0.258 31,0.25805
32,0.26665 32,0.2667
33,0.2732 33,0.2785
34,0.28175 34,0.2892
35,0.29145 35,0.2957
36,0.30215000000000003 36,0.3043
37,0.30865000000000004 37,0.3119
38,0.31725000000000003 38,0.3205
39,0.32265 39,0.3291
40,0.3345 40,0.3356
41,0.342 41,0.34525
42,0.3496 42,0.35075
43,0.3561 43,0.35925
44,0.37115000000000004 44,0.37110000000000004
45,0.37765000000000004 45,0.37870000000000004
46,0.38405 46,0.38730000000000003
47,0.39265 47,0.39690000000000003
48,0.40025 48,0.40345000000000003
49,0.40775 49,0.41205
50,0.4153 50,0.42175
51,0.42710000000000004 51,0.4282
52,0.43365000000000004 52,0.43475
53,0.44545 53,0.44325000000000003
54,0.4519 54,0.45405
55,0.46045 55,0.46365
56,0.4692 56,0.46925
57,0.47465 57,0.47675
58,0.48315 58,0.48425
59,0.49075 59,0.49605000000000005
60,0.50255 60,0.5037
61,0.51015 61,0.51115
62,0.51765 62,0.51865
63,0.5231 63,0.5273
64,0.5326500000000001 64,0.537
65,0.5456 65,0.5456500000000001
66,0.552 66,0.5532
67,0.5629000000000001 67,0.56065
68,0.5683 68,0.56935
69,0.5748 69,0.5779000000000001
70,0.5833 70,0.58545
71,0.5909 71,0.5931000000000001
72,0.5974 72,0.60375
73,0.6091500000000001 73,0.6113500000000001
74,0.61775 74,0.62005
75,0.6264000000000001 75,0.6285000000000001
76,0.635 76,0.63625
77,0.6446000000000001 77,0.64685
78,0.65225 78,0.6544
79,0.6577000000000001 79,0.662
80,0.6673 80,0.6706000000000001
81,0.676 81,0.6802
82,0.6834 82,0.6857000000000001
83,0.6921 83,0.6943
84,0.7018500000000001 84,0.70075
85,0.7104 85,0.7072
86,0.7212000000000001 86,0.7211500000000001
87,0.72765 87,0.72885
88,0.7351500000000001 88,0.7363000000000001
89,0.74175 89,0.7438
90,0.7534000000000001 90,0.7534500000000001
91,0.75895 91,0.761
92,0.7675500000000001 92,0.7707
93,0.7751 93,0.77815
94,0.7827000000000001 94,0.7848
95,0.79225 95,0.79225
96,0.80195 96,0.8009000000000001
97,0.8116 97,0.80945
98,0.8171 98,0.8182
99,0.82675 99,0.8267
100,0.8365 100,0.83425
101,0.8429500000000001 101,0.8440500000000001
102,0.8514 102,0.8515
103,0.8612000000000001 103,0.8601000000000001
104,0.86765 104,0.8688
105,0.8752000000000001 105,0.8763500000000001
106,0.88375 106,0.88385
107,0.8924000000000001 107,0.8935000000000001
108,0.901 108,0.9021
109,0.9076000000000001 109,0.9106500000000001
110,0.91925 110,0.91925
111,0.9248000000000001 111,0.9248000000000001
112,0.93655 112,0.9366000000000001
113,0.9441 113,0.94415
114,0.9517 114,0.95055
115,0.96035 115,0.96255
116,0.9678 116,0.9689000000000001
117,0.9787 117,0.9743
118,0.9840000000000001 118,0.9819500000000001
119,0.99155 119,0.9893500000000001
120,1.00015 120,1.00335
121,1.0099500000000001 121,1.0098
122,1.01635 122,1.01845
123,1.0238500000000001 123,1.02505
124,1.03465 124,1.03035
125,1.0433000000000001 125,1.04
126,1.04865 126,1.0497
127,1.0582500000000001 127,1.0583
128,1.0669 128,1.07005
129,1.0767 129,1.0765500000000001
130,1.0831 130,1.0842
131,1.0917000000000001 131,1.0906500000000001
132,1.1003500000000002 132,1.10025
133,1.1078000000000001 133,1.11005
134,1.11755 134,1.1186
135,1.12505 135,1.12615
136,1.13375 136,1.1348
137,1.14235 137,1.14115
138,1.1499000000000001 138,1.14995
139,1.15955 139,1.15635
140,1.1660000000000001 140,1.16395
141,1.1756 141,1.1736
142,1.1812 142,1.1832
143,1.19285 143,1.18855
144,1.2015 144,1.1993500000000001
145,1.20905 145,1.2058
146,1.2176500000000001 146,1.21455
147,1.22525 147,1.2231
148,1.2339 148,1.2327000000000001
149,1.2425000000000002 149,1.2436
150,1.24895 150,1.2501
151,1.2586000000000002 151,1.2575500000000002
152,1.2683 152,1.26505
153,1.27695 153,1.2737
154,1.2855 154,1.28235
155,1.29095 155,1.29095
156,1.2996 156,1.29855
157,1.3083 157,1.3071000000000002
158,1.31465 158,1.3136
159,1.3243500000000001 159,1.3254000000000001
160,1.33195 160,1.3319
161,1.34145 161,1.34155
162,1.348 162,1.349
163,1.3567 163,1.3587500000000001
164,1.362 164,1.3674000000000002
165,1.3749 165,1.374
166,1.3825 166,1.38355
167,1.3911 167,1.3910500000000001
168,1.3987 168,1.40185
169,1.4083 169,1.4094
170,1.41585 170,1.41585
171,1.4245 171,1.4245
172,1.43425 172,1.4288500000000002
173,1.43955 173,1.44175
174,1.4526000000000001 174,1.44825
175,1.4612 175,1.4579
176,1.4676500000000001 176,1.4654
177,1.474 177,1.47405
178,1.4815 178,1.4859
179,1.49235 179,1.49235
180,1.502 180,1.49885
181,1.5106000000000002 181,1.50525
182,1.51815 182,1.51495
183,1.52465 183,1.5215
184,1.53435 184,1.5301
185,1.54075 185,1.53965
186,1.5494 186,1.5494
187,1.5591000000000002 187,1.558
188,1.5709000000000002 188,1.5646
189,1.57525 189,1.5731000000000002
190,1.5849 190,1.58175
191,1.5904500000000001 191,1.58935
192,1.60125 192,1.5979
193,1.6086500000000001 193,1.6087
194,1.6152 194,1.6152
195,1.6248500000000001 195,1.6226500000000001
196,1.63135 196,1.63025
197,1.6388 197,1.6388500000000001
198,1.6496000000000002 198,1.6507500000000002
199,1.6593 199,1.6572
200,1.6669 200,1.6667500000000002
201,1.6743000000000001 201,1.67445
202,1.68405 202,1.67975
203,1.6926 203,1.6926
204,1.70025 204,1.6981000000000002
205,1.7077 205,1.7046000000000001
206,1.7153 206,1.7153500000000002
207,1.72395 207,1.726
208,1.73475 208,1.7335500000000001
209,1.7412 209,1.74115
210,1.75075 210,1.7476500000000001
211,1.7573500000000002 211,1.7562
212,1.7670000000000001 212,1.7670000000000001
213,1.7714 213,1.77455
214,1.7842 214,1.7820500000000001
215,1.7939 215,1.78855
216,1.8004 216,1.79515
217,1.80895 217,1.8026
218,1.81755 218,1.8144
219,1.8262500000000002 219,1.82295
220,1.83475 220,1.83165
221,1.8456000000000001 221,1.84345
222,1.8511000000000002 222,1.851
223,1.8607 223,1.8565500000000001
224,1.8661 224,1.8661
225,1.8737000000000001 225,1.8747500000000001
226,1.88545 226,1.8833000000000002
227,1.8929500000000001 227,1.8919000000000001
228,1.8984500000000002 228,1.8995000000000002
229,1.9070500000000001 229,1.90805
230,1.91565 230,1.9146
231,1.9253 231,1.9253500000000001
232,1.935 232,1.93175
233,1.9415 233,1.9393500000000001
234,1.9491 234,1.94585
235,1.9597 235,1.9544000000000001
236,1.96625 236,1.96615
237,1.9759 237,1.9748
238,1.9825000000000002 238,1.9814
239,1.98995 239,1.99105
240,1.9986000000000002

1 spikes
2 0 0.00165 0.007
3 1 0.00825 0.012450000000000001
4 2 0.01895 0.0211
5 3 0.02645 0.02755
6 4 0.035050000000000005 0.039400000000000004
7 5 0.0437 0.0449
8 6 0.049100000000000005 0.053250000000000006
9 7 0.0609 0.0621
10 8 0.06845 0.07055
11 9 0.07495 0.0782
12 10 0.0815 0.08785
13 11 0.09430000000000001 0.09330000000000001
14 12 0.0998 0.10505
15 13 0.10725000000000001 0.1126
16 14 0.1169 0.12125000000000001
17 15 0.12555 0.13095
18 16 0.1353 0.1385
19 17 0.14385 0.14705000000000001
20 18 0.15255000000000002 0.15465
21 19 0.16325 0.16335
22 20 0.16865 0.17175
23 21 0.17825000000000002 0.18150000000000002
24 22 0.18380000000000002 0.187
25 23 0.19445 0.19460000000000002
26 24 0.20095000000000002 0.20425000000000001
27 25 0.20955000000000001 0.20975000000000002
28 26 0.22025 0.2204
29 27 0.2268 0.2278
30 28 0.2333 0.2354
31 29 0.2419 0.24085
32 30 0.25045 0.25170000000000003
33 31 0.258 0.25805
34 32 0.26665 0.2667
35 33 0.2732 0.2785
36 34 0.28175 0.2892
37 35 0.29145 0.2957
38 36 0.30215000000000003 0.3043
39 37 0.30865000000000004 0.3119
40 38 0.31725000000000003 0.3205
41 39 0.32265 0.3291
42 40 0.3345 0.3356
43 41 0.342 0.34525
44 42 0.3496 0.35075
45 43 0.3561 0.35925
46 44 0.37115000000000004 0.37110000000000004
47 45 0.37765000000000004 0.37870000000000004
48 46 0.38405 0.38730000000000003
49 47 0.39265 0.39690000000000003
50 48 0.40025 0.40345000000000003
51 49 0.40775 0.41205
52 50 0.4153 0.42175
53 51 0.42710000000000004 0.4282
54 52 0.43365000000000004 0.43475
55 53 0.44545 0.44325000000000003
56 54 0.4519 0.45405
57 55 0.46045 0.46365
58 56 0.4692 0.46925
59 57 0.47465 0.47675
60 58 0.48315 0.48425
61 59 0.49075 0.49605000000000005
62 60 0.50255 0.5037
63 61 0.51015 0.51115
64 62 0.51765 0.51865
65 63 0.5231 0.5273
66 64 0.5326500000000001 0.537
67 65 0.5456 0.5456500000000001
68 66 0.552 0.5532
69 67 0.5629000000000001 0.56065
70 68 0.5683 0.56935
71 69 0.5748 0.5779000000000001
72 70 0.5833 0.58545
73 71 0.5909 0.5931000000000001
74 72 0.5974 0.60375
75 73 0.6091500000000001 0.6113500000000001
76 74 0.61775 0.62005
77 75 0.6264000000000001 0.6285000000000001
78 76 0.635 0.63625
79 77 0.6446000000000001 0.64685
80 78 0.65225 0.6544
81 79 0.6577000000000001 0.662
82 80 0.6673 0.6706000000000001
83 81 0.676 0.6802
84 82 0.6834 0.6857000000000001
85 83 0.6921 0.6943
86 84 0.7018500000000001 0.70075
87 85 0.7104 0.7072
88 86 0.7212000000000001 0.7211500000000001
89 87 0.72765 0.72885
90 88 0.7351500000000001 0.7363000000000001
91 89 0.74175 0.7438
92 90 0.7534000000000001 0.7534500000000001
93 91 0.75895 0.761
94 92 0.7675500000000001 0.7707
95 93 0.7751 0.77815
96 94 0.7827000000000001 0.7848
97 95 0.79225
98 96 0.80195 0.8009000000000001
99 97 0.8116 0.80945
100 98 0.8171 0.8182
101 99 0.82675 0.8267
102 100 0.8365 0.83425
103 101 0.8429500000000001 0.8440500000000001
104 102 0.8514 0.8515
105 103 0.8612000000000001 0.8601000000000001
106 104 0.86765 0.8688
107 105 0.8752000000000001 0.8763500000000001
108 106 0.88375 0.88385
109 107 0.8924000000000001 0.8935000000000001
110 108 0.901 0.9021
111 109 0.9076000000000001 0.9106500000000001
112 110 0.91925
113 111 0.9248000000000001
114 112 0.93655 0.9366000000000001
115 113 0.9441 0.94415
116 114 0.9517 0.95055
117 115 0.96035 0.96255
118 116 0.9678 0.9689000000000001
119 117 0.9787 0.9743
120 118 0.9840000000000001 0.9819500000000001
121 119 0.99155 0.9893500000000001
122 120 1.00015 1.00335
123 121 1.0099500000000001 1.0098
124 122 1.01635 1.01845
125 123 1.0238500000000001 1.02505
126 124 1.03465 1.03035
127 125 1.0433000000000001 1.04
128 126 1.04865 1.0497
129 127 1.0582500000000001 1.0583
130 128 1.0669 1.07005
131 129 1.0767 1.0765500000000001
132 130 1.0831 1.0842
133 131 1.0917000000000001 1.0906500000000001
134 132 1.1003500000000002 1.10025
135 133 1.1078000000000001 1.11005
136 134 1.11755 1.1186
137 135 1.12505 1.12615
138 136 1.13375 1.1348
139 137 1.14235 1.14115
140 138 1.1499000000000001 1.14995
141 139 1.15955 1.15635
142 140 1.1660000000000001 1.16395
143 141 1.1756 1.1736
144 142 1.1812 1.1832
145 143 1.19285 1.18855
146 144 1.2015 1.1993500000000001
147 145 1.20905 1.2058
148 146 1.2176500000000001 1.21455
149 147 1.22525 1.2231
150 148 1.2339 1.2327000000000001
151 149 1.2425000000000002 1.2436
152 150 1.24895 1.2501
153 151 1.2586000000000002 1.2575500000000002
154 152 1.2683 1.26505
155 153 1.27695 1.2737
156 154 1.2855 1.28235
157 155 1.29095
158 156 1.2996 1.29855
159 157 1.3083 1.3071000000000002
160 158 1.31465 1.3136
161 159 1.3243500000000001 1.3254000000000001
162 160 1.33195 1.3319
163 161 1.34145 1.34155
164 162 1.348 1.349
165 163 1.3567 1.3587500000000001
166 164 1.362 1.3674000000000002
167 165 1.3749 1.374
168 166 1.3825 1.38355
169 167 1.3911 1.3910500000000001
170 168 1.3987 1.40185
171 169 1.4083 1.4094
172 170 1.41585
173 171 1.4245
174 172 1.43425 1.4288500000000002
175 173 1.43955 1.44175
176 174 1.4526000000000001 1.44825
177 175 1.4612 1.4579
178 176 1.4676500000000001 1.4654
179 177 1.474 1.47405
180 178 1.4815 1.4859
181 179 1.49235
182 180 1.502 1.49885
183 181 1.5106000000000002 1.50525
184 182 1.51815 1.51495
185 183 1.52465 1.5215
186 184 1.53435 1.5301
187 185 1.54075 1.53965
188 186 1.5494
189 187 1.5591000000000002 1.558
190 188 1.5709000000000002 1.5646
191 189 1.57525 1.5731000000000002
192 190 1.5849 1.58175
193 191 1.5904500000000001 1.58935
194 192 1.60125 1.5979
195 193 1.6086500000000001 1.6087
196 194 1.6152
197 195 1.6248500000000001 1.6226500000000001
198 196 1.63135 1.63025
199 197 1.6388 1.6388500000000001
200 198 1.6496000000000002 1.6507500000000002
201 199 1.6593 1.6572
202 200 1.6669 1.6667500000000002
203 201 1.6743000000000001 1.67445
204 202 1.68405 1.67975
205 203 1.6926
206 204 1.70025 1.6981000000000002
207 205 1.7077 1.7046000000000001
208 206 1.7153 1.7153500000000002
209 207 1.72395 1.726
210 208 1.73475 1.7335500000000001
211 209 1.7412 1.74115
212 210 1.75075 1.7476500000000001
213 211 1.7573500000000002 1.7562
214 212 1.7670000000000001
215 213 1.7714 1.77455
216 214 1.7842 1.7820500000000001
217 215 1.7939 1.78855
218 216 1.8004 1.79515
219 217 1.80895 1.8026
220 218 1.81755 1.8144
221 219 1.8262500000000002 1.82295
222 220 1.83475 1.83165
223 221 1.8456000000000001 1.84345
224 222 1.8511000000000002 1.851
225 223 1.8607 1.8565500000000001
226 224 1.8661
227 225 1.8737000000000001 1.8747500000000001
228 226 1.88545 1.8833000000000002
229 227 1.8929500000000001 1.8919000000000001
230 228 1.8984500000000002 1.8995000000000002
231 229 1.9070500000000001 1.90805
232 230 1.91565 1.9146
233 231 1.9253 1.9253500000000001
234 232 1.935 1.93175
235 233 1.9415 1.9393500000000001
236 234 1.9491 1.94585
237 235 1.9597 1.9544000000000001
238 236 1.96625 1.96615
239 237 1.9759 1.9748
240 238 1.9825000000000002 1.9814
241 239 1.98995 1.99105
242 240 1.9986000000000002

View File

@ -1,241 +1,239 @@
,spikes ,spikes
0,0.0006500000000000001 0,0.007050000000000001
1,0.009300000000000001 1,0.015700000000000002
2,0.015700000000000002 2,0.025400000000000002
3,0.0275 3,0.03615
4,0.034050000000000004 4,0.0448
5,0.041600000000000005 5,0.051250000000000004
6,0.0545 6,0.05775
7,0.05985 7,0.06745000000000001
8,0.06745000000000001 8,0.0771
9,0.0771 9,0.08365
10,0.08675000000000001 10,0.09430000000000001
11,0.0944 11,0.10185000000000001
12,0.10295 12,0.1116
13,0.11045 13,0.11805
14,0.11705 14,0.12445
15,0.12875 15,0.13745000000000002
16,0.1342 16,0.14395
17,0.14175000000000001 17,0.15245
18,0.1514 18,0.16010000000000002
19,0.16110000000000002 19,0.16970000000000002
20,0.16965 20,0.1784
21,0.17835 21,0.18485000000000001
22,0.18585000000000002 22,0.1945
23,0.19345 23,0.19985
24,0.19985 24,0.2107
25,0.2096 25,0.22035000000000002
26,0.21715 26,0.22790000000000002
27,0.23115000000000002 27,0.2376
28,0.23650000000000002 28,0.2441
29,0.24515 29,0.25270000000000004
30,0.25270000000000004 30,0.26015
31,0.2591 31,0.26990000000000003
32,0.26990000000000003 32,0.2775
33,0.27740000000000004 33,0.28715
34,0.28395000000000004 34,0.2947
35,0.29255000000000003 35,0.30225
36,0.30115000000000003 36,0.30865000000000004
37,0.3109 37,0.3194
38,0.31735 38,0.32815
39,0.32805 39,0.33455
40,0.33665 40,0.34315
41,0.34425 41,0.3539
42,0.3528 42,0.3603
43,0.36150000000000004 43,0.3679
44,0.36895 44,0.37645
45,0.3765 45,0.38405
46,0.3831 46,0.39380000000000004
47,0.3937 47,0.4045
48,0.40130000000000005 48,0.41425
49,0.40885000000000005 49,0.42175
50,0.41645000000000004 50,0.42715000000000003
51,0.42710000000000004 51,0.43575
52,0.43570000000000003 52,0.44755
53,0.44545 53,0.4531
54,0.45085000000000003 54,0.45955
55,0.45735000000000003 55,0.47240000000000004
56,0.4713 56,0.47885
57,0.47675 57,0.48535
58,0.48425 58,0.49610000000000004
59,0.49175 59,0.5036
60,0.5025000000000001 60,0.5101
61,0.509 61,0.5187
62,0.5165500000000001 62,0.52945
63,0.5263 63,0.5391
64,0.53695 64,0.54445
65,0.54455 65,0.5543
66,0.55325 66,0.5628000000000001
67,0.5596 67,0.5704
68,0.5672 68,0.5790000000000001
69,0.57475 69,0.58765
70,0.58335 70,0.5973
71,0.5941000000000001 71,0.60375
72,0.60275 72,0.61345
73,0.6081500000000001 73,0.6199
74,0.61775 74,0.63175
75,0.6264000000000001 75,0.6371
76,0.635 76,0.64695
77,0.64575 77,0.65435
78,0.65225 78,0.6641
79,0.66405 79,0.67055
80,0.6705 80,0.68025
81,0.6759000000000001 81,0.6878000000000001
82,0.68455 82,0.6975
83,0.69315 83,0.7040000000000001
84,0.7029000000000001 84,0.7126
85,0.7115 85,0.7212500000000001
86,0.7189500000000001 86,0.7298
87,0.72655 87,0.7373000000000001
88,0.7352000000000001 88,0.7481
89,0.74485 89,0.75565
90,0.75455 90,0.76425
91,0.7621 91,0.77295
92,0.77075 92,0.7815500000000001
93,0.7782 93,0.788
94,0.7869 94,0.7955500000000001
95,0.7965500000000001 95,0.8063
96,0.80305 96,0.8127000000000001
97,0.8116500000000001 97,0.82455
98,0.8181 98,0.8321500000000001
99,0.8257 99,0.83855
100,0.83745 100,0.8450500000000001
101,0.8451000000000001 101,0.85585
102,0.8558 102,0.8645
103,0.8601500000000001 103,0.8731
104,0.8687 104,0.87955
105,0.8773500000000001 105,0.8914000000000001
106,0.8881 106,0.8989
107,0.89575 107,0.9064000000000001
108,0.90325 108,0.91295
109,0.91395 109,0.9258500000000001
110,0.9193 110,0.9312
111,0.928 111,0.94305
112,0.9376000000000001 112,0.9484
113,0.9463 113,0.9592
114,0.9538000000000001 114,0.9657
115,0.9635 115,0.9732000000000001
116,0.9700000000000001 116,0.9830000000000001
117,0.9786 117,0.9894000000000001
118,0.9883000000000001 118,0.9969
119,0.99795 119,1.0055
120,1.0044 120,1.01415
121,1.01095 121,1.02275
122,1.0207 122,1.03145
123,1.0324 123,1.03895
124,1.0379 124,1.04755
125,1.0475 125,1.05295
126,1.0551000000000001 126,1.0637
127,1.06155 127,1.0755000000000001
128,1.0712000000000002 128,1.082
129,1.0788 129,1.0885500000000001
130,1.08955 130,1.0971
131,1.09705 131,1.1046500000000001
132,1.1068 132,1.11535
133,1.1122 133,1.12395
134,1.11975 134,1.13155
135,1.1305 135,1.14015
136,1.1401000000000001 136,1.1509500000000001
137,1.14445 137,1.1574
138,1.1541000000000001 138,1.1682000000000001
139,1.1617 139,1.1735
140,1.1693 140,1.1811
141,1.1789 141,1.18975
142,1.18645 142,1.1972500000000001
143,1.1951 143,1.2059
144,1.2015500000000001 144,1.2177
145,1.2112500000000002 145,1.22525
146,1.21775 146,1.235
147,1.2316500000000001 147,1.2425000000000002
148,1.2371 148,1.25
149,1.24675 149,1.25655
150,1.2544 150,1.2673
151,1.2619 151,1.2758
152,1.2726 152,1.2856
153,1.2791000000000001 153,1.29305
154,1.2867 154,1.3017
155,1.2942 155,1.3071000000000002
156,1.30275 156,1.31475
157,1.3146 157,1.3233000000000001
158,1.3233000000000001 158,1.33295
159,1.3308 159,1.34275
160,1.33945 160,1.3523500000000002
161,1.347 161,1.35775
162,1.3566500000000001 162,1.36415
163,1.3631 163,1.3728
164,1.3707 164,1.3793
165,1.3793 165,1.3911
166,1.38565 166,1.4029500000000001
167,1.39545 167,1.4094
168,1.4029500000000001 168,1.41805
169,1.41165 169,1.4245
170,1.4234 170,1.4331500000000001
171,1.4288500000000002 171,1.44175
172,1.43645 172,1.45025
173,1.4460000000000002 173,1.45795
174,1.45245 174,1.4676
175,1.45895 175,1.47615
176,1.4719 176,1.4826000000000001
177,1.4794500000000002 177,1.49125
178,1.48595 178,1.4999500000000001
179,1.4934 179,1.5064
180,1.50215 180,1.5172
181,1.51075 181,1.5257500000000002
182,1.51935 182,1.5322
183,1.5279500000000001 183,1.5419
184,1.53755 184,1.54945
185,1.5452000000000001 185,1.5602500000000001
186,1.5558500000000002 186,1.5656
187,1.5624 187,1.5742500000000001
188,1.5678 188,1.5839
189,1.5763500000000001 189,1.59365
190,1.58395 190,1.60005
191,1.59575 191,1.60765
192,1.60335 192,1.6173000000000002
193,1.61195 193,1.6226500000000001
194,1.6184 194,1.6324
195,1.62815 195,1.6389500000000001
196,1.63995 196,1.64965
197,1.64635 197,1.65815
198,1.6528500000000002 198,1.66575
199,1.6647 199,1.6776
200,1.6711 200,1.683
201,1.67655 201,1.69055
202,1.6852 202,1.70235
203,1.69375 203,1.7089
204,1.7034500000000001 204,1.7174500000000001
205,1.711 205,1.7261000000000002
206,1.7186000000000001 206,1.7336
207,1.72615 207,1.74115
208,1.7357500000000001 208,1.7519500000000001
209,1.7454500000000002 209,1.7615500000000002
210,1.75515 210,1.7692
211,1.7627000000000002 211,1.7799500000000001
212,1.7703 212,1.7864
213,1.77885 213,1.79285
214,1.7885 214,1.80045
215,1.7972000000000001 215,1.8101
216,1.8036 216,1.8187
217,1.8122500000000001 217,1.8284
218,1.8177 218,1.83485
219,1.8274000000000001 219,1.8425
220,1.838 220,1.8542
221,1.8457000000000001 221,1.86175
222,1.8564 222,1.8672000000000002
223,1.86175 223,1.8758000000000001
224,1.8747 224,1.8865500000000002
225,1.8801 225,1.8941000000000001
226,1.88775 226,1.9006500000000002
227,1.8963 227,1.9081000000000001
228,1.90595 228,1.91995
229,1.9146 229,1.92755
230,1.9222000000000001 230,1.9350500000000002
231,1.9286 231,1.9437
232,1.9383000000000001 232,1.95015
233,1.9501000000000002 233,1.9619000000000002
234,1.9577 234,1.9695500000000001
235,1.96415 235,1.9760000000000002
236,1.97055 236,1.9846000000000001
237,1.9792 237,1.99425
238,1.99
239,1.99855

1 spikes
2 0 0.0006500000000000001 0.007050000000000001
3 1 0.009300000000000001 0.015700000000000002
4 2 0.015700000000000002 0.025400000000000002
5 3 0.0275 0.03615
6 4 0.034050000000000004 0.0448
7 5 0.041600000000000005 0.051250000000000004
8 6 0.0545 0.05775
9 7 0.05985 0.06745000000000001
10 8 0.06745000000000001 0.0771
11 9 0.0771 0.08365
12 10 0.08675000000000001 0.09430000000000001
13 11 0.0944 0.10185000000000001
14 12 0.10295 0.1116
15 13 0.11045 0.11805
16 14 0.11705 0.12445
17 15 0.12875 0.13745000000000002
18 16 0.1342 0.14395
19 17 0.14175000000000001 0.15245
20 18 0.1514 0.16010000000000002
21 19 0.16110000000000002 0.16970000000000002
22 20 0.16965 0.1784
23 21 0.17835 0.18485000000000001
24 22 0.18585000000000002 0.1945
25 23 0.19345 0.19985
26 24 0.19985 0.2107
27 25 0.2096 0.22035000000000002
28 26 0.21715 0.22790000000000002
29 27 0.23115000000000002 0.2376
30 28 0.23650000000000002 0.2441
31 29 0.24515 0.25270000000000004
32 30 0.25270000000000004 0.26015
33 31 0.2591 0.26990000000000003
34 32 0.26990000000000003 0.2775
35 33 0.27740000000000004 0.28715
36 34 0.28395000000000004 0.2947
37 35 0.29255000000000003 0.30225
38 36 0.30115000000000003 0.30865000000000004
39 37 0.3109 0.3194
40 38 0.31735 0.32815
41 39 0.32805 0.33455
42 40 0.33665 0.34315
43 41 0.34425 0.3539
44 42 0.3528 0.3603
45 43 0.36150000000000004 0.3679
46 44 0.36895 0.37645
47 45 0.3765 0.38405
48 46 0.3831 0.39380000000000004
49 47 0.3937 0.4045
50 48 0.40130000000000005 0.41425
51 49 0.40885000000000005 0.42175
52 50 0.41645000000000004 0.42715000000000003
53 51 0.42710000000000004 0.43575
54 52 0.43570000000000003 0.44755
55 53 0.44545 0.4531
56 54 0.45085000000000003 0.45955
57 55 0.45735000000000003 0.47240000000000004
58 56 0.4713 0.47885
59 57 0.47675 0.48535
60 58 0.48425 0.49610000000000004
61 59 0.49175 0.5036
62 60 0.5025000000000001 0.5101
63 61 0.509 0.5187
64 62 0.5165500000000001 0.52945
65 63 0.5263 0.5391
66 64 0.53695 0.54445
67 65 0.54455 0.5543
68 66 0.55325 0.5628000000000001
69 67 0.5596 0.5704
70 68 0.5672 0.5790000000000001
71 69 0.57475 0.58765
72 70 0.58335 0.5973
73 71 0.5941000000000001 0.60375
74 72 0.60275 0.61345
75 73 0.6081500000000001 0.6199
76 74 0.61775 0.63175
77 75 0.6264000000000001 0.6371
78 76 0.635 0.64695
79 77 0.64575 0.65435
80 78 0.65225 0.6641
81 79 0.66405 0.67055
82 80 0.6705 0.68025
83 81 0.6759000000000001 0.6878000000000001
84 82 0.68455 0.6975
85 83 0.69315 0.7040000000000001
86 84 0.7029000000000001 0.7126
87 85 0.7115 0.7212500000000001
88 86 0.7189500000000001 0.7298
89 87 0.72655 0.7373000000000001
90 88 0.7352000000000001 0.7481
91 89 0.74485 0.75565
92 90 0.75455 0.76425
93 91 0.7621 0.77295
94 92 0.77075 0.7815500000000001
95 93 0.7782 0.788
96 94 0.7869 0.7955500000000001
97 95 0.7965500000000001 0.8063
98 96 0.80305 0.8127000000000001
99 97 0.8116500000000001 0.82455
100 98 0.8181 0.8321500000000001
101 99 0.8257 0.83855
102 100 0.83745 0.8450500000000001
103 101 0.8451000000000001 0.85585
104 102 0.8558 0.8645
105 103 0.8601500000000001 0.8731
106 104 0.8687 0.87955
107 105 0.8773500000000001 0.8914000000000001
108 106 0.8881 0.8989
109 107 0.89575 0.9064000000000001
110 108 0.90325 0.91295
111 109 0.91395 0.9258500000000001
112 110 0.9193 0.9312
113 111 0.928 0.94305
114 112 0.9376000000000001 0.9484
115 113 0.9463 0.9592
116 114 0.9538000000000001 0.9657
117 115 0.9635 0.9732000000000001
118 116 0.9700000000000001 0.9830000000000001
119 117 0.9786 0.9894000000000001
120 118 0.9883000000000001 0.9969
121 119 0.99795 1.0055
122 120 1.0044 1.01415
123 121 1.01095 1.02275
124 122 1.0207 1.03145
125 123 1.0324 1.03895
126 124 1.0379 1.04755
127 125 1.0475 1.05295
128 126 1.0551000000000001 1.0637
129 127 1.06155 1.0755000000000001
130 128 1.0712000000000002 1.082
131 129 1.0788 1.0885500000000001
132 130 1.08955 1.0971
133 131 1.09705 1.1046500000000001
134 132 1.1068 1.11535
135 133 1.1122 1.12395
136 134 1.11975 1.13155
137 135 1.1305 1.14015
138 136 1.1401000000000001 1.1509500000000001
139 137 1.14445 1.1574
140 138 1.1541000000000001 1.1682000000000001
141 139 1.1617 1.1735
142 140 1.1693 1.1811
143 141 1.1789 1.18975
144 142 1.18645 1.1972500000000001
145 143 1.1951 1.2059
146 144 1.2015500000000001 1.2177
147 145 1.2112500000000002 1.22525
148 146 1.21775 1.235
149 147 1.2316500000000001 1.2425000000000002
150 148 1.2371 1.25
151 149 1.24675 1.25655
152 150 1.2544 1.2673
153 151 1.2619 1.2758
154 152 1.2726 1.2856
155 153 1.2791000000000001 1.29305
156 154 1.2867 1.3017
157 155 1.2942 1.3071000000000002
158 156 1.30275 1.31475
159 157 1.3146 1.3233000000000001
160 158 1.3233000000000001 1.33295
161 159 1.3308 1.34275
162 160 1.33945 1.3523500000000002
163 161 1.347 1.35775
164 162 1.3566500000000001 1.36415
165 163 1.3631 1.3728
166 164 1.3707 1.3793
167 165 1.3793 1.3911
168 166 1.38565 1.4029500000000001
169 167 1.39545 1.4094
170 168 1.4029500000000001 1.41805
171 169 1.41165 1.4245
172 170 1.4234 1.4331500000000001
173 171 1.4288500000000002 1.44175
174 172 1.43645 1.45025
175 173 1.4460000000000002 1.45795
176 174 1.45245 1.4676
177 175 1.45895 1.47615
178 176 1.4719 1.4826000000000001
179 177 1.4794500000000002 1.49125
180 178 1.48595 1.4999500000000001
181 179 1.4934 1.5064
182 180 1.50215 1.5172
183 181 1.51075 1.5257500000000002
184 182 1.51935 1.5322
185 183 1.5279500000000001 1.5419
186 184 1.53755 1.54945
187 185 1.5452000000000001 1.5602500000000001
188 186 1.5558500000000002 1.5656
189 187 1.5624 1.5742500000000001
190 188 1.5678 1.5839
191 189 1.5763500000000001 1.59365
192 190 1.58395 1.60005
193 191 1.59575 1.60765
194 192 1.60335 1.6173000000000002
195 193 1.61195 1.6226500000000001
196 194 1.6184 1.6324
197 195 1.62815 1.6389500000000001
198 196 1.63995 1.64965
199 197 1.64635 1.65815
200 198 1.6528500000000002 1.66575
201 199 1.6647 1.6776
202 200 1.6711 1.683
203 201 1.67655 1.69055
204 202 1.6852 1.70235
205 203 1.69375 1.7089
206 204 1.7034500000000001 1.7174500000000001
207 205 1.711 1.7261000000000002
208 206 1.7186000000000001 1.7336
209 207 1.72615 1.74115
210 208 1.7357500000000001 1.7519500000000001
211 209 1.7454500000000002 1.7615500000000002
212 210 1.75515 1.7692
213 211 1.7627000000000002 1.7799500000000001
214 212 1.7703 1.7864
215 213 1.77885 1.79285
216 214 1.7885 1.80045
217 215 1.7972000000000001 1.8101
218 216 1.8036 1.8187
219 217 1.8122500000000001 1.8284
220 218 1.8177 1.83485
221 219 1.8274000000000001 1.8425
222 220 1.838 1.8542
223 221 1.8457000000000001 1.86175
224 222 1.8564 1.8672000000000002
225 223 1.86175 1.8758000000000001
226 224 1.8747 1.8865500000000002
227 225 1.8801 1.8941000000000001
228 226 1.88775 1.9006500000000002
229 227 1.8963 1.9081000000000001
230 228 1.90595 1.91995
231 229 1.9146 1.92755
232 230 1.9222000000000001 1.9350500000000002
233 231 1.9286 1.9437
234 232 1.9383000000000001 1.95015
235 233 1.9501000000000002 1.9619000000000002
236 234 1.9577 1.9695500000000001
237 235 1.96415 1.9760000000000002
238 236 1.97055 1.9846000000000001
239 237 1.9792 1.99425
238 1.99
239 1.99855

Binary file not shown.

View File

@ -21,45 +21,20 @@ except:
def data_overview3(): def data_overview3():
# calcdf_RAM_overview()
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr'
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s'
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__CutatBeginning_0.05_s_NeurDelay_0.005_s'
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s'
col = 4
row = 2 # sharex=True,
plot_style() plot_style()
default_figsize(column=2, length=6.2) #65.5 default_figsize(column=2, length=6.2) #65.5
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
var_it = 'Response Modulation [Hz]' var_it = 'Response Modulation [Hz]'
var_it2 = '' var_it2 = ''
if var_it == '':
ws = 0.35
else:
ws = 0.65
if var_it2 != '':
right = 0.9
else:
right = 0.98
right = 0.85 right = 0.85
ws = 0.75 ws = 0.75
print(right) #print(right)
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07, grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07,
hspace=0.45, left=0.1, right=right, top=0.95) hspace=0.45, left=0.1, right=right, top=0.95)
###################################
###############################
# Das ist der Finale Score
scoreall = 'perc99/med_diagonal_proj'
scoreall = 'max(diag5Hz)/med_diagonal_proj_fr'#'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'#'perc99/med_diagonal_proj'
#'max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr',
###################################
#scores = [scoreall+'_diagonal_proj']
########################## ##########################
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln # Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
@ -88,7 +63,7 @@ def data_overview3():
'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj' 'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj'
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr', scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
] # + '_diagonal_proj' ] # + '_diagonal_proj'
printing = False # print values for paper
max_xs = [[[],[],[]],[[],[],[]]] max_xs = [[[],[],[]],[[],[],[]]]
for c, cell_type_here in enumerate(cell_types): for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species) frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
@ -105,19 +80,7 @@ def data_overview3():
# modulatoin comparison for both cell_types # modulatoin comparison for both cell_types
################################ ################################
# Modulation, cell type comparison # Modulation, cell type comparison
# todo: hier die diff werte über die zellen
#ax_here = []
#axd = plt.subplot(grid_lower_lower[0, c])
#kernel_histogram(axk, colors[str(cell_type_here)], np.array(x_axis), norm=True, step=0.03, alpha=0.5)
#embed()
#axk.show_spines('lb')
#axs = plt.subplot(grid0[6+c])
colorbar = False
#if colorbar:
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']# x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',] var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
@ -154,10 +117,6 @@ def data_overview3():
ymin = 0 ymin = 0
xmin = 0 xmin = 0
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
xlimk = [0, 2]
else:
xlimk = None
xlimk = None xlimk = None
labelpad = 0.5#-1 labelpad = 0.5#-1
@ -168,6 +127,7 @@ def data_overview3():
xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c], xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c],
ha='right') ha='right')
if printing:
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]]))) print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]]))) print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
@ -208,6 +168,20 @@ def data_overview3():
tags.append(axx) tags.append(axx)
counter += 1 counter += 1
#plt.show() #plt.show()
if printing:
printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis)
show = False#True
fig = plt.gcf()
#embed()
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
save_visualization(pdf = True, show = show)
def printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis):
############################ ############################
# 1 Print scores # 1 Print scores
print('\n') print('\n')
@ -229,8 +203,10 @@ def data_overview3():
# print the corrs # print the corrs
score = scores[c] # 'ser_base', score = scores[c] # 'ser_base',
score_print = [score] score_print = [score]
score_print = [scores[c],scores[c],scores[c],scores[c],scores[c],'burst_fraction_burst_corr_individual_base'] score_print = [scores[c], scores[c], scores[c], scores[c], scores[c],
corr_vars = ['cv_base','response_modulation','fr_base','ser_first_base','burst_fraction_burst_corr_individual_stim','cv_base'] 'burst_fraction_burst_corr_individual_base']
corr_vars = ['cv_base', 'response_modulation', 'fr_base', 'ser_first_base',
'burst_fraction_burst_corr_individual_stim', 'cv_base']
# for score in score_print: # for score in score_print:
for c_nr, corr_var in enumerate(corr_vars): # ,'ser_sum_corr' for c_nr, corr_var in enumerate(corr_vars): # ,'ser_sum_corr'
score = score_print[c_nr] score = score_print[c_nr]
@ -238,7 +214,8 @@ def data_overview3():
y = frame_file['ser_first'] y = frame_file['ser_first']
c = frame_file['cv_base'] c = frame_file['cv_base']
try: try:
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var , score=score) c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var,
score=score)
except: except:
print('frame file lost') print('frame file lost')
embed() embed()
@ -254,17 +231,20 @@ def data_overview3():
score='cv_base') score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis) corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True) pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
################################ ################################
# cv to fr correlation # cv to fr correlation
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species) frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'burst_fraction_burst_corr_individual_base', cv_name='burst_fraction_burst_corr_individual_base', c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file,
'burst_fraction_burst_corr_individual_base',
cv_name='burst_fraction_burst_corr_individual_base',
score='cv_base') score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis) corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True) pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l) print(start_name(cell_type_here,
species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
############################### ###############################
# fr to nonline but for both modulations # fr to nonline but for both modulations
@ -283,21 +263,17 @@ def data_overview3():
if test: if test:
plt.hist(frame_file['lim_individual']) plt.hist(frame_file['lim_individual'])
# print(frame_file['lim_individual']) # print(frame_file['lim_individual'])
############################################ ############################################
############################ ############################
# 2 Print names # 2 Print names
# printe um welchen Zeitraum es sich handelt # printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min', frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='') species='')
print('\n') print('\n')
print('From ' +str(np.sort(frame_file.cell)[0])+' to '+str(np.sort(frame_file.cell)[-1])+' nr '+str(len(frame_file.cell))) print('From ' + str(np.sort(frame_file.cell)[0]) + ' to ' + str(np.sort(frame_file.cell)[-1]) + ' nr ' + str(
len(frame_file.cell)))
# embed() # embed()
# embed() # embed()
##################################################################### #####################################################################
############################ ############################
# 3 Print , EODF # 3 Print , EODF
@ -313,7 +289,9 @@ def data_overview3():
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1'] frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
try: try:
print(start_name(cell_type_here, print(start_name(cell_type_here,
species) + ' eodf_min ' + str(int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(int(np.round(np.nanmax(frame_here.eod_fr))))+' n '+str(len(frame_here))) species) + ' eodf_min ' + str(
int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(
int(np.round(np.nanmax(frame_here.eod_fr)))) + ' n ' + str(len(frame_here)))
except: except:
print('eodf thing') print('eodf thing')
embed() embed()
@ -321,9 +299,7 @@ def data_overview3():
new_list = [item[0:10] for item in my_list] new_list = [item[0:10] for item in my_list]
fish.extend(new_list) fish.extend(new_list)
print(species[0:7] + ' n_fish ' + str(len(np.unique(fish)))) print(species[0:7] + ' n_fish ' + str(len(np.unique(fish))))
##################################################################### #####################################################################
# Burst corr limits # Burst corr limits
print('\n') print('\n')
@ -337,7 +313,6 @@ def data_overview3():
for lim in lims: for lim in lims:
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ',' lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
print(start_name(cell_type_here, species) + ' ' + lims_name) print(start_name(cell_type_here, species) + ' ' + lims_name)
##################################################################### #####################################################################
############################ ############################
# 3 Print , EODF # 3 Print , EODF
@ -351,13 +326,8 @@ def data_overview3():
if len(frame_file) > 0: if len(frame_file) > 0:
# embed() # embed()
print(start_name(cell_type_here, species) + ' amp_min ' + str( print(start_name(cell_type_here, species) + ' amp_min ' + str(
np.nanmin(frame_file.amp)) + ' amp_max ' + str(np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp))) np.nanmin(frame_file.amp)) + ' amp_max ' + str(
test = False np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
#embed()
if test:
frame_file[['cv_stim','cv_base']]
frame_file['cv_stim']
embed()
############################ ############################
# CVs min max # CVs min max
for species in speciess: for species in speciess:
@ -366,11 +336,14 @@ def data_overview3():
if len(frame_file) > 0: if len(frame_file) > 0:
try: try:
print(start_name(cell_type_here, species) + ' CV_min ' + str(np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(np.round(np.nanmax(frame_file.fr_base)))) print(start_name(cell_type_here, species) + ' CV_min ' + str(
np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(
np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(
np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(
np.round(np.nanmax(frame_file.fr_base))))
except: except:
print('min here') print('min here')
embed() embed()
############################################ ############################################
####### #######
# N # N
@ -380,12 +353,12 @@ def data_overview3():
for c, cell_type_here in enumerate(cell_types): for c, cell_type_here in enumerate(cell_types):
################## ##################
# printe wie viele Zellen es am Anfang gab # printe wie viele Zellen es am Anfang gab
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude = False, snippet = None, min_amp='min', species=species) frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude=False, snippet=None,
min_amp='min', species=species)
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file))) print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
# embed() # embed()
# if c in [0,2]: # if c in [0,2]:
# cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here, # cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
# cv_name, frame_file, max_val, score, # cv_name, frame_file, max_val, score,
# species) # species)
@ -395,7 +368,6 @@ def data_overview3():
# axs.get_shared_x_axes().join(*[axs, axd]) # axs.get_shared_x_axes().join(*[axs, axd])
# elif species == ' Apteronotus albifrons': # elif species == ' Apteronotus albifrons':
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis) # plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
@ -409,22 +381,14 @@ def data_overview3():
# counter += 1 # counter += 1
# embed() # embed()
############################################ ############################################
# printe um welchen Zeitraum es sich handelt # printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min', frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='') species='')
print('\n sampling' + str(frame_file.sampling.unique())) print('\n sampling' + str(frame_file.sampling.unique()))
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35') print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22') print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
# plt.show() # plt.show()
show = False#True
fig = plt.gcf()
#embed()
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
save_visualization(pdf = True, show = show)
if __name__ == '__main__': if __name__ == '__main__':

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

View File

@ -74,7 +74,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
for all in it.product(*iternames): for all in it.product(*iternames):
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
fig = plt.figure() fig = plt.figure()
hs = 0.45 hs = 0.45
@ -103,7 +102,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
trial_nr = 500000 trial_nr = 500000
cell = '2013-01-08-aa-invivo-1' cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1' cell = '2012-07-03-ak-invivo-1'
print('cell' + str(cell))
cells_given = [cell] cells_given = [cell]
save_name_rev = find_folder_name( save_name_rev = find_folder_name(
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str( 'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
@ -287,7 +286,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
deltat = model_params.pop("deltat") # .iloc[0] deltat = model_params.pop("deltat") # .iloc[0]
v_offset = model_params.pop("v_offset") # .iloc[0] v_offset = model_params.pop("v_offset") # .iloc[0]
eod_fr = stack.eod_fr.iloc[0] eod_fr = stack.eod_fr.iloc[0]
print(var_types[g] + ' a_fe ' + str(a_fes[g]))
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params( noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types, a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
eod_fe=eod_fe) eod_fe=eod_fe)
@ -315,7 +314,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
elif len(np.unique(frame.RAM_afe)) > 1: elif len(np.unique(frame.RAM_afe)) > 1:
color_timeseries = 'red' color_timeseries = 'red'
nr_plot = 0 nr_plot = 0
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise))) #print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try: try:
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time, ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100, (frame.RAM_afe + frame.RAM_noise) * 100,
@ -339,7 +338,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
elif len(np.unique(frame.RAM_noise)) > 1: elif len(np.unique(frame.RAM_noise)) > 1:
color_timeseries = 'purple' color_timeseries = 'purple'
nr_plot = 1 nr_plot = 1
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise))) #print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try: try:
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time, ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100, (frame.RAM_afe + frame.RAM_noise) * 100,
@ -454,5 +453,5 @@ if __name__ == '__main__':
########################## ##########################
#embed() #embed()
print('hi') #print('hi')
model_and_data2(eod_metrice=False, width=0.005, D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$' model_and_data2(eod_metrice=False, width=0.005, D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$'

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 194 KiB

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -86,7 +86,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
trial_nr = 500000 trial_nr = 500000
cell = '2013-01-08-aa-invivo-1' cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1' cell = '2012-07-03-ak-invivo-1'
print('cell'+str(cell)) #print('cell'+str(cell))
cells_given = [cell] cells_given = [cell]
save_name_rev = find_folder_name( save_name_rev = find_folder_name(
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str( 'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
@ -127,12 +127,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
] ]
nrs_s = [3, 4, 8, 9]#, 10, 11 nrs_s = [3, 4, 8, 9]#, 10, 11
save_name = save_names[s] save_name = save_names[s]
#embed()
tr_name = trial_nr/1000000 tr_name = trial_nr/1000000
if tr_name == 1: if tr_name == 1:
tr_name = 1
ax_model = []
save_name = find_folder_name('calc_model') + '/' + save_name save_name = find_folder_name('calc_model') + '/' + save_name
@ -141,12 +137,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
perc = 'perc' perc = 'perc'
path = save_name + '.pkl' # '../'+ path = save_name + '.pkl' # '../'+
# stack = get_stack_one_quadrant(cell, cell_add, cells_save, path, save_name)
# full_matrix = create_full_matrix2(np.array(stack), np.array(stack_rev))
# stack_final = get_axis_on_full_matrix(full_matrix, stack)
# im = plt_RAM_perc(ax, perc, np.abs(stack))
#
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add) stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
if len(stack)> 0: if len(stack)> 0:
@ -184,14 +175,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
perc05_wo_norm.append(float('nan')) perc05_wo_norm.append(float('nan'))
median_wo_norm.append(float('nan')) median_wo_norm.append(float('nan'))
counter.append(float('nan')) counter.append(float('nan'))
# vars, cv_stims, fr_stims
print((np.array(counter)+1)/trial_nrs_here)
print((np.array(counter)) / trial_nrs_here)
#embed()
#ax.plot(trial_nrs_here, perc05, color = 'grey')
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s]) ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s])
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s]) ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
ax[0].set_xscale('log')#colors[s] ax[0].set_xscale('log')#colors[s]
ax[0].set_yscale('log') ax[0].set_yscale('log')
@ -203,52 +188,12 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
if s == 1: if s == 1:
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s]) ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s]) ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s]) ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s]) ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
ax[0].legend() ax[0].legend()
#ax[0].set_xscale('log')
#ax[0].set_yscale('log')
#ax[0].set_xlabel('Trials [$N$]')
#ax[0].set_ylabel('$\chi_{2}$\,[Hz]')
#ax[0].legend()
''' ax = plt.subplot(1,3,2)
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
ax = plt.subplot(1,3,3)
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
ax.legend()
ax.set_xscale('log')
ax.set_yscale('log')
'''
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95) plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
#plt.set_scale
#embed()
#embed()
#fig.tag([axes[0:3]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([[axes[4]]], xoffs=-3, yoffs=1.6, minor_index=0) # ax_ams[3],
#fig.tag([axes[3:6]], xoffs=-3, yoffs=1.6) #, major_index = 1, minor_index = 2 ax_ams[3],
#fig.tag([[axes[7]]], xoffs=-3, yoffs=1.6, major_index=2,minor_index=0) # ax_ams[3],
#fig.tag([axes[8::]], xoffs=-3, yoffs=1.6, major_index=2, minor_index=2) # ax_ams[3],
#fig.tag([axes[7::]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([ax_ams[0],ax_data[0],axes[2], axes[3]], xoffs=-3, yoffs=1.6)#ax_ams[3],
#plt.show()
save_visualization(pdf=True) save_visualization(pdf=True)

View File

@ -1,188 +0,0 @@
'''import os
try:
from numba import jit
except ImportError:
def jit(nopython):
def decorator_jit(func):
return func
return decorator_jit
import inspect
if 'cv_cell_types' not in inspect.stack()[-1][1]:
try:
from plotstyle import plot_style, spines_params
except:
a = 5
import sys
from IPython import embed
# utils susept wird in utils paper copiert und von utisl_susepitbility gestartet
utils_suseptibility_name = 'utils1'
utils_susept_name = 'utils1_project'
utils_suseptibility_name2 = 'utils_susept2'
utils_susept_name2 = 'utils_paper2'
utils_suseptibility_name_all = 'utils0'
utils_susept_name_all = 'utils0_project'#_down
try:# this will not load but I want this to be reference for the refractoring in pycharm
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
cont_other_dir = True#
except:
cont_other_dir = False#then I know that I am on alexandras PC and I can update my code
#embed()
if cont_other_dir == False:
import filecmp
# I can also update the folder in another directy to double check its dependencies
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
#embed()
if filecmp.cmp('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
if os.path.exists('../'+utils_suseptibility_name+'.py'):# das mache ich um in dem richtigen embed zu arbeiten
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,remove_yticks, unify_cell_names,load_cv_table, colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
# wir schauen erstmal ohne sys dass das immer zu teilen da ist
import shutil
if os.path.exists('../'+utils_suseptibility_name+'.py'):
shutil.copyfile('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py')
import shutil
if os.path.exists('../' + utils_suseptibility_name + '.py'):
shutil.copyfile('../' + utils_suseptibility_name_all + '.py', utils_susept_name_all + '.py')
print('copied utils all')
# wenn wir auf meinem Computer sind ziehen wir es aber immer vom code
# damit das refractors und wenn wir wo anders sind von dem extra kopierten file
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
##############################
# find out if we are in the code or develop mode (alexandra) or the public mode!
names_extra_modules = []
version = 'code'
# for name in names_extra_modules:
if 'suseptibility' in inspect.stack()[-1][1]: # 'code' not in # da ist jetzt die Starter Directory
version = 'develop'
if ('code' not in inspect.stack()[-1][1]) | (not (('alex' in os.getlogin()) | ('rudnaya' in os.getlogin()))):
version = 'public' # für alle sollte version public sein!
# this we do only in the develop mode
if version == 'develop': #
copy = True
if copy:
if __name__ == '__main__':
from distutils.dir_util import copy_tree
import time
import shutil
#shutil.rmtree("../../make_folder/suseptibility")#delet
t1 = time.time()
dirs = os.listdir("../suseptibility")
d_count = 0
for d, directory in enumerate(dirs):
if (('.csv' in directory) | ('.npy' in directory) | ('.pkl' in directory) | ('.py' in directory)| ('suseptibility' in directory)| ('make' in dir.lower()) | ('.dat' in directory)) & ('__pycache__' not in directory):
new_folder_make = '../../../make_folder'
if not os.path.exists(new_folder_make):
os.mkdir(new_folder_make)
new_dir = new_folder_make+"/suseptibility/"
if not os.path.exists(new_dir):
os.mkdir(new_dir)
# clean the previous directory
#embed()
if d_count == 0:
dirs_new = os.listdir(new_dir)
for dir_n in dirs_new:
if '__pycache__' not in dir_n:
os.remove(new_dir + dir_n)
# nicht remove three sonst macht es alles weg
#shutil.rmtree(new_dir)
#os.mkdir(new_dir)
# redo the directory
#
if os.path.exists(new_dir + directory):
embed()
#print(new_dir+dir)
#try:
shutil.copy2("../suseptibility/" + directory,new_dir + directory)
#print(new_dir + directory)
#shutil.copy("../suseptibility/" + directory,new_dir + directory)
#shutil.copyfile("../suseptibility/"+dir, new_dir+dir)
#except:
# print('shutil stuff')
# embed()
d_count += 1
t2 = time.time() -t1
print('Time='+str(t2))
print('copied')
#copy_tree("../suseptibility", "../../make_folder/suseptibility")
def plt_scatter_four(grid, frame, cell_types, cell_type_type, annotate, colors):
grid2 = gridspec.GridSpecFromSubplotSpec(1, 4, grid[0], wspace=0.4,
hspace=0.2)
add = ['', '_burst_corr', ]
ax0 = plt.subplot(grid2[0])
# ok hier plotten wir nur den scatter der auch ein gwn hat, aber was ist wenn es mehr sind?
# ok im prinzip sollte das zwar schon stimmen aber für das Bild kann man wirklich mehr machen
for c, cell_type_it in enumerate(cell_types):
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_fr(annotate, ax0, add[0], frame_g, colors, cell_type_it)
ax1 = plt.subplot(grid2[1])
for c, cell_type_it in enumerate(cell_types):
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_vs(frame_g, ax1, add[0], annotate, colors, cell_type_it)
ax2 = plt.subplot(grid2[2])
ax2.set_title('burst')
for c, cell_type_it in enumerate(cell_types):
# frame_all = frame[(frame[cell_type_type] == cell_type)]
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_fr(annotate, ax2, add[1], frame_g, colors, cell_type_it)
return ax0, ax1, ax2,'''