updating figures

This commit is contained in:
saschuta 2024-06-06 21:10:19 +02:00
parent 39e5146ade
commit 1309e4cfca
25 changed files with 120804 additions and 121086 deletions

Binary file not shown.

View File

@ -51,5 +51,5 @@ if __name__ == '__main__':
ampullary_punit(cells_plot2=cells_plot2, RAM=False)
else:
cells_plot2 = p_units_to_show(type_here='amp')#permuted = True,
print(cells_plot2)
#print(cells_plot2)
ampullary_punit(eod_metrice = False, base_extra = True,color_same = False, fr_name = '$f_{base}$', tags_individual = True, isi_delta = 5, titles=[''],cells_plot2=cells_plot2, RAM=False, scale_val = False, add_texts = [0.25,1.3])#Low-CV ampullary cell,

Binary file not shown.

View File

@ -7,5 +7,5 @@ if __name__ == '__main__':
#stack_file = pd.read_csv('..\calc_RAM\calc_nix_RAM-eod_2022-01-28-ag-invivo-1_all__amp_20.0_filename_InputArr_400hz_30_P-unitApteronotusleptorhynchus.csv')
cells_plot2 = p_units_to_show(type_here = 'contrasts')#permuted = True,
print(cells_plot2)
#print(cells_plot2)
ampullary_punit(eod_metrice = False, color_same = False, base_extra = True, fr_name = label_fr_name_rm(), cells_plot2=[cells_plot2[0]], isi_delta = 5, titles=[''], tags_individual = True, xlim_p = [0, 1.15])#Low-CV P-unit,

Binary file not shown.

View File

@ -6,5 +6,5 @@ from threefish.RAM.plots import ampullary_punit
if __name__ == '__main__':
cells_plot2 = p_units_to_show(type_here='contrasts')#permuted = True,
print(cells_plot2)
#print(cells_plot2)
ampullary_punit(base_extra = True, eod_metrice = False, color_same = False, fr_name = label_fr_name_rm(), tags_individual = True, isi_delta = 5, cells_plot2=[cells_plot2[1]], titles=['', 'Ampullary cell,'], )#High-CV P-unit,

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,243 +1,242 @@
,spikes
0,0.0029000000000000002
1,0.00915
2,0.015700000000000002
3,0.026500000000000003
4,0.0318
5,0.0383
6,0.05435
7,0.06525
8,0.06960000000000001
9,0.076
10,0.08465
11,0.09335
12,0.09975
13,0.10515000000000001
14,0.11910000000000001
15,0.1245
0,0.007
1,0.013600000000000001
2,0.020050000000000002
3,0.03065
4,0.0383
5,0.0448
6,0.0577
7,0.06515
8,0.0728
9,0.08135
10,0.08895
11,0.09435
12,0.10395
13,0.1126
14,0.1213
15,0.12765
16,0.13525
17,0.14165
18,0.14825000000000002
19,0.15675
20,0.16425
21,0.16975
22,0.18375
23,0.18815
24,0.19565000000000002
25,0.20220000000000002
26,0.2096
27,0.22030000000000002
28,0.22795
29,0.23970000000000002
30,0.24505000000000002
31,0.25045
32,0.2602
33,0.2666
34,0.27640000000000003
35,0.2838
36,0.29375
37,0.30545
38,0.312
39,0.31945
40,0.3302
41,0.342
42,0.34845000000000004
43,0.35385
44,0.35935
45,0.37320000000000003
46,0.3841
47,0.38945
48,0.39580000000000004
49,0.40235000000000004
50,0.4121
51,0.42510000000000003
52,0.43245
53,0.4368
54,0.44320000000000004
55,0.4562
56,0.46375
57,0.47125
58,0.47775
59,0.48745000000000005
60,0.49605000000000005
61,0.5047
62,0.5112
63,0.5197
64,0.52525
65,0.5347500000000001
66,0.5477500000000001
67,0.55425
68,0.5619000000000001
69,0.5692
70,0.5757
71,0.5834
72,0.59295
73,0.60385
74,0.6124
75,0.62005
76,0.6265000000000001
77,0.63075
78,0.6437
79,0.6544
80,0.66085
81,0.6684
82,0.67695
83,0.6835
84,0.6888000000000001
85,0.6965
86,0.7115
87,0.7210500000000001
88,0.72975
89,0.7341000000000001
90,0.7394000000000001
91,0.7482000000000001
92,0.7599
93,0.7663500000000001
94,0.7739
95,0.7815000000000001
96,0.7912
97,0.7988000000000001
98,0.80525
99,0.8214
100,0.8256
101,0.8310500000000001
102,0.8449500000000001
103,0.85035
104,0.8580000000000001
105,0.8643500000000001
106,0.8742000000000001
107,0.8849
108,0.8935000000000001
109,0.8999
110,0.9053
111,0.9171
112,0.9279000000000001
113,0.9323
114,0.9419500000000001
115,0.94745
116,0.9581000000000001
117,0.9645
118,0.97645
119,0.9839
120,0.9904000000000001
121,1.00435
122,1.00885
123,1.0152
124,1.026
125,1.03235
126,1.03685
127,1.04755
128,1.0626
129,1.06895
130,1.0744500000000001
131,1.08525
132,1.0938
133,1.1003
134,1.1057000000000001
135,1.1186500000000001
136,1.124
137,1.13365
138,1.14115
139,1.1476
140,1.1562000000000001
141,1.1617
142,1.16595
143,1.1757
144,1.1886
145,1.1993
146,1.2027
147,1.21015
148,1.22085
149,1.2338500000000001
150,1.2394500000000002
151,1.2447000000000001
152,1.2554
153,1.26495
154,1.2695
155,1.2758500000000002
156,1.28445
157,1.2941500000000001
158,1.3050000000000002
159,1.3093000000000001
160,1.3189
161,1.335
162,1.3405
163,1.34805
164,1.3544
165,1.36535
166,1.37385
167,1.3836000000000002
168,1.3889500000000001
169,1.39535
170,1.4019000000000001
171,1.4094
172,1.4255
173,1.42985
174,1.4375
175,1.4439
176,1.459
177,1.46655
178,1.4729
179,1.48275
180,1.48905
181,1.49665
182,1.5053
183,1.5117
184,1.5172
185,1.5311000000000001
186,1.5355
187,1.5441
188,1.5558500000000002
189,1.5623500000000001
190,1.56985
191,1.5775000000000001
192,1.586
193,1.59345
194,1.6021500000000002
195,1.61195
196,1.6226500000000001
197,1.62705
198,1.63235
199,1.641
200,1.6549500000000001
201,1.66355
202,1.67015
203,1.6788
204,1.68405
205,1.6917
206,1.6980000000000002
207,1.7130500000000002
208,1.7228
209,1.7313500000000002
210,1.73675
211,1.7433
212,1.74875
213,1.76055
214,1.7670000000000001
215,1.7734500000000002
216,1.7811000000000001
217,1.7918500000000002
218,1.7993000000000001
219,1.8143
220,1.8210000000000002
221,1.8251000000000002
222,1.8318
223,1.8446
224,1.8500500000000002
225,1.8585500000000001
226,1.8703500000000002
227,1.88115
228,1.8866
229,1.8929500000000001
230,1.9027
231,1.91245
232,1.9232500000000001
233,1.9286
234,1.9371
235,1.9425000000000001
236,1.9491
237,1.95875
238,1.9694
239,1.97595
240,1.9835
241,1.9985000000000002
17,0.1481
18,0.15455000000000002
19,0.1623
20,0.1762
21,0.1836
22,0.18705000000000002
23,0.1978
24,0.20735
25,0.2139
26,0.21925
27,0.2311
28,0.23765
29,0.24295
30,0.25485
31,0.25915
32,0.26555
33,0.2806
34,0.2871
35,0.29675
36,0.30210000000000004
37,0.30755
38,0.3173
39,0.3302
40,0.3366
41,0.34205
42,0.35595000000000004
43,0.36355000000000004
44,0.37010000000000004
45,0.3788
46,0.38835000000000003
47,0.39585000000000004
48,0.40125
49,0.4141
50,0.42500000000000004
51,0.43370000000000003
52,0.44010000000000005
53,0.4455
54,0.45405
55,0.4616
56,0.46915
57,0.47665
58,0.48855000000000004
59,0.49495
60,0.5025000000000001
61,0.5133
62,0.52075
63,0.53285
64,0.5391
65,0.5445
66,0.55855
67,0.5628500000000001
68,0.5683
69,0.5780500000000001
70,0.5908
71,0.5973
72,0.60265
73,0.6091
74,0.61775
75,0.6263500000000001
76,0.63705
77,0.64685
78,0.65215
79,0.6586500000000001
80,0.67155
81,0.6792
82,0.6867000000000001
83,0.6963
84,0.7040000000000001
85,0.7093
86,0.71685
87,0.72655
88,0.732
89,0.74905
90,0.7546
91,0.7589
92,0.77185
93,0.77615
94,0.7858
95,0.7975500000000001
96,0.803
97,0.8105
98,0.82235
99,0.82665
100,0.8332
101,0.8428
102,0.8493
103,0.8602500000000001
104,0.8709
105,0.8774000000000001
106,0.8828
107,0.8989
108,0.90535
109,0.9107000000000001
110,0.91715
111,0.9246500000000001
112,0.9365
113,0.94535
114,0.9516
115,0.96355
116,0.9678500000000001
117,0.9807
118,0.9882500000000001
119,0.99365
120,1.0012
121,1.00885
122,1.0163
123,1.0228000000000002
124,1.03145
125,1.0390000000000001
126,1.0463500000000001
127,1.0593000000000001
128,1.06915
129,1.07775
130,1.08315
131,1.0928
132,1.09915
133,1.1056000000000001
134,1.1186
135,1.12605
136,1.1338000000000001
137,1.1423
138,1.1520000000000001
139,1.1563
140,1.16605
141,1.17885
142,1.1853500000000001
143,1.1918
144,1.20265
145,1.208
146,1.21985
147,1.2274500000000002
148,1.23275
149,1.24035
150,1.2521
151,1.2576500000000002
152,1.26505
153,1.27265
154,1.28435
155,1.2961500000000001
156,1.30065
157,1.3059500000000002
158,1.31355
159,1.3264500000000001
160,1.33185
161,1.3383
162,1.3512
163,1.36095
164,1.3685
165,1.3749
166,1.3857000000000002
167,1.3900000000000001
168,1.3988
169,1.40955
170,1.41595
171,1.4246
172,1.43625
173,1.44275
174,1.4526000000000001
175,1.45785
176,1.4675500000000001
177,1.47405
178,1.4815500000000001
179,1.4912
180,1.5030000000000001
181,1.5086000000000002
182,1.5139
183,1.5225
184,1.5344
185,1.54095
186,1.5462500000000001
187,1.5592000000000001
188,1.56675
189,1.5720500000000002
190,1.5882
191,1.5936000000000001
192,1.601
193,1.6055000000000001
194,1.6151
195,1.6259000000000001
196,1.63235
197,1.6378000000000001
198,1.64845
199,1.6549
200,1.66255
201,1.6712
202,1.6808500000000002
203,1.6873
204,1.6970500000000002
205,1.70565
206,1.7099
207,1.7174
208,1.7271
209,1.7379
210,1.74875
211,1.75725
212,1.7616500000000002
213,1.77235
214,1.78095
215,1.78645
216,1.7982
217,1.80895
218,1.8133000000000001
219,1.8241500000000002
220,1.8305500000000001
221,1.8380500000000002
222,1.84565
223,1.8543500000000002
224,1.8629
225,1.87155
226,1.8801
227,1.88775
228,1.9005500000000002
229,1.907
230,1.91235
231,1.9242000000000001
232,1.92965
233,1.9371
234,1.9458000000000002
235,1.95435
236,1.96635
237,1.977
238,1.9813500000000002
239,1.9898500000000001
240,1.9943000000000002

1 spikes
2 0 0.0029000000000000002 0.007
3 1 0.00915 0.013600000000000001
4 2 0.015700000000000002 0.020050000000000002
5 3 0.026500000000000003 0.03065
6 4 0.0318 0.0383
7 5 0.0383 0.0448
8 6 0.05435 0.0577
9 7 0.06525 0.06515
10 8 0.06960000000000001 0.0728
11 9 0.076 0.08135
12 10 0.08465 0.08895
13 11 0.09335 0.09435
14 12 0.09975 0.10395
15 13 0.10515000000000001 0.1126
16 14 0.11910000000000001 0.1213
17 15 0.1245 0.12765
18 16 0.13525
19 17 0.14165 0.1481
20 18 0.14825000000000002 0.15455000000000002
21 19 0.15675 0.1623
22 20 0.16425 0.1762
23 21 0.16975 0.1836
24 22 0.18375 0.18705000000000002
25 23 0.18815 0.1978
26 24 0.19565000000000002 0.20735
27 25 0.20220000000000002 0.2139
28 26 0.2096 0.21925
29 27 0.22030000000000002 0.2311
30 28 0.22795 0.23765
31 29 0.23970000000000002 0.24295
32 30 0.24505000000000002 0.25485
33 31 0.25045 0.25915
34 32 0.2602 0.26555
35 33 0.2666 0.2806
36 34 0.27640000000000003 0.2871
37 35 0.2838 0.29675
38 36 0.29375 0.30210000000000004
39 37 0.30545 0.30755
40 38 0.312 0.3173
41 39 0.31945 0.3302
42 40 0.3302 0.3366
43 41 0.342 0.34205
44 42 0.34845000000000004 0.35595000000000004
45 43 0.35385 0.36355000000000004
46 44 0.35935 0.37010000000000004
47 45 0.37320000000000003 0.3788
48 46 0.3841 0.38835000000000003
49 47 0.38945 0.39585000000000004
50 48 0.39580000000000004 0.40125
51 49 0.40235000000000004 0.4141
52 50 0.4121 0.42500000000000004
53 51 0.42510000000000003 0.43370000000000003
54 52 0.43245 0.44010000000000005
55 53 0.4368 0.4455
56 54 0.44320000000000004 0.45405
57 55 0.4562 0.4616
58 56 0.46375 0.46915
59 57 0.47125 0.47665
60 58 0.47775 0.48855000000000004
61 59 0.48745000000000005 0.49495
62 60 0.49605000000000005 0.5025000000000001
63 61 0.5047 0.5133
64 62 0.5112 0.52075
65 63 0.5197 0.53285
66 64 0.52525 0.5391
67 65 0.5347500000000001 0.5445
68 66 0.5477500000000001 0.55855
69 67 0.55425 0.5628500000000001
70 68 0.5619000000000001 0.5683
71 69 0.5692 0.5780500000000001
72 70 0.5757 0.5908
73 71 0.5834 0.5973
74 72 0.59295 0.60265
75 73 0.60385 0.6091
76 74 0.6124 0.61775
77 75 0.62005 0.6263500000000001
78 76 0.6265000000000001 0.63705
79 77 0.63075 0.64685
80 78 0.6437 0.65215
81 79 0.6544 0.6586500000000001
82 80 0.66085 0.67155
83 81 0.6684 0.6792
84 82 0.67695 0.6867000000000001
85 83 0.6835 0.6963
86 84 0.6888000000000001 0.7040000000000001
87 85 0.6965 0.7093
88 86 0.7115 0.71685
89 87 0.7210500000000001 0.72655
90 88 0.72975 0.732
91 89 0.7341000000000001 0.74905
92 90 0.7394000000000001 0.7546
93 91 0.7482000000000001 0.7589
94 92 0.7599 0.77185
95 93 0.7663500000000001 0.77615
96 94 0.7739 0.7858
97 95 0.7815000000000001 0.7975500000000001
98 96 0.7912 0.803
99 97 0.7988000000000001 0.8105
100 98 0.80525 0.82235
101 99 0.8214 0.82665
102 100 0.8256 0.8332
103 101 0.8310500000000001 0.8428
104 102 0.8449500000000001 0.8493
105 103 0.85035 0.8602500000000001
106 104 0.8580000000000001 0.8709
107 105 0.8643500000000001 0.8774000000000001
108 106 0.8742000000000001 0.8828
109 107 0.8849 0.8989
110 108 0.8935000000000001 0.90535
111 109 0.8999 0.9107000000000001
112 110 0.9053 0.91715
113 111 0.9171 0.9246500000000001
114 112 0.9279000000000001 0.9365
115 113 0.9323 0.94535
116 114 0.9419500000000001 0.9516
117 115 0.94745 0.96355
118 116 0.9581000000000001 0.9678500000000001
119 117 0.9645 0.9807
120 118 0.97645 0.9882500000000001
121 119 0.9839 0.99365
122 120 0.9904000000000001 1.0012
123 121 1.00435 1.00885
124 122 1.00885 1.0163
125 123 1.0152 1.0228000000000002
126 124 1.026 1.03145
127 125 1.03235 1.0390000000000001
128 126 1.03685 1.0463500000000001
129 127 1.04755 1.0593000000000001
130 128 1.0626 1.06915
131 129 1.06895 1.07775
132 130 1.0744500000000001 1.08315
133 131 1.08525 1.0928
134 132 1.0938 1.09915
135 133 1.1003 1.1056000000000001
136 134 1.1057000000000001 1.1186
137 135 1.1186500000000001 1.12605
138 136 1.124 1.1338000000000001
139 137 1.13365 1.1423
140 138 1.14115 1.1520000000000001
141 139 1.1476 1.1563
142 140 1.1562000000000001 1.16605
143 141 1.1617 1.17885
144 142 1.16595 1.1853500000000001
145 143 1.1757 1.1918
146 144 1.1886 1.20265
147 145 1.1993 1.208
148 146 1.2027 1.21985
149 147 1.21015 1.2274500000000002
150 148 1.22085 1.23275
151 149 1.2338500000000001 1.24035
152 150 1.2394500000000002 1.2521
153 151 1.2447000000000001 1.2576500000000002
154 152 1.2554 1.26505
155 153 1.26495 1.27265
156 154 1.2695 1.28435
157 155 1.2758500000000002 1.2961500000000001
158 156 1.28445 1.30065
159 157 1.2941500000000001 1.3059500000000002
160 158 1.3050000000000002 1.31355
161 159 1.3093000000000001 1.3264500000000001
162 160 1.3189 1.33185
163 161 1.335 1.3383
164 162 1.3405 1.3512
165 163 1.34805 1.36095
166 164 1.3544 1.3685
167 165 1.36535 1.3749
168 166 1.37385 1.3857000000000002
169 167 1.3836000000000002 1.3900000000000001
170 168 1.3889500000000001 1.3988
171 169 1.39535 1.40955
172 170 1.4019000000000001 1.41595
173 171 1.4094 1.4246
174 172 1.4255 1.43625
175 173 1.42985 1.44275
176 174 1.4375 1.4526000000000001
177 175 1.4439 1.45785
178 176 1.459 1.4675500000000001
179 177 1.46655 1.47405
180 178 1.4729 1.4815500000000001
181 179 1.48275 1.4912
182 180 1.48905 1.5030000000000001
183 181 1.49665 1.5086000000000002
184 182 1.5053 1.5139
185 183 1.5117 1.5225
186 184 1.5172 1.5344
187 185 1.5311000000000001 1.54095
188 186 1.5355 1.5462500000000001
189 187 1.5441 1.5592000000000001
190 188 1.5558500000000002 1.56675
191 189 1.5623500000000001 1.5720500000000002
192 190 1.56985 1.5882
193 191 1.5775000000000001 1.5936000000000001
194 192 1.586 1.601
195 193 1.59345 1.6055000000000001
196 194 1.6021500000000002 1.6151
197 195 1.61195 1.6259000000000001
198 196 1.6226500000000001 1.63235
199 197 1.62705 1.6378000000000001
200 198 1.63235 1.64845
201 199 1.641 1.6549
202 200 1.6549500000000001 1.66255
203 201 1.66355 1.6712
204 202 1.67015 1.6808500000000002
205 203 1.6788 1.6873
206 204 1.68405 1.6970500000000002
207 205 1.6917 1.70565
208 206 1.6980000000000002 1.7099
209 207 1.7130500000000002 1.7174
210 208 1.7228 1.7271
211 209 1.7313500000000002 1.7379
212 210 1.73675 1.74875
213 211 1.7433 1.75725
214 212 1.74875 1.7616500000000002
215 213 1.76055 1.77235
216 214 1.7670000000000001 1.78095
217 215 1.7734500000000002 1.78645
218 216 1.7811000000000001 1.7982
219 217 1.7918500000000002 1.80895
220 218 1.7993000000000001 1.8133000000000001
221 219 1.8143 1.8241500000000002
222 220 1.8210000000000002 1.8305500000000001
223 221 1.8251000000000002 1.8380500000000002
224 222 1.8318 1.84565
225 223 1.8446 1.8543500000000002
226 224 1.8500500000000002 1.8629
227 225 1.8585500000000001 1.87155
228 226 1.8703500000000002 1.8801
229 227 1.88115 1.88775
230 228 1.8866 1.9005500000000002
231 229 1.8929500000000001 1.907
232 230 1.9027 1.91235
233 231 1.91245 1.9242000000000001
234 232 1.9232500000000001 1.92965
235 233 1.9286 1.9371
236 234 1.9371 1.9458000000000002
237 235 1.9425000000000001 1.95435
238 236 1.9491 1.96635
239 237 1.95875 1.977
240 238 1.9694 1.9813500000000002
241 239 1.97595 1.9898500000000001
242 240 1.9835 1.9943000000000002
241 1.9985000000000002

View File

@ -1,241 +1,242 @@
,spikes
0,0.00165
1,0.00825
2,0.01895
3,0.02645
4,0.035050000000000005
5,0.0437
6,0.049100000000000005
7,0.0609
8,0.06845
9,0.07495
10,0.0815
11,0.09430000000000001
12,0.0998
13,0.10725000000000001
14,0.1169
15,0.12555
16,0.1353
17,0.14385
18,0.15255000000000002
19,0.16325
20,0.16865
21,0.17825000000000002
22,0.18380000000000002
23,0.19445
24,0.20095000000000002
25,0.20955000000000001
26,0.22025
27,0.2268
28,0.2333
29,0.2419
30,0.25045
31,0.258
32,0.26665
33,0.2732
34,0.28175
35,0.29145
36,0.30215000000000003
37,0.30865000000000004
38,0.31725000000000003
39,0.32265
40,0.3345
41,0.342
42,0.3496
43,0.3561
44,0.37115000000000004
45,0.37765000000000004
46,0.38405
47,0.39265
48,0.40025
49,0.40775
50,0.4153
51,0.42710000000000004
52,0.43365000000000004
53,0.44545
54,0.4519
55,0.46045
56,0.4692
57,0.47465
58,0.48315
59,0.49075
60,0.50255
61,0.51015
62,0.51765
63,0.5231
64,0.5326500000000001
65,0.5456
66,0.552
67,0.5629000000000001
68,0.5683
69,0.5748
70,0.5833
71,0.5909
72,0.5974
73,0.6091500000000001
74,0.61775
75,0.6264000000000001
76,0.635
77,0.6446000000000001
78,0.65225
79,0.6577000000000001
80,0.6673
81,0.676
82,0.6834
83,0.6921
84,0.7018500000000001
85,0.7104
86,0.7212000000000001
87,0.72765
88,0.7351500000000001
89,0.74175
90,0.7534000000000001
91,0.75895
92,0.7675500000000001
93,0.7751
94,0.7827000000000001
0,0.007
1,0.012450000000000001
2,0.0211
3,0.02755
4,0.039400000000000004
5,0.0449
6,0.053250000000000006
7,0.0621
8,0.07055
9,0.0782
10,0.08785
11,0.09330000000000001
12,0.10505
13,0.1126
14,0.12125000000000001
15,0.13095
16,0.1385
17,0.14705000000000001
18,0.15465
19,0.16335
20,0.17175
21,0.18150000000000002
22,0.187
23,0.19460000000000002
24,0.20425000000000001
25,0.20975000000000002
26,0.2204
27,0.2278
28,0.2354
29,0.24085
30,0.25170000000000003
31,0.25805
32,0.2667
33,0.2785
34,0.2892
35,0.2957
36,0.3043
37,0.3119
38,0.3205
39,0.3291
40,0.3356
41,0.34525
42,0.35075
43,0.35925
44,0.37110000000000004
45,0.37870000000000004
46,0.38730000000000003
47,0.39690000000000003
48,0.40345000000000003
49,0.41205
50,0.42175
51,0.4282
52,0.43475
53,0.44325000000000003
54,0.45405
55,0.46365
56,0.46925
57,0.47675
58,0.48425
59,0.49605000000000005
60,0.5037
61,0.51115
62,0.51865
63,0.5273
64,0.537
65,0.5456500000000001
66,0.5532
67,0.56065
68,0.56935
69,0.5779000000000001
70,0.58545
71,0.5931000000000001
72,0.60375
73,0.6113500000000001
74,0.62005
75,0.6285000000000001
76,0.63625
77,0.64685
78,0.6544
79,0.662
80,0.6706000000000001
81,0.6802
82,0.6857000000000001
83,0.6943
84,0.70075
85,0.7072
86,0.7211500000000001
87,0.72885
88,0.7363000000000001
89,0.7438
90,0.7534500000000001
91,0.761
92,0.7707
93,0.77815
94,0.7848
95,0.79225
96,0.80195
97,0.8116
98,0.8171
99,0.82675
100,0.8365
101,0.8429500000000001
102,0.8514
103,0.8612000000000001
104,0.86765
105,0.8752000000000001
106,0.88375
107,0.8924000000000001
108,0.901
109,0.9076000000000001
96,0.8009000000000001
97,0.80945
98,0.8182
99,0.8267
100,0.83425
101,0.8440500000000001
102,0.8515
103,0.8601000000000001
104,0.8688
105,0.8763500000000001
106,0.88385
107,0.8935000000000001
108,0.9021
109,0.9106500000000001
110,0.91925
111,0.9248000000000001
112,0.93655
113,0.9441
114,0.9517
115,0.96035
116,0.9678
117,0.9787
118,0.9840000000000001
119,0.99155
120,1.00015
121,1.0099500000000001
122,1.01635
123,1.0238500000000001
124,1.03465
125,1.0433000000000001
126,1.04865
127,1.0582500000000001
128,1.0669
129,1.0767
130,1.0831
131,1.0917000000000001
132,1.1003500000000002
133,1.1078000000000001
134,1.11755
135,1.12505
136,1.13375
137,1.14235
138,1.1499000000000001
139,1.15955
140,1.1660000000000001
141,1.1756
142,1.1812
143,1.19285
144,1.2015
145,1.20905
146,1.2176500000000001
147,1.22525
148,1.2339
149,1.2425000000000002
150,1.24895
151,1.2586000000000002
152,1.2683
153,1.27695
154,1.2855
112,0.9366000000000001
113,0.94415
114,0.95055
115,0.96255
116,0.9689000000000001
117,0.9743
118,0.9819500000000001
119,0.9893500000000001
120,1.00335
121,1.0098
122,1.01845
123,1.02505
124,1.03035
125,1.04
126,1.0497
127,1.0583
128,1.07005
129,1.0765500000000001
130,1.0842
131,1.0906500000000001
132,1.10025
133,1.11005
134,1.1186
135,1.12615
136,1.1348
137,1.14115
138,1.14995
139,1.15635
140,1.16395
141,1.1736
142,1.1832
143,1.18855
144,1.1993500000000001
145,1.2058
146,1.21455
147,1.2231
148,1.2327000000000001
149,1.2436
150,1.2501
151,1.2575500000000002
152,1.26505
153,1.2737
154,1.28235
155,1.29095
156,1.2996
157,1.3083
158,1.31465
159,1.3243500000000001
160,1.33195
161,1.34145
162,1.348
163,1.3567
164,1.362
165,1.3749
166,1.3825
167,1.3911
168,1.3987
169,1.4083
156,1.29855
157,1.3071000000000002
158,1.3136
159,1.3254000000000001
160,1.3319
161,1.34155
162,1.349
163,1.3587500000000001
164,1.3674000000000002
165,1.374
166,1.38355
167,1.3910500000000001
168,1.40185
169,1.4094
170,1.41585
171,1.4245
172,1.43425
173,1.43955
174,1.4526000000000001
175,1.4612
176,1.4676500000000001
177,1.474
178,1.4815
172,1.4288500000000002
173,1.44175
174,1.44825
175,1.4579
176,1.4654
177,1.47405
178,1.4859
179,1.49235
180,1.502
181,1.5106000000000002
182,1.51815
183,1.52465
184,1.53435
185,1.54075
180,1.49885
181,1.50525
182,1.51495
183,1.5215
184,1.5301
185,1.53965
186,1.5494
187,1.5591000000000002
188,1.5709000000000002
189,1.57525
190,1.5849
191,1.5904500000000001
192,1.60125
193,1.6086500000000001
187,1.558
188,1.5646
189,1.5731000000000002
190,1.58175
191,1.58935
192,1.5979
193,1.6087
194,1.6152
195,1.6248500000000001
196,1.63135
197,1.6388
198,1.6496000000000002
199,1.6593
200,1.6669
201,1.6743000000000001
202,1.68405
195,1.6226500000000001
196,1.63025
197,1.6388500000000001
198,1.6507500000000002
199,1.6572
200,1.6667500000000002
201,1.67445
202,1.67975
203,1.6926
204,1.70025
205,1.7077
206,1.7153
207,1.72395
208,1.73475
209,1.7412
210,1.75075
211,1.7573500000000002
204,1.6981000000000002
205,1.7046000000000001
206,1.7153500000000002
207,1.726
208,1.7335500000000001
209,1.74115
210,1.7476500000000001
211,1.7562
212,1.7670000000000001
213,1.7714
214,1.7842
215,1.7939
216,1.8004
217,1.80895
218,1.81755
219,1.8262500000000002
220,1.83475
221,1.8456000000000001
222,1.8511000000000002
223,1.8607
213,1.77455
214,1.7820500000000001
215,1.78855
216,1.79515
217,1.8026
218,1.8144
219,1.82295
220,1.83165
221,1.84345
222,1.851
223,1.8565500000000001
224,1.8661
225,1.8737000000000001
226,1.88545
227,1.8929500000000001
228,1.8984500000000002
229,1.9070500000000001
230,1.91565
231,1.9253
232,1.935
233,1.9415
234,1.9491
235,1.9597
236,1.96625
237,1.9759
238,1.9825000000000002
239,1.98995
225,1.8747500000000001
226,1.8833000000000002
227,1.8919000000000001
228,1.8995000000000002
229,1.90805
230,1.9146
231,1.9253500000000001
232,1.93175
233,1.9393500000000001
234,1.94585
235,1.9544000000000001
236,1.96615
237,1.9748
238,1.9814
239,1.99105
240,1.9986000000000002

1 spikes
2 0 0.00165 0.007
3 1 0.00825 0.012450000000000001
4 2 0.01895 0.0211
5 3 0.02645 0.02755
6 4 0.035050000000000005 0.039400000000000004
7 5 0.0437 0.0449
8 6 0.049100000000000005 0.053250000000000006
9 7 0.0609 0.0621
10 8 0.06845 0.07055
11 9 0.07495 0.0782
12 10 0.0815 0.08785
13 11 0.09430000000000001 0.09330000000000001
14 12 0.0998 0.10505
15 13 0.10725000000000001 0.1126
16 14 0.1169 0.12125000000000001
17 15 0.12555 0.13095
18 16 0.1353 0.1385
19 17 0.14385 0.14705000000000001
20 18 0.15255000000000002 0.15465
21 19 0.16325 0.16335
22 20 0.16865 0.17175
23 21 0.17825000000000002 0.18150000000000002
24 22 0.18380000000000002 0.187
25 23 0.19445 0.19460000000000002
26 24 0.20095000000000002 0.20425000000000001
27 25 0.20955000000000001 0.20975000000000002
28 26 0.22025 0.2204
29 27 0.2268 0.2278
30 28 0.2333 0.2354
31 29 0.2419 0.24085
32 30 0.25045 0.25170000000000003
33 31 0.258 0.25805
34 32 0.26665 0.2667
35 33 0.2732 0.2785
36 34 0.28175 0.2892
37 35 0.29145 0.2957
38 36 0.30215000000000003 0.3043
39 37 0.30865000000000004 0.3119
40 38 0.31725000000000003 0.3205
41 39 0.32265 0.3291
42 40 0.3345 0.3356
43 41 0.342 0.34525
44 42 0.3496 0.35075
45 43 0.3561 0.35925
46 44 0.37115000000000004 0.37110000000000004
47 45 0.37765000000000004 0.37870000000000004
48 46 0.38405 0.38730000000000003
49 47 0.39265 0.39690000000000003
50 48 0.40025 0.40345000000000003
51 49 0.40775 0.41205
52 50 0.4153 0.42175
53 51 0.42710000000000004 0.4282
54 52 0.43365000000000004 0.43475
55 53 0.44545 0.44325000000000003
56 54 0.4519 0.45405
57 55 0.46045 0.46365
58 56 0.4692 0.46925
59 57 0.47465 0.47675
60 58 0.48315 0.48425
61 59 0.49075 0.49605000000000005
62 60 0.50255 0.5037
63 61 0.51015 0.51115
64 62 0.51765 0.51865
65 63 0.5231 0.5273
66 64 0.5326500000000001 0.537
67 65 0.5456 0.5456500000000001
68 66 0.552 0.5532
69 67 0.5629000000000001 0.56065
70 68 0.5683 0.56935
71 69 0.5748 0.5779000000000001
72 70 0.5833 0.58545
73 71 0.5909 0.5931000000000001
74 72 0.5974 0.60375
75 73 0.6091500000000001 0.6113500000000001
76 74 0.61775 0.62005
77 75 0.6264000000000001 0.6285000000000001
78 76 0.635 0.63625
79 77 0.6446000000000001 0.64685
80 78 0.65225 0.6544
81 79 0.6577000000000001 0.662
82 80 0.6673 0.6706000000000001
83 81 0.676 0.6802
84 82 0.6834 0.6857000000000001
85 83 0.6921 0.6943
86 84 0.7018500000000001 0.70075
87 85 0.7104 0.7072
88 86 0.7212000000000001 0.7211500000000001
89 87 0.72765 0.72885
90 88 0.7351500000000001 0.7363000000000001
91 89 0.74175 0.7438
92 90 0.7534000000000001 0.7534500000000001
93 91 0.75895 0.761
94 92 0.7675500000000001 0.7707
95 93 0.7751 0.77815
96 94 0.7827000000000001 0.7848
97 95 0.79225
98 96 0.80195 0.8009000000000001
99 97 0.8116 0.80945
100 98 0.8171 0.8182
101 99 0.82675 0.8267
102 100 0.8365 0.83425
103 101 0.8429500000000001 0.8440500000000001
104 102 0.8514 0.8515
105 103 0.8612000000000001 0.8601000000000001
106 104 0.86765 0.8688
107 105 0.8752000000000001 0.8763500000000001
108 106 0.88375 0.88385
109 107 0.8924000000000001 0.8935000000000001
110 108 0.901 0.9021
111 109 0.9076000000000001 0.9106500000000001
112 110 0.91925
113 111 0.9248000000000001
114 112 0.93655 0.9366000000000001
115 113 0.9441 0.94415
116 114 0.9517 0.95055
117 115 0.96035 0.96255
118 116 0.9678 0.9689000000000001
119 117 0.9787 0.9743
120 118 0.9840000000000001 0.9819500000000001
121 119 0.99155 0.9893500000000001
122 120 1.00015 1.00335
123 121 1.0099500000000001 1.0098
124 122 1.01635 1.01845
125 123 1.0238500000000001 1.02505
126 124 1.03465 1.03035
127 125 1.0433000000000001 1.04
128 126 1.04865 1.0497
129 127 1.0582500000000001 1.0583
130 128 1.0669 1.07005
131 129 1.0767 1.0765500000000001
132 130 1.0831 1.0842
133 131 1.0917000000000001 1.0906500000000001
134 132 1.1003500000000002 1.10025
135 133 1.1078000000000001 1.11005
136 134 1.11755 1.1186
137 135 1.12505 1.12615
138 136 1.13375 1.1348
139 137 1.14235 1.14115
140 138 1.1499000000000001 1.14995
141 139 1.15955 1.15635
142 140 1.1660000000000001 1.16395
143 141 1.1756 1.1736
144 142 1.1812 1.1832
145 143 1.19285 1.18855
146 144 1.2015 1.1993500000000001
147 145 1.20905 1.2058
148 146 1.2176500000000001 1.21455
149 147 1.22525 1.2231
150 148 1.2339 1.2327000000000001
151 149 1.2425000000000002 1.2436
152 150 1.24895 1.2501
153 151 1.2586000000000002 1.2575500000000002
154 152 1.2683 1.26505
155 153 1.27695 1.2737
156 154 1.2855 1.28235
157 155 1.29095
158 156 1.2996 1.29855
159 157 1.3083 1.3071000000000002
160 158 1.31465 1.3136
161 159 1.3243500000000001 1.3254000000000001
162 160 1.33195 1.3319
163 161 1.34145 1.34155
164 162 1.348 1.349
165 163 1.3567 1.3587500000000001
166 164 1.362 1.3674000000000002
167 165 1.3749 1.374
168 166 1.3825 1.38355
169 167 1.3911 1.3910500000000001
170 168 1.3987 1.40185
171 169 1.4083 1.4094
172 170 1.41585
173 171 1.4245
174 172 1.43425 1.4288500000000002
175 173 1.43955 1.44175
176 174 1.4526000000000001 1.44825
177 175 1.4612 1.4579
178 176 1.4676500000000001 1.4654
179 177 1.474 1.47405
180 178 1.4815 1.4859
181 179 1.49235
182 180 1.502 1.49885
183 181 1.5106000000000002 1.50525
184 182 1.51815 1.51495
185 183 1.52465 1.5215
186 184 1.53435 1.5301
187 185 1.54075 1.53965
188 186 1.5494
189 187 1.5591000000000002 1.558
190 188 1.5709000000000002 1.5646
191 189 1.57525 1.5731000000000002
192 190 1.5849 1.58175
193 191 1.5904500000000001 1.58935
194 192 1.60125 1.5979
195 193 1.6086500000000001 1.6087
196 194 1.6152
197 195 1.6248500000000001 1.6226500000000001
198 196 1.63135 1.63025
199 197 1.6388 1.6388500000000001
200 198 1.6496000000000002 1.6507500000000002
201 199 1.6593 1.6572
202 200 1.6669 1.6667500000000002
203 201 1.6743000000000001 1.67445
204 202 1.68405 1.67975
205 203 1.6926
206 204 1.70025 1.6981000000000002
207 205 1.7077 1.7046000000000001
208 206 1.7153 1.7153500000000002
209 207 1.72395 1.726
210 208 1.73475 1.7335500000000001
211 209 1.7412 1.74115
212 210 1.75075 1.7476500000000001
213 211 1.7573500000000002 1.7562
214 212 1.7670000000000001
215 213 1.7714 1.77455
216 214 1.7842 1.7820500000000001
217 215 1.7939 1.78855
218 216 1.8004 1.79515
219 217 1.80895 1.8026
220 218 1.81755 1.8144
221 219 1.8262500000000002 1.82295
222 220 1.83475 1.83165
223 221 1.8456000000000001 1.84345
224 222 1.8511000000000002 1.851
225 223 1.8607 1.8565500000000001
226 224 1.8661
227 225 1.8737000000000001 1.8747500000000001
228 226 1.88545 1.8833000000000002
229 227 1.8929500000000001 1.8919000000000001
230 228 1.8984500000000002 1.8995000000000002
231 229 1.9070500000000001 1.90805
232 230 1.91565 1.9146
233 231 1.9253 1.9253500000000001
234 232 1.935 1.93175
235 233 1.9415 1.9393500000000001
236 234 1.9491 1.94585
237 235 1.9597 1.9544000000000001
238 236 1.96625 1.96615
239 237 1.9759 1.9748
240 238 1.9825000000000002 1.9814
241 239 1.98995 1.99105
242 240 1.9986000000000002

View File

@ -1,241 +1,239 @@
,spikes
0,0.0006500000000000001
1,0.009300000000000001
2,0.015700000000000002
3,0.0275
4,0.034050000000000004
5,0.041600000000000005
6,0.0545
7,0.05985
8,0.06745000000000001
9,0.0771
10,0.08675000000000001
11,0.0944
12,0.10295
13,0.11045
14,0.11705
15,0.12875
16,0.1342
17,0.14175000000000001
18,0.1514
19,0.16110000000000002
20,0.16965
21,0.17835
22,0.18585000000000002
23,0.19345
24,0.19985
25,0.2096
26,0.21715
27,0.23115000000000002
28,0.23650000000000002
29,0.24515
30,0.25270000000000004
31,0.2591
32,0.26990000000000003
33,0.27740000000000004
34,0.28395000000000004
35,0.29255000000000003
36,0.30115000000000003
37,0.3109
38,0.31735
39,0.32805
40,0.33665
41,0.34425
42,0.3528
43,0.36150000000000004
44,0.36895
45,0.3765
46,0.3831
47,0.3937
48,0.40130000000000005
49,0.40885000000000005
50,0.41645000000000004
51,0.42710000000000004
52,0.43570000000000003
53,0.44545
54,0.45085000000000003
55,0.45735000000000003
56,0.4713
57,0.47675
58,0.48425
59,0.49175
60,0.5025000000000001
61,0.509
62,0.5165500000000001
63,0.5263
64,0.53695
65,0.54455
66,0.55325
67,0.5596
68,0.5672
69,0.57475
70,0.58335
71,0.5941000000000001
72,0.60275
73,0.6081500000000001
74,0.61775
75,0.6264000000000001
76,0.635
77,0.64575
78,0.65225
79,0.66405
80,0.6705
81,0.6759000000000001
82,0.68455
83,0.69315
84,0.7029000000000001
85,0.7115
86,0.7189500000000001
87,0.72655
88,0.7352000000000001
89,0.74485
90,0.75455
91,0.7621
92,0.77075
93,0.7782
94,0.7869
95,0.7965500000000001
96,0.80305
97,0.8116500000000001
98,0.8181
99,0.8257
100,0.83745
101,0.8451000000000001
102,0.8558
103,0.8601500000000001
104,0.8687
105,0.8773500000000001
106,0.8881
107,0.89575
108,0.90325
109,0.91395
110,0.9193
111,0.928
112,0.9376000000000001
113,0.9463
114,0.9538000000000001
115,0.9635
116,0.9700000000000001
117,0.9786
118,0.9883000000000001
119,0.99795
120,1.0044
121,1.01095
122,1.0207
123,1.0324
124,1.0379
125,1.0475
126,1.0551000000000001
127,1.06155
128,1.0712000000000002
129,1.0788
130,1.08955
131,1.09705
132,1.1068
133,1.1122
134,1.11975
135,1.1305
136,1.1401000000000001
137,1.14445
138,1.1541000000000001
139,1.1617
140,1.1693
141,1.1789
142,1.18645
143,1.1951
144,1.2015500000000001
145,1.2112500000000002
146,1.21775
147,1.2316500000000001
148,1.2371
149,1.24675
150,1.2544
151,1.2619
152,1.2726
153,1.2791000000000001
154,1.2867
155,1.2942
156,1.30275
157,1.3146
158,1.3233000000000001
159,1.3308
160,1.33945
161,1.347
162,1.3566500000000001
163,1.3631
164,1.3707
165,1.3793
166,1.38565
167,1.39545
168,1.4029500000000001
169,1.41165
170,1.4234
171,1.4288500000000002
172,1.43645
173,1.4460000000000002
174,1.45245
175,1.45895
176,1.4719
177,1.4794500000000002
178,1.48595
179,1.4934
180,1.50215
181,1.51075
182,1.51935
183,1.5279500000000001
184,1.53755
185,1.5452000000000001
186,1.5558500000000002
187,1.5624
188,1.5678
189,1.5763500000000001
190,1.58395
191,1.59575
192,1.60335
193,1.61195
194,1.6184
195,1.62815
196,1.63995
197,1.64635
198,1.6528500000000002
199,1.6647
200,1.6711
201,1.67655
202,1.6852
203,1.69375
204,1.7034500000000001
205,1.711
206,1.7186000000000001
207,1.72615
208,1.7357500000000001
209,1.7454500000000002
210,1.75515
211,1.7627000000000002
212,1.7703
213,1.77885
214,1.7885
215,1.7972000000000001
216,1.8036
217,1.8122500000000001
218,1.8177
219,1.8274000000000001
220,1.838
221,1.8457000000000001
222,1.8564
223,1.86175
224,1.8747
225,1.8801
226,1.88775
227,1.8963
228,1.90595
229,1.9146
230,1.9222000000000001
231,1.9286
232,1.9383000000000001
233,1.9501000000000002
234,1.9577
235,1.96415
236,1.97055
237,1.9792
238,1.99
239,1.99855
0,0.007050000000000001
1,0.015700000000000002
2,0.025400000000000002
3,0.03615
4,0.0448
5,0.051250000000000004
6,0.05775
7,0.06745000000000001
8,0.0771
9,0.08365
10,0.09430000000000001
11,0.10185000000000001
12,0.1116
13,0.11805
14,0.12445
15,0.13745000000000002
16,0.14395
17,0.15245
18,0.16010000000000002
19,0.16970000000000002
20,0.1784
21,0.18485000000000001
22,0.1945
23,0.19985
24,0.2107
25,0.22035000000000002
26,0.22790000000000002
27,0.2376
28,0.2441
29,0.25270000000000004
30,0.26015
31,0.26990000000000003
32,0.2775
33,0.28715
34,0.2947
35,0.30225
36,0.30865000000000004
37,0.3194
38,0.32815
39,0.33455
40,0.34315
41,0.3539
42,0.3603
43,0.3679
44,0.37645
45,0.38405
46,0.39380000000000004
47,0.4045
48,0.41425
49,0.42175
50,0.42715000000000003
51,0.43575
52,0.44755
53,0.4531
54,0.45955
55,0.47240000000000004
56,0.47885
57,0.48535
58,0.49610000000000004
59,0.5036
60,0.5101
61,0.5187
62,0.52945
63,0.5391
64,0.54445
65,0.5543
66,0.5628000000000001
67,0.5704
68,0.5790000000000001
69,0.58765
70,0.5973
71,0.60375
72,0.61345
73,0.6199
74,0.63175
75,0.6371
76,0.64695
77,0.65435
78,0.6641
79,0.67055
80,0.68025
81,0.6878000000000001
82,0.6975
83,0.7040000000000001
84,0.7126
85,0.7212500000000001
86,0.7298
87,0.7373000000000001
88,0.7481
89,0.75565
90,0.76425
91,0.77295
92,0.7815500000000001
93,0.788
94,0.7955500000000001
95,0.8063
96,0.8127000000000001
97,0.82455
98,0.8321500000000001
99,0.83855
100,0.8450500000000001
101,0.85585
102,0.8645
103,0.8731
104,0.87955
105,0.8914000000000001
106,0.8989
107,0.9064000000000001
108,0.91295
109,0.9258500000000001
110,0.9312
111,0.94305
112,0.9484
113,0.9592
114,0.9657
115,0.9732000000000001
116,0.9830000000000001
117,0.9894000000000001
118,0.9969
119,1.0055
120,1.01415
121,1.02275
122,1.03145
123,1.03895
124,1.04755
125,1.05295
126,1.0637
127,1.0755000000000001
128,1.082
129,1.0885500000000001
130,1.0971
131,1.1046500000000001
132,1.11535
133,1.12395
134,1.13155
135,1.14015
136,1.1509500000000001
137,1.1574
138,1.1682000000000001
139,1.1735
140,1.1811
141,1.18975
142,1.1972500000000001
143,1.2059
144,1.2177
145,1.22525
146,1.235
147,1.2425000000000002
148,1.25
149,1.25655
150,1.2673
151,1.2758
152,1.2856
153,1.29305
154,1.3017
155,1.3071000000000002
156,1.31475
157,1.3233000000000001
158,1.33295
159,1.34275
160,1.3523500000000002
161,1.35775
162,1.36415
163,1.3728
164,1.3793
165,1.3911
166,1.4029500000000001
167,1.4094
168,1.41805
169,1.4245
170,1.4331500000000001
171,1.44175
172,1.45025
173,1.45795
174,1.4676
175,1.47615
176,1.4826000000000001
177,1.49125
178,1.4999500000000001
179,1.5064
180,1.5172
181,1.5257500000000002
182,1.5322
183,1.5419
184,1.54945
185,1.5602500000000001
186,1.5656
187,1.5742500000000001
188,1.5839
189,1.59365
190,1.60005
191,1.60765
192,1.6173000000000002
193,1.6226500000000001
194,1.6324
195,1.6389500000000001
196,1.64965
197,1.65815
198,1.66575
199,1.6776
200,1.683
201,1.69055
202,1.70235
203,1.7089
204,1.7174500000000001
205,1.7261000000000002
206,1.7336
207,1.74115
208,1.7519500000000001
209,1.7615500000000002
210,1.7692
211,1.7799500000000001
212,1.7864
213,1.79285
214,1.80045
215,1.8101
216,1.8187
217,1.8284
218,1.83485
219,1.8425
220,1.8542
221,1.86175
222,1.8672000000000002
223,1.8758000000000001
224,1.8865500000000002
225,1.8941000000000001
226,1.9006500000000002
227,1.9081000000000001
228,1.91995
229,1.92755
230,1.9350500000000002
231,1.9437
232,1.95015
233,1.9619000000000002
234,1.9695500000000001
235,1.9760000000000002
236,1.9846000000000001
237,1.99425

1 spikes
2 0 0.0006500000000000001 0.007050000000000001
3 1 0.009300000000000001 0.015700000000000002
4 2 0.015700000000000002 0.025400000000000002
5 3 0.0275 0.03615
6 4 0.034050000000000004 0.0448
7 5 0.041600000000000005 0.051250000000000004
8 6 0.0545 0.05775
9 7 0.05985 0.06745000000000001
10 8 0.06745000000000001 0.0771
11 9 0.0771 0.08365
12 10 0.08675000000000001 0.09430000000000001
13 11 0.0944 0.10185000000000001
14 12 0.10295 0.1116
15 13 0.11045 0.11805
16 14 0.11705 0.12445
17 15 0.12875 0.13745000000000002
18 16 0.1342 0.14395
19 17 0.14175000000000001 0.15245
20 18 0.1514 0.16010000000000002
21 19 0.16110000000000002 0.16970000000000002
22 20 0.16965 0.1784
23 21 0.17835 0.18485000000000001
24 22 0.18585000000000002 0.1945
25 23 0.19345 0.19985
26 24 0.19985 0.2107
27 25 0.2096 0.22035000000000002
28 26 0.21715 0.22790000000000002
29 27 0.23115000000000002 0.2376
30 28 0.23650000000000002 0.2441
31 29 0.24515 0.25270000000000004
32 30 0.25270000000000004 0.26015
33 31 0.2591 0.26990000000000003
34 32 0.26990000000000003 0.2775
35 33 0.27740000000000004 0.28715
36 34 0.28395000000000004 0.2947
37 35 0.29255000000000003 0.30225
38 36 0.30115000000000003 0.30865000000000004
39 37 0.3109 0.3194
40 38 0.31735 0.32815
41 39 0.32805 0.33455
42 40 0.33665 0.34315
43 41 0.34425 0.3539
44 42 0.3528 0.3603
45 43 0.36150000000000004 0.3679
46 44 0.36895 0.37645
47 45 0.3765 0.38405
48 46 0.3831 0.39380000000000004
49 47 0.3937 0.4045
50 48 0.40130000000000005 0.41425
51 49 0.40885000000000005 0.42175
52 50 0.41645000000000004 0.42715000000000003
53 51 0.42710000000000004 0.43575
54 52 0.43570000000000003 0.44755
55 53 0.44545 0.4531
56 54 0.45085000000000003 0.45955
57 55 0.45735000000000003 0.47240000000000004
58 56 0.4713 0.47885
59 57 0.47675 0.48535
60 58 0.48425 0.49610000000000004
61 59 0.49175 0.5036
62 60 0.5025000000000001 0.5101
63 61 0.509 0.5187
64 62 0.5165500000000001 0.52945
65 63 0.5263 0.5391
66 64 0.53695 0.54445
67 65 0.54455 0.5543
68 66 0.55325 0.5628000000000001
69 67 0.5596 0.5704
70 68 0.5672 0.5790000000000001
71 69 0.57475 0.58765
72 70 0.58335 0.5973
73 71 0.5941000000000001 0.60375
74 72 0.60275 0.61345
75 73 0.6081500000000001 0.6199
76 74 0.61775 0.63175
77 75 0.6264000000000001 0.6371
78 76 0.635 0.64695
79 77 0.64575 0.65435
80 78 0.65225 0.6641
81 79 0.66405 0.67055
82 80 0.6705 0.68025
83 81 0.6759000000000001 0.6878000000000001
84 82 0.68455 0.6975
85 83 0.69315 0.7040000000000001
86 84 0.7029000000000001 0.7126
87 85 0.7115 0.7212500000000001
88 86 0.7189500000000001 0.7298
89 87 0.72655 0.7373000000000001
90 88 0.7352000000000001 0.7481
91 89 0.74485 0.75565
92 90 0.75455 0.76425
93 91 0.7621 0.77295
94 92 0.77075 0.7815500000000001
95 93 0.7782 0.788
96 94 0.7869 0.7955500000000001
97 95 0.7965500000000001 0.8063
98 96 0.80305 0.8127000000000001
99 97 0.8116500000000001 0.82455
100 98 0.8181 0.8321500000000001
101 99 0.8257 0.83855
102 100 0.83745 0.8450500000000001
103 101 0.8451000000000001 0.85585
104 102 0.8558 0.8645
105 103 0.8601500000000001 0.8731
106 104 0.8687 0.87955
107 105 0.8773500000000001 0.8914000000000001
108 106 0.8881 0.8989
109 107 0.89575 0.9064000000000001
110 108 0.90325 0.91295
111 109 0.91395 0.9258500000000001
112 110 0.9193 0.9312
113 111 0.928 0.94305
114 112 0.9376000000000001 0.9484
115 113 0.9463 0.9592
116 114 0.9538000000000001 0.9657
117 115 0.9635 0.9732000000000001
118 116 0.9700000000000001 0.9830000000000001
119 117 0.9786 0.9894000000000001
120 118 0.9883000000000001 0.9969
121 119 0.99795 1.0055
122 120 1.0044 1.01415
123 121 1.01095 1.02275
124 122 1.0207 1.03145
125 123 1.0324 1.03895
126 124 1.0379 1.04755
127 125 1.0475 1.05295
128 126 1.0551000000000001 1.0637
129 127 1.06155 1.0755000000000001
130 128 1.0712000000000002 1.082
131 129 1.0788 1.0885500000000001
132 130 1.08955 1.0971
133 131 1.09705 1.1046500000000001
134 132 1.1068 1.11535
135 133 1.1122 1.12395
136 134 1.11975 1.13155
137 135 1.1305 1.14015
138 136 1.1401000000000001 1.1509500000000001
139 137 1.14445 1.1574
140 138 1.1541000000000001 1.1682000000000001
141 139 1.1617 1.1735
142 140 1.1693 1.1811
143 141 1.1789 1.18975
144 142 1.18645 1.1972500000000001
145 143 1.1951 1.2059
146 144 1.2015500000000001 1.2177
147 145 1.2112500000000002 1.22525
148 146 1.21775 1.235
149 147 1.2316500000000001 1.2425000000000002
150 148 1.2371 1.25
151 149 1.24675 1.25655
152 150 1.2544 1.2673
153 151 1.2619 1.2758
154 152 1.2726 1.2856
155 153 1.2791000000000001 1.29305
156 154 1.2867 1.3017
157 155 1.2942 1.3071000000000002
158 156 1.30275 1.31475
159 157 1.3146 1.3233000000000001
160 158 1.3233000000000001 1.33295
161 159 1.3308 1.34275
162 160 1.33945 1.3523500000000002
163 161 1.347 1.35775
164 162 1.3566500000000001 1.36415
165 163 1.3631 1.3728
166 164 1.3707 1.3793
167 165 1.3793 1.3911
168 166 1.38565 1.4029500000000001
169 167 1.39545 1.4094
170 168 1.4029500000000001 1.41805
171 169 1.41165 1.4245
172 170 1.4234 1.4331500000000001
173 171 1.4288500000000002 1.44175
174 172 1.43645 1.45025
175 173 1.4460000000000002 1.45795
176 174 1.45245 1.4676
177 175 1.45895 1.47615
178 176 1.4719 1.4826000000000001
179 177 1.4794500000000002 1.49125
180 178 1.48595 1.4999500000000001
181 179 1.4934 1.5064
182 180 1.50215 1.5172
183 181 1.51075 1.5257500000000002
184 182 1.51935 1.5322
185 183 1.5279500000000001 1.5419
186 184 1.53755 1.54945
187 185 1.5452000000000001 1.5602500000000001
188 186 1.5558500000000002 1.5656
189 187 1.5624 1.5742500000000001
190 188 1.5678 1.5839
191 189 1.5763500000000001 1.59365
192 190 1.58395 1.60005
193 191 1.59575 1.60765
194 192 1.60335 1.6173000000000002
195 193 1.61195 1.6226500000000001
196 194 1.6184 1.6324
197 195 1.62815 1.6389500000000001
198 196 1.63995 1.64965
199 197 1.64635 1.65815
200 198 1.6528500000000002 1.66575
201 199 1.6647 1.6776
202 200 1.6711 1.683
203 201 1.67655 1.69055
204 202 1.6852 1.70235
205 203 1.69375 1.7089
206 204 1.7034500000000001 1.7174500000000001
207 205 1.711 1.7261000000000002
208 206 1.7186000000000001 1.7336
209 207 1.72615 1.74115
210 208 1.7357500000000001 1.7519500000000001
211 209 1.7454500000000002 1.7615500000000002
212 210 1.75515 1.7692
213 211 1.7627000000000002 1.7799500000000001
214 212 1.7703 1.7864
215 213 1.77885 1.79285
216 214 1.7885 1.80045
217 215 1.7972000000000001 1.8101
218 216 1.8036 1.8187
219 217 1.8122500000000001 1.8284
220 218 1.8177 1.83485
221 219 1.8274000000000001 1.8425
222 220 1.838 1.8542
223 221 1.8457000000000001 1.86175
224 222 1.8564 1.8672000000000002
225 223 1.86175 1.8758000000000001
226 224 1.8747 1.8865500000000002
227 225 1.8801 1.8941000000000001
228 226 1.88775 1.9006500000000002
229 227 1.8963 1.9081000000000001
230 228 1.90595 1.91995
231 229 1.9146 1.92755
232 230 1.9222000000000001 1.9350500000000002
233 231 1.9286 1.9437
234 232 1.9383000000000001 1.95015
235 233 1.9501000000000002 1.9619000000000002
236 234 1.9577 1.9695500000000001
237 235 1.96415 1.9760000000000002
238 236 1.97055 1.9846000000000001
239 237 1.9792 1.99425
238 1.99
239 1.99855

Binary file not shown.

View File

@ -21,45 +21,20 @@ except:
def data_overview3():
# calcdf_RAM_overview()
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s_burst_corr'
save_name = 'calc_RAM_overview-noise_data8_nfft1sec_original__LocalEOD_CutatBeginning_0.05_s_NeurDelay_0.005_s'
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__CutatBeginning_0.05_s_NeurDelay_0.005_s'
save_name = 'calc_RAM_overview-noise_data9_nfft1sec_original__StimPreSaved4__mean5__CutatBeginning_0.05_s_NeurDelay_0.005_s'
col = 4
row = 2 # sharex=True,
plot_style()
default_figsize(column=2, length=6.2) #65.5
#fig, ax = plt.subplots(4, 2) # , figsize=(14, 7.5) constrained_layout=True,
var_it = 'Response Modulation [Hz]'
var_it2 = ''
if var_it == '':
ws = 0.35
else:
ws = 0.65
if var_it2 != '':
right = 0.9
else:
right = 0.98
right = 0.85
ws = 0.75
print(right)
#print(right)
grid0 = gridspec.GridSpec(3, 2, wspace=ws, bottom=0.07,
hspace=0.45, left=0.1, right=right, top=0.95)
###################################
###############################
# Das ist der Finale Score
scoreall = 'perc99/med_diagonal_proj'
scoreall = 'max(diag5Hz)/med_diagonal_proj_fr'#'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'#'perc99/med_diagonal_proj'
#'max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr',
###################################
#scores = [scoreall+'_diagonal_proj']
##########################
# Auswahl: wir nehmen den mean um nicht Stimulus abhängigen Noise rauszumitteln
@ -88,7 +63,7 @@ def data_overview3():
'max(diag5Hz)/med_diagonal_proj_fr_base_w_burstcorr'] # + '_diagonal_proj'
scores = ['max(diag5Hz)/med_diagonal_proj_fr','max(diag5Hz)/med_diagonal_proj_fr',
] # + '_diagonal_proj'
printing = False # print values for paper
max_xs = [[[],[],[]],[[],[],[]]]
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
@ -105,19 +80,7 @@ def data_overview3():
# modulatoin comparison for both cell_types
################################
# Modulation, cell type comparison
# todo: hier die diff werte über die zellen
#ax_here = []
#axd = plt.subplot(grid_lower_lower[0, c])
#kernel_histogram(axk, colors[str(cell_type_here)], np.array(x_axis), norm=True, step=0.03, alpha=0.5)
#embed()
#axk.show_spines('lb')
#axs = plt.subplot(grid0[6+c])
colorbar = False
#if colorbar:
x_axis = ['cv_base','cv_stim','response_modulation']#,'fr_base']#
var_item_names = [var_it,var_it,var_it2]#,var_it2]#['Response Modulation [Hz]',]
@ -154,10 +117,6 @@ def data_overview3():
ymin = 0
xmin = 0
if (' P-unit' in cell_type_here) & ('cv' in x_axis[v]):
xlimk = [0, 2]
else:
xlimk = None
xlimk = None
labelpad = 0.5#-1
@ -168,8 +127,9 @@ def data_overview3():
xlim=xlimk, x_pos=1, burst_fraction=burst_fraction[c],
ha='right')
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
if printing:
print(cell_type_here + ' median '+scores_here[v]+''+str(np.nanmedian(frame_file[scores_here[v]])))
print(cell_type_here + ' max ' + x_axis[v] + '' + str(np.nanmax(frame_file[x_axis[v]])))
if v == 0:
colors = colors_overview()
@ -208,44 +168,61 @@ def data_overview3():
tags.append(axx)
counter += 1
#plt.show()
if printing:
printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis)
show = False#True
fig = plt.gcf()
#embed()
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
save_visualization(pdf = True, show = show)
def printing_values_data_overview(cell_types, frame_load_sp, scores, species, x_axis, y_axis):
############################
# 1 Print scores
print('\n')
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
#for species in speciess:
# for species in speciess:
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
print(cell_type_here + str(len(frame_file.cell.unique())))
#embed()
# embed()
cells_amp = ['2011-09-21-ab', '2010-06-21-am', '2012-05-15-ac', '2012-04-26-ae', '2012-05-07-ac',
'2010-06-21-ac']
cells_amp = update_cell_names(cells_amp)
frame_amps = frame_file[frame_file.cell.isin(cells_amp)]
frame_amps.cell.unique()
#['2012-05-07-ac-invivo-1', '2012-04-26-ae','2012-05-15-ac-invivo-1', '2010-06-21-ac-invivo-1','2010-06-21-am-invivo-1', '2011-09-21-ab-invivo-1']
#embed()
#if len(frame_amps)
# ['2012-05-07-ac-invivo-1', '2012-04-26-ae','2012-05-15-ac-invivo-1', '2010-06-21-ac-invivo-1','2010-06-21-am-invivo-1', '2011-09-21-ab-invivo-1']
# embed()
# if len(frame_amps)
#################################################################
# print the corrs
score = scores[c]#'ser_base',
score = scores[c] # 'ser_base',
score_print = [score]
score_print = [scores[c],scores[c],scores[c],scores[c],scores[c],'burst_fraction_burst_corr_individual_base']
corr_vars = ['cv_base','response_modulation','fr_base','ser_first_base','burst_fraction_burst_corr_individual_stim','cv_base']
#for score in score_print:
for c_nr, corr_var in enumerate(corr_vars):#,'ser_sum_corr'
score_print = [scores[c], scores[c], scores[c], scores[c], scores[c],
'burst_fraction_burst_corr_individual_base']
corr_vars = ['cv_base', 'response_modulation', 'fr_base', 'ser_first_base',
'burst_fraction_burst_corr_individual_stim', 'cv_base']
# for score in score_print:
for c_nr, corr_var in enumerate(corr_vars): # ,'ser_sum_corr'
score = score_print[c_nr]
x = frame_file['fr_base']
y = frame_file['ser_first']
c = frame_file['cv_base']
try:
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var , score=score)
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, corr_var, cv_name=corr_var,
score=score)
except:
print('frame file lost')
embed()
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to '+str(score) + pears_l)
#if corr_var == 'ser_first_base':#
print(start_name(cell_type_here, species) + ' ' + corr_var + ' to ' + str(score) + pears_l)
# if corr_var == 'ser_first_base':#
# embed()
print('\n')
################################
@ -254,17 +231,20 @@ def data_overview3():
score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
print(start_name(cell_type_here, species) + ' ' + 'fr_base' + ' to ' + 'cv_base' + pears_l)
################################
# cv to fr correlation
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='range', species=species)
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file, 'burst_fraction_burst_corr_individual_base', cv_name='burst_fraction_burst_corr_individual_base',
c_axis, x_axis, y_axis, exclude_here = exclude_nans_for_corr(frame_file,
'burst_fraction_burst_corr_individual_base',
cv_name='burst_fraction_burst_corr_individual_base',
score='cv_base')
corr, p_value = stats.pearsonr(x_axis, y_axis)
pears_l = label_pearson(corr, p_value, y_axis, n=True)
print(start_name(cell_type_here, species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
print(start_name(cell_type_here,
species) + ' amprange: ' + 'burst_fraction_individual_base' + ' to ' + 'cv_base' + pears_l)
###############################
# fr to nonline but for both modulations
@ -275,29 +255,25 @@ def data_overview3():
print(start_name(cell_type_here, species) + ' amprange: ' + ' ' + 'fr_base' + ' to score' + pears_l)
##################################
print('\n')
#embed()
#todo: hier noch die Werte für die Methodik printen
# embed()
# todo: hier noch die Werte für die Methodik printen
test = False
#embed()
# embed()
if test:
plt.hist(frame_file['lim_individual'])
#print(frame_file['lim_individual'])
# print(frame_file['lim_individual'])
############################################
############################
# 2 Print names
# printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='')
print('\n')
print('From ' +str(np.sort(frame_file.cell)[0])+' to '+str(np.sort(frame_file.cell)[-1])+' nr '+str(len(frame_file.cell)))
#embed()
#embed()
print('From ' + str(np.sort(frame_file.cell)[0]) + ' to ' + str(np.sort(frame_file.cell)[-1]) + ' nr ' + str(
len(frame_file.cell)))
# embed()
# embed()
#####################################################################
############################
# 3 Print , EODF
@ -308,12 +284,14 @@ def data_overview3():
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='min', species=species)
if len(frame_file)> 0:
if len(frame_file) > 0:
# ja der fisch hatte halt eine ziemlich niedriege EODf
frame_here = frame_file[frame_file.cell != '2022-01-05-af-invivo-1']
try:
print(start_name(cell_type_here,
species) + ' eodf_min ' + str(int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(int(np.round(np.nanmax(frame_here.eod_fr))))+' n '+str(len(frame_here)))
species) + ' eodf_min ' + str(
int(np.round(np.nanmin(frame_here.eod_fr)))) + ' eodf_max ' + str(
int(np.round(np.nanmax(frame_here.eod_fr)))) + ' n ' + str(len(frame_here)))
except:
print('eodf thing')
embed()
@ -321,9 +299,7 @@ def data_overview3():
new_list = [item[0:10] for item in my_list]
fish.extend(new_list)
print(species[0:7]+' n_fish '+str(len(np.unique(fish))))
print(species[0:7] + ' n_fish ' + str(len(np.unique(fish))))
#####################################################################
# Burst corr limits
print('\n')
@ -336,8 +312,7 @@ def data_overview3():
lims_name = ''
for lim in lims:
lims_name = lims_name + str(lim) + ': ' + str(np.sum(frame_file['lim_individual'] == lim)) + ','
print(start_name(cell_type_here, species) + ' ' + lims_name)
print(start_name(cell_type_here, species) + ' ' + lims_name)
#####################################################################
############################
# 3 Print , EODF
@ -346,18 +321,13 @@ def data_overview3():
speciess = [' Apteronotus leptorhynchus', ' Eigenmannia virescens']
for species in speciess:
for c, cell_type_here in enumerate(cell_types):
frame_file = setting_overview_score(frame_load_sp, cell_type_here,min_amp = '',species=species)
frame_file = setting_overview_score(frame_load_sp, cell_type_here, min_amp='', species=species)
if len(frame_file)> 0:
#embed()
if len(frame_file) > 0:
# embed()
print(start_name(cell_type_here, species) + ' amp_min ' + str(
np.nanmin(frame_file.amp)) + ' amp_max ' + str(np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
test = False
#embed()
if test:
frame_file[['cv_stim','cv_base']]
frame_file['cv_stim']
embed()
np.nanmin(frame_file.amp)) + ' amp_max ' + str(
np.nanmax(frame_file[~np.isinf(frame_file.amp)].amp)))
############################
# CVs min max
for species in speciess:
@ -366,11 +336,14 @@ def data_overview3():
if len(frame_file) > 0:
try:
print(start_name(cell_type_here, species) + ' CV_min ' + str(np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(np.round(np.nanmax(frame_file.fr_base))))
print(start_name(cell_type_here, species) + ' CV_min ' + str(
np.round(np.nanmin(frame_file.cv_base), 2)) + ' CV max ' + str(
np.round(np.nanmax(frame_file.cv_base), 2)) + ' FR max ' + str(
np.round(np.nanmin(frame_file.fr_base))) + ' FR max ' + str(
np.round(np.nanmax(frame_file.fr_base))))
except:
print('min here')
embed()
############################################
#######
# N
@ -380,51 +353,42 @@ def data_overview3():
for c, cell_type_here in enumerate(cell_types):
##################
# printe wie viele Zellen es am Anfang gab
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude = False, snippet = None, min_amp='min', species=species)
frame_file = setting_overview_score(frame_load_sp, cell_type_here, f_exclude=False, snippet=None,
min_amp='min', species=species)
print(start_name(cell_type_here, species) + ' nr ' + str(len(frame_file)))
#embed()
#if c in [0,2]:
# embed()
# if c in [0,2]:
#cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
# cmap, _, y_axis = plt_modulation_overview(axs, c, cell_type_here,
# cv_name, frame_file, max_val, score,
# species)
#axs.set_ylabel(score)
#embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
#axs.set_xlabel(cv_name)
#axs.get_shared_x_axes().join(*[axs, axd])
# axs.set_ylabel(score)
# embed()#frame_file[(frame_file.cv_base < 0.65) & (frame_file.response_modulation > 200)].response_modulation
# axs.set_xlabel(cv_name)
# axs.get_shared_x_axes().join(*[axs, axd])
# elif species == ' Apteronotus albifrons':
# plt_albi(ax[4, 1], cell_type_here, colors, max_val, species, x_axis, y_axis)
#ax[1,cv_n].set_xlim(0, max_val)
#set_same_ylim(np.concatenate(ax[1::, :]))
#set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
#set_same_ylim(ax[0, :], ylim_type='xlim')
# ax[1,cv_n].set_xlim(0, max_val)
# set_same_ylim(np.concatenate(ax[1::, :]))
# set_same_ylim(np.concatenate(ax[1::, :]),ylim_type ='xlim')
# set_same_ylim(ax[0, :], ylim_type='xlim')
#set_ylim_same()
#ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
#counter += 1
#embed()
# set_ylim_same()
# ax[1, 1].get_shared_y_axes().join(*ax[1, 1::])
# counter += 1
# embed()
############################################
# printe um welchen Zeitraum es sich handelt
frame_file = setting_overview_score(frame_load_sp, cell_type_here = '', f_exclude=False, snippet=None, min_amp='min',
frame_file = setting_overview_score(frame_load_sp, cell_type_here='', f_exclude=False, snippet=None, min_amp='min',
species='')
print('\n sampling'+str(frame_file.sampling.unique()))
print('\n sampling' + str(frame_file.sampling.unique()))
print('P-units Fr: 50-450 Hz CV: 0.15 - 1.35')
print('Ampullary Fr: 80-200 Hz, CV: 0.08 - 0.22')
#plt.show()
show = False#True
fig = plt.gcf()
#embed()
tags_final = np.concatenate([tags[0::3],tags[1::3],tags[2::3]])#,tags[2::3]
fig.tag(tags_final, xoffs=-4.2, yoffs=1.12)
save_visualization(pdf = True, show = show)
# plt.show()
if __name__ == '__main__':

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

View File

@ -74,7 +74,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
for all in it.product(*iternames):
var_type, stim_type_afe, stim_type_noise, power, nfft, dendrid, cut_off1, trial_nrs, c_sig, c_noise, ref_type, adapt_type, noise_added, extract, a_fr, a_fe = all
# print(trials_stim,stim_type_noise, power, nfft, a_fe,a_fr, dendrid, var_type, cut_off1,trial_nrs)
fig = plt.figure()
hs = 0.45
@ -103,7 +102,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
trial_nr = 500000
cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1'
print('cell' + str(cell))
cells_given = [cell]
save_name_rev = find_folder_name(
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
@ -287,7 +286,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
deltat = model_params.pop("deltat") # .iloc[0]
v_offset = model_params.pop("v_offset") # .iloc[0]
eod_fr = stack.eod_fr.iloc[0]
print(var_types[g] + ' a_fe ' + str(a_fes[g]))
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
eod_fe=eod_fe)
@ -315,7 +314,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
elif len(np.unique(frame.RAM_afe)) > 1:
color_timeseries = 'red'
nr_plot = 0
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try:
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100,
@ -339,7 +338,7 @@ def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length)
elif len(np.unique(frame.RAM_noise)) > 1:
color_timeseries = 'purple'
nr_plot = 1
print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try:
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100,
@ -454,5 +453,5 @@ if __name__ == '__main__':
##########################
#embed()
print('hi')
#print('hi')
model_and_data2(eod_metrice=False, width=0.005, D_extraction_method=D_extraction_method) #r'$\frac{1}{mV^2S}$'

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 194 KiB

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -86,7 +86,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
trial_nr = 500000
cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1'
print('cell'+str(cell))
#print('cell'+str(cell))
cells_given = [cell]
save_name_rev = find_folder_name(
'calc_model') + '/' + 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
@ -127,12 +127,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
]
nrs_s = [3, 4, 8, 9]#, 10, 11
save_name = save_names[s]
#embed()
tr_name = trial_nr/1000000
if tr_name == 1:
tr_name = 1
ax_model = []
save_name = find_folder_name('calc_model') + '/' + save_name
@ -141,12 +137,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
perc = 'perc'
path = save_name + '.pkl' # '../'+
# stack = get_stack_one_quadrant(cell, cell_add, cells_save, path, save_name)
# full_matrix = create_full_matrix2(np.array(stack), np.array(stack_rev))
# stack_final = get_axis_on_full_matrix(full_matrix, stack)
# im = plt_RAM_perc(ax, perc, np.abs(stack))
#
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
if len(stack)> 0:
@ -184,14 +175,8 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
perc05_wo_norm.append(float('nan'))
median_wo_norm.append(float('nan'))
counter.append(float('nan'))
# vars, cv_stims, fr_stims
print((np.array(counter)+1)/trial_nrs_here)
print((np.array(counter)) / trial_nrs_here)
#embed()
#ax.plot(trial_nrs_here, perc05, color = 'grey')
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s])
#ax.plot(trial_nrs_here, median, color = 'black', label = 'median')
#ax.scatter(trial_nrs_here, perc05, color = 'grey')
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
ax[0].set_xscale('log')#colors[s]
ax[0].set_yscale('log')
@ -203,52 +188,12 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
if s == 1:
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
ax[0].legend()
#ax[0].set_xscale('log')
#ax[0].set_yscale('log')
#ax[0].set_xlabel('Trials [$N$]')
#ax[0].set_ylabel('$\chi_{2}$\,[Hz]')
#ax[0].legend()
''' ax = plt.subplot(1,3,2)
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
ax = plt.subplot(1,3,3)
ax.plot(trial_nrs_here, perc05_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, perc95_wo_norm, color = 'grey')
ax.plot(trial_nrs_here, median_wo_norm, color = 'black', label = 'median')
ax.fill_between(trial_nrs_here, perc05_wo_norm, perc95_wo_norm, color='grey')
#ax.scatter(trial_nrs_here, median, color='black', label='measured points')
ax.legend()
ax.set_xscale('log')
ax.set_yscale('log')
'''
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
#plt.set_scale
#embed()
#embed()
#fig.tag([axes[0:3]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([[axes[4]]], xoffs=-3, yoffs=1.6, minor_index=0) # ax_ams[3],
#fig.tag([axes[3:6]], xoffs=-3, yoffs=1.6) #, major_index = 1, minor_index = 2 ax_ams[3],
#fig.tag([[axes[7]]], xoffs=-3, yoffs=1.6, major_index=2,minor_index=0) # ax_ams[3],
#fig.tag([axes[8::]], xoffs=-3, yoffs=1.6, major_index=2, minor_index=2) # ax_ams[3],
#fig.tag([axes[7::]], xoffs=-3, yoffs=1.6) # ax_ams[3],
#fig.tag([ax_ams[0],ax_data[0],axes[2], axes[3]], xoffs=-3, yoffs=1.6)#ax_ams[3],
#plt.show()
save_visualization(pdf=True)

View File

@ -1,188 +0,0 @@
'''import os
try:
from numba import jit
except ImportError:
def jit(nopython):
def decorator_jit(func):
return func
return decorator_jit
import inspect
if 'cv_cell_types' not in inspect.stack()[-1][1]:
try:
from plotstyle import plot_style, spines_params
except:
a = 5
import sys
from IPython import embed
# utils susept wird in utils paper copiert und von utisl_susepitbility gestartet
utils_suseptibility_name = 'utils1'
utils_susept_name = 'utils1_project'
utils_suseptibility_name2 = 'utils_susept2'
utils_susept_name2 = 'utils_paper2'
utils_suseptibility_name_all = 'utils0'
utils_susept_name_all = 'utils0_project'#_down
try:# this will not load but I want this to be reference for the refractoring in pycharm
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
cont_other_dir = True#
except:
cont_other_dir = False#then I know that I am on alexandras PC and I can update my code
#embed()
if cont_other_dir == False:
import filecmp
# I can also update the folder in another directy to double check its dependencies
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
#embed()
if filecmp.cmp('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
if os.path.exists('../'+utils_suseptibility_name+'.py'):# das mache ich um in dem richtigen embed zu arbeiten
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,remove_yticks, unify_cell_names,load_cv_table, colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
# wir schauen erstmal ohne sys dass das immer zu teilen da ist
import shutil
if os.path.exists('../'+utils_suseptibility_name+'.py'):
shutil.copyfile('../'+utils_suseptibility_name+'.py', utils_susept_name+'.py')
import shutil
if os.path.exists('../' + utils_suseptibility_name + '.py'):
shutil.copyfile('../' + utils_suseptibility_name_all + '.py', utils_susept_name_all + '.py')
print('copied utils all')
# wenn wir auf meinem Computer sind ziehen wir es aber immer vom code
# damit das refractors und wenn wir wo anders sind von dem extra kopierten file
if not os.path.exists('../'+utils_suseptibility_name+'.py'):
from utils1_project import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
#from utils_paper2 import * # resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
else:
sys.path.insert(0, '..')
from threefish.utils1 import *#resave_small_files,plt_cv_part,RAM_norm_data, remove_yticks, unify_cell_names,load_cv_table, calc_base_reclassification,colorbar_outside_right2, find_code_vs_not, load_folder_name, save_visualization
##############################
# find out if we are in the code or develop mode (alexandra) or the public mode!
names_extra_modules = []
version = 'code'
# for name in names_extra_modules:
if 'suseptibility' in inspect.stack()[-1][1]: # 'code' not in # da ist jetzt die Starter Directory
version = 'develop'
if ('code' not in inspect.stack()[-1][1]) | (not (('alex' in os.getlogin()) | ('rudnaya' in os.getlogin()))):
version = 'public' # für alle sollte version public sein!
# this we do only in the develop mode
if version == 'develop': #
copy = True
if copy:
if __name__ == '__main__':
from distutils.dir_util import copy_tree
import time
import shutil
#shutil.rmtree("../../make_folder/suseptibility")#delet
t1 = time.time()
dirs = os.listdir("../suseptibility")
d_count = 0
for d, directory in enumerate(dirs):
if (('.csv' in directory) | ('.npy' in directory) | ('.pkl' in directory) | ('.py' in directory)| ('suseptibility' in directory)| ('make' in dir.lower()) | ('.dat' in directory)) & ('__pycache__' not in directory):
new_folder_make = '../../../make_folder'
if not os.path.exists(new_folder_make):
os.mkdir(new_folder_make)
new_dir = new_folder_make+"/suseptibility/"
if not os.path.exists(new_dir):
os.mkdir(new_dir)
# clean the previous directory
#embed()
if d_count == 0:
dirs_new = os.listdir(new_dir)
for dir_n in dirs_new:
if '__pycache__' not in dir_n:
os.remove(new_dir + dir_n)
# nicht remove three sonst macht es alles weg
#shutil.rmtree(new_dir)
#os.mkdir(new_dir)
# redo the directory
#
if os.path.exists(new_dir + directory):
embed()
#print(new_dir+dir)
#try:
shutil.copy2("../suseptibility/" + directory,new_dir + directory)
#print(new_dir + directory)
#shutil.copy("../suseptibility/" + directory,new_dir + directory)
#shutil.copyfile("../suseptibility/"+dir, new_dir+dir)
#except:
# print('shutil stuff')
# embed()
d_count += 1
t2 = time.time() -t1
print('Time='+str(t2))
print('copied')
#copy_tree("../suseptibility", "../../make_folder/suseptibility")
def plt_scatter_four(grid, frame, cell_types, cell_type_type, annotate, colors):
grid2 = gridspec.GridSpecFromSubplotSpec(1, 4, grid[0], wspace=0.4,
hspace=0.2)
add = ['', '_burst_corr', ]
ax0 = plt.subplot(grid2[0])
# ok hier plotten wir nur den scatter der auch ein gwn hat, aber was ist wenn es mehr sind?
# ok im prinzip sollte das zwar schon stimmen aber für das Bild kann man wirklich mehr machen
for c, cell_type_it in enumerate(cell_types):
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_fr(annotate, ax0, add[0], frame_g, colors, cell_type_it)
ax1 = plt.subplot(grid2[1])
for c, cell_type_it in enumerate(cell_types):
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_vs(frame_g, ax1, add[0], annotate, colors, cell_type_it)
ax2 = plt.subplot(grid2[2])
ax2.set_title('burst')
for c, cell_type_it in enumerate(cell_types):
# frame_all = frame[(frame[cell_type_type] == cell_type)]
frame_g = frame[
(frame[cell_type_type] == cell_type_it) & ((frame.gwn == True) | (frame.fs == True))]
plt_cv_fr(annotate, ax2, add[1], frame_g, colors, cell_type_it)
return ax0, ax1, ax2,'''