updating figures
This commit is contained in:
parent
9cf0dbd178
commit
08388ae10e
BIN
__pycache__/model_and_data.cpython-39.pyc
Normal file
BIN
__pycache__/model_and_data.cpython-39.pyc
Normal file
Binary file not shown.
10000
data/model_full-transfer_model_amplitude0.csv
Normal file
10000
data/model_full-transfer_model_amplitude0.csv
Normal file
File diff suppressed because it is too large
Load Diff
10000
data/model_full-transfer_model_amplitude02012-07-03-ak-invivo-1.csv
Normal file
10000
data/model_full-transfer_model_amplitude02012-07-03-ak-invivo-1.csv
Normal file
File diff suppressed because it is too large
Load Diff
10000
data/model_full-transfer_model_amplitude02013-01-08-aa-invivo-1.csv
Normal file
10000
data/model_full-transfer_model_amplitude02013-01-08-aa-invivo-1.csv
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
73
data/models_d_right.csv
Normal file
73
data/models_d_right.csv
Normal file
@ -0,0 +1,73 @@
|
||||
,cell,EODf,a_zero,delta_a,dend_tau,input_scaling,mem_tau,noise_strength,ref_period,deltat,tau_a,threshold,v_base,v_offset,v_zero
|
||||
0,2010-11-08-al-invivo-1,744.66,9.450855200303527,0.0604984400793618,0.0007742334994649,31.363843698084207,0.0017257848281706,7.699289148855061e-05,0.0010273077926126,5e-05,0.1022386553157565,1,0,-0.390625,0
|
||||
1,2011-10-25-aa-invivo-1,724.94,17.324840755350014,0.0591913568259293,0.0041765955988219,126.0907181735006,0.0011845579843807,0.0002904021591991,0.0006959832098553,5e-05,0.1089142677011385,1,0,-23.046875,0
|
||||
2,2011-10-25-ad-invivo-1,760.5,42.322806986231576,0.1128743560865006,0.0049804702817868,275.52394339936325,0.0023119383270376,0.0006602840501078,0.0009167762282024,5e-05,0.0641670185687361,1,0,-43.359375,0
|
||||
3,2012-04-20-ad-invivo-1,811.57,61.15542998217432,0.1809911409228079,0.0065499545871112,317.4201379309943,0.0014460502988963,0.0006154752637016,0.0010070482769896,5e-05,0.1718068006049748,1,0,-39.84375,0
|
||||
4,2012-04-20-af-invivo-1,800.03,8.666272965511395,0.0224254352605947,0.0020948092014818,90.3326105895584,0.0011619511953103,0.0002692291234707,0.0004258027499815,5e-05,0.0962203612055438,1,0,-20.21484375,0
|
||||
5,2012-04-20-ak-invivo-1,826.07,121.42077896009448,0.2988122723355702,0.0076752433311956,351.9448656755738,0.0011845244136958,0.0004816469185333,0.0012197526571388,5e-05,0.2031230589577027,1,0,10.9375,0
|
||||
6,2012-05-10-ad-invivo-1,891.62,27.619562499220827,0.1345056224178351,0.0012767974341065,142.840493368597,0.0044191056484668,0.0008633092166519,0.0005977574869045,5e-05,0.0967205016994888,1,0,-18.359375,0
|
||||
7,2012-06-27-ah-invivo-1,752.07,5.2388344597197705,0.03659696633407,0.0037989519965752,128.3173271059041,0.0016438953019065,0.0001808735038323,0.0012129185117702,5e-05,0.0792718029100008,1,0,-35.3515625,0
|
||||
8,2012-06-27-an-invivo-1,786.29,4.068827736501855,0.0430511192677837,0.0041551502152155,57.95001821363863,0.0015554768512448,2.764259961706088e-05,0.0009668453379819,5e-05,0.0913176474972983,1,0,-13.671875,0
|
||||
9,2012-07-03-ak-invivo-1,928.45,1.8853753804955329,0.0125302977789627,0.0010172326122311,11.282392495019522,0.0002496247649189,4.646383539997057e-06,2.781559315405718e-05,5e-05,0.0216226842883503,1,0,-1.904296875,0
|
||||
10,2012-07-12-ag-invivo-1,744.95,16.239434635393348,0.1513550832994938,0.0037504710528958,50.2874125565955,0.0001730827178691,5.723487349821114e-05,0.0003381486858513,5e-05,0.0734227017767456,1,0,-1.5625,0
|
||||
11,2012-07-12-ap-invivo-1,772.92,53.79680098764822,0.3098624628785055,0.006491044613537,274.7676513500772,0.0011314183472882,0.0003901229594757,0.0013282603439871,5e-05,0.0991670999413088,1,0,-32.8125,0
|
||||
12,2012-12-13-af-invivo-1,673.56,7.535514342013602,0.0422372510373371,0.0065539636971129,204.3615261447709,0.0018080213635166,0.0001348017868766,0.0012332624623859,5e-05,0.0583762732248613,1,0,-57.03125,0
|
||||
13,2012-12-13-ag-invivo-1,667.87,7.061602153402829,0.0546674984677376,0.0041487403958944,102.45822047850346,0.001412243047861,3.526703241249884e-05,0.000162275520082,5e-05,0.0393528925991773,1,0,-25.0,0
|
||||
14,2012-12-13-ah-invivo-1,664.7,6.823985334369345,0.0368958234780879,0.0066161666396143,102.86922103180392,0.0010940273699727,3.810537599772437e-05,0.0012246243965823,5e-05,0.0779443868884807,1,0,-25.5859375,0
|
||||
15,2012-12-13-an-invivo-1,657.91,4.458558193012667,0.0305497815969178,0.0013786872283781,35.834438055915825,0.0029913612464463,1.7125985827976543e-05,0.0012567714114379,5e-05,0.0248706231740213,1,0,-6.25,0
|
||||
16,2012-12-13-ao-invivo-1,657.82,5.435481358638207,0.0374623330424542,0.001970018378635,49.69904954465432,0.002328069209402,9.134402806092888e-05,0.0015081600329058,5e-05,0.0331211905447775,1,0,-9.765625,0
|
||||
17,2012-12-20-aa-invivo-1,668.32,4.195725270757472,0.0349469498459069,0.0049449391407958,61.926544628777336,0.0017742557744246,2.0461330360757243e-05,0.0013298764071622,5e-05,0.0625906100055979,1,0,-14.84375,0
|
||||
18,2012-12-20-ab-invivo-1,738.71,109.33434336088948,0.278266740784194,0.0060093620164311,246.87907584805632,0.0011102966287199,0.0003214275666699,0.0014015863938401,5e-05,0.0879400403500039,1,0,29.6875,0
|
||||
19,2012-12-20-ac-invivo-1,744.95,5.980561640857971,0.0266121874032581,0.0027843960684635,54.35498975113278,0.0016410099311694,3.736520494044416e-05,0.0008493183014978,5e-05,0.0464782969356258,1,0,-10.9375,0
|
||||
20,2012-12-20-ad-invivo-1,759.82,47.8899415032243,0.1572111340156579,0.004412827130915,294.3089535429343,0.0019082595931216,0.0005454793744743,0.0003902027099212,5e-05,0.0657687561129787,1,0,-45.3125,0
|
||||
21,2012-12-20-ae-invivo-1,763.79,50.2191242194429,0.1230203924349023,0.0056716684601917,286.1135698773513,0.0019726034024348,0.0005025289084042,0.0004045686352769,5e-05,0.0804183995591541,1,0,-40.625,0
|
||||
22,2012-12-21-ai-invivo-1,787.12,19.552681407982867,0.0636151659491776,0.0046658522913592,178.85419634079997,0.0019037662037406,0.0002308125575111,0.0004834553836243,5e-05,0.0939907169906999,1,0,-37.5,0
|
||||
23,2012-12-21-ak-invivo-1,796.83,2.4867707329905,0.0141270344770176,0.0028616283324329,31.510428742268093,0.0003974311599786,5.775335040006332e-06,0.0006089766381869,5e-05,0.0135933352352287,1,0,-7.71484375,0
|
||||
24,2012-12-21-am-invivo-1,806.15,2.599996979076464,0.0210131719161386,0.0072703458079583,46.67063036950735,0.0007837211245351,1.411589095846406e-05,0.0011669771041571,5e-05,0.043353864209255,1,0,-11.328125,0
|
||||
25,2012-12-21-an-invivo-1,812.7,2.657969122279684,0.0126980011518428,0.0029290565793311,30.47330327087832,0.0006812296678529,2.2698725628118127e-05,0.0010815182714474,5e-05,0.0298009543582118,1,0,-6.54296875,0
|
||||
26,2013-01-08-aa-invivo-1,800.63,1.7775663328189109,0.0139724469616012,0.0003756860850739,8.567002390828673,0.0011008277277909,7.296503188131748e-05,0.0001635438226173,5e-05,0.013192502003356,1,0,-0.5859375,0
|
||||
27,2013-01-08-ab-invivo-1,800.25,54.67466209697357,0.2380256573695303,0.003147952593016,401.4746609830789,0.0032334816919704,0.0009482203053873,0.0004075044135951,5e-05,0.1060140977474878,1,0,-75.78125,0
|
||||
28,2013-02-21-ae-invivo-1,665.93,4.294576393156899,0.0349079955577279,0.0042335826224234,193.03334826738376,0.0028604383906985,0.0003229739386601,0.0012770259072818,5e-05,0.0707596447935943,1,0,-56.8359375,0
|
||||
29,2013-02-21-ag-invivo-1,658.7,12.638812661345776,0.1016749009225033,0.0035367702668509,104.74966687228977,0.0016256371684299,9.994911396704052e-05,0.0012702670089049,5e-05,0.078155035148488,1,0,-20.3125,0
|
||||
30,2013-04-10-aa-invivo-1,623.77,7.2029389446183565,0.0526419078304854,0.0022248980461019,62.65798249994464,0.0028732093372693,0.000164159124109,0.0015625668737142,5e-05,0.0635449101638369,1,0,-12.5,0
|
||||
31,2013-04-10-ac-invivo-1,684.72,2.8892039094434803,0.042548818572458,0.0016869020510687,58.09049670735142,0.0023708232278567,0.0003152371416419,0.0010783506078415,5e-05,0.0348236653456585,1,0,-15.91796875,0
|
||||
32,2013-04-17-ab-invivo-1,601.09,42.53156496468646,0.1178301462037476,0.0057660381404226,295.0137656954471,0.0021325123481165,0.0008618261070858,0.0005865905086141,5e-05,0.078251177677974,1,0,-51.5625,0
|
||||
33,2013-04-17-ac-invivo-1,597.94,6.731685804526344,0.0880636102661295,0.0050639791128441,26.766210174285348,0.0002329228437903,1.6714951095492286e-05,0.0016821794608443,5e-05,0.1005180087588643,1,0,-1.953125,0
|
||||
34,2014-01-10-ab-invivo-1,724.72,37.22921835919794,0.105865032837993,0.0077800750459636,382.4713961027781,0.0013793118050116,0.0011037648201998,0.0006409865558835,5e-05,0.0785213908371962,1,0,-86.328125,0
|
||||
35,2014-01-10-ac-invivo-1,708.44,74.22028683769639,0.2062867838543796,0.0086275878935938,522.8738003484584,0.0019099084777949,0.0010896710668221,0.0007561837419108,5e-05,0.1387768914538001,1,0,-92.96875,0
|
||||
36,2014-01-10-ae-invivo-1,670.21,14.403635240773651,0.0927322308690146,0.0051211977513466,205.9862062669372,0.0025386240396386,0.0006095586872081,0.0010368267806298,5e-05,0.0994530945069613,1,0,-51.171875,0
|
||||
37,2014-01-16-ak-invivo-1,803.26,2.3120229511581782,0.0141654897826262,0.007112977431183,24.30632120240236,0.000285109630943,4.089968833381081e-06,0.0011963117586515,5e-05,0.06057228972437,1,0,-4.98046875,0
|
||||
38,2014-01-23-ab-invivo-1,775.18,9.42831561175426,0.0224514357612552,0.0045903654403364,128.9209928230727,0.0007476859066578,0.0001912651734499,0.0004929147142214,5e-05,0.0461635400578526,1,0,-31.0546875,0
|
||||
39,2014-03-19-ad-invivo-1,681.98,69.19466420583639,0.2893760409210132,0.0054364329221975,254.4826491240454,0.0007254371985574,0.0006771079934558,0.0014615164586903,5e-05,0.1345471235735028,1,0,-13.28125,0
|
||||
40,2014-03-19-ae-invivo-1,658.18,38.918760336221055,0.2480858206656654,0.0069955407767959,411.2324502457813,0.0027246186835932,0.0007951136822738,0.0007615925807794,5e-05,0.1169994719346085,1,0,-92.1875,0
|
||||
41,2014-03-19-ah-invivo-1,635.84,56.35167256285228,0.1974715379528175,0.0081228403287698,490.6872518263162,0.0025561010713697,0.0009226463077239,0.0006702491128007,5e-05,0.1445226828597265,1,0,-100.78125,0
|
||||
42,2014-03-19-ai-invivo-1,653.3,88.77458424718674,0.2913937065789225,0.008559140638147,523.4583656536372,0.0020914527733905,0.0014209210970579,0.00066567652942,5e-05,0.1121355388450789,1,0,-78.125,0
|
||||
43,2014-03-19-aj-invivo-1,669.86,32.547605273546935,0.2456940849344553,0.0063333108683462,420.54333434151465,0.0029116982298775,0.0013842790319836,0.0009552598932444,5e-05,0.0877717308089366,1,0,-101.5625,0
|
||||
44,2014-03-25-aa-invivo-1,870.98,21.701016139817888,0.0960172639965266,0.0061302790825722,245.39704801461176,0.0013015964681189,0.0002991440776181,0.0007199971612111,5e-05,0.0733662951162392,1,0,-58.203125,0
|
||||
45,2014-03-25-af-invivo-1,837.7,37.66383751511725,0.1928208471155374,0.0055587552838484,319.58811665224687,0.0012758102274061,0.0003895600960509,0.0007605506254404,5e-05,0.0572208929359239,1,0,-65.625,0
|
||||
46,2014-06-06-ac-invivo-1,800.02,82.92925558245138,0.2497281199063106,0.0058805791567524,401.0507428419596,0.00276420009562,0.0014107594831631,0.0005758934406361,5e-05,0.1571647789884099,1,0,-43.75,0
|
||||
47,2014-06-06-ag-invivo-1,800.12,63.10829705951355,0.5313050862748335,0.0145518013760081,617.8190914088805,0.0023091597305128,0.0036613353060679,0.0009675638720757,5e-05,0.157597675961733,1,0,-134.375,0
|
||||
48,2014-12-03-ai-invivo-1,858.5,34.062575827557275,0.3244570611395585,0.0093071756342572,461.2788968601441,0.0045649933974013,0.0029183532103229,0.0006210470513751,5e-05,0.1037876538806647,1,0,-112.5,0
|
||||
49,2014-12-11-aa-invivo-1,651.29,29.028405021923344,0.3825449567612229,0.0071781591428417,259.88530639963346,0.002849966390513,0.0014916969045105,0.0010340774235971,5e-05,0.1741002240578827,1,0,-54.6875,0
|
||||
50,2014-12-11-ad-invivo-1,650.07,6.884193252440972,0.125103799166033,0.005008289539649,111.76045965688944,0.001884129168681,0.0003939483088535,0.0014575051585428,5e-05,0.1131104818008776,1,0,-28.90625,0
|
||||
51,2015-01-15-ab-invivo-1,708.7,45.11066366134594,0.3830355936726118,0.0142573616079807,437.9661974380556,0.0014288922816903,0.001889557163285,0.0009721128113178,5e-05,0.1302311388392199,1,0,-96.875,0
|
||||
52,2015-01-20-ab-invivo-1,747.35,2.388006758171008,0.0460455856570295,0.0058274300652638,125.51425676781496,0.0026078497201184,0.0005355608495797,0.0013648958604759,5e-05,0.072682482481134,1,0,-36.9140625,0
|
||||
53,2015-01-20-ac-invivo-1,749.16,3.0637076562911862,0.0361482523844888,0.0038837828744527,40.161166949813975,0.0022024851776428,0.0001775828935248,0.0010111334953581,5e-05,0.0912778908591642,1,0,-8.984375,0
|
||||
54,2015-01-20-ae-invivo-1,775.45,10.29173021176557,0.1265554462422453,0.0072071781109798,356.19007281857216,0.0021576432183898,0.0007082894532779,0.0010720005959728,5e-05,0.1036278314600582,1,0,-102.734375,0
|
||||
55,2015-01-20-af-invivo-1,778.15,17.378611201243178,0.2373397050748237,0.006486977712037,233.2942526663853,0.0040916872369868,0.0018519688539093,0.0009390077156995,5e-05,0.0987058568785954,1,0,-57.8125,0
|
||||
56,2015-01-20-ag-invivo-1,778.5,18.07439316562912,0.2669718966923193,0.0059345812215258,228.01386728096296,0.0017130481512641,0.0004828089842224,0.0007940405766277,5e-05,0.173402795420842,1,0,-55.46875,0
|
||||
57,2017-07-18-ah-invivo-1,816.18,4.492478880802049,0.0306800492065723,0.0005510176207879,11.010435284946723,0.0012660814616981,6.939326220065633e-05,0.0001048071222688,5e-05,0.0534712893535971,1,0,1.171875,0
|
||||
58,2017-07-18-ai-invivo-1,817.53,4.836173387076376,0.0459604089024203,0.0005713395854796,19.082872790172893,0.0017648069889998,0.0002954943164986,0.0003799242606729,5e-05,0.0219438187457692,1,0,-2.5390625,0
|
||||
59,2017-07-18-aj-invivo-1,818.98,62.59548468438461,0.2668879734232494,0.0063976464842525,344.9549845381489,0.0006269389203256,0.000542355661302,0.0004845893795398,5e-05,0.0884760312971245,1,0,-48.4375,0
|
||||
60,2018-01-10-al,822.43,6.53045784849496,0.0477523266938062,0.0026516323266361,20.951337676489,0.000384722118084,5.630808827711224e-05,0.0004011848987451,5e-05,0.0468008096291354,1,0,-0.09765625,0
|
||||
61,2018-01-12-af,646.31,27.48409535758441,0.0822784189321632,0.0027716752344402,72.69113348986389,0.0013786805385745,0.0001421670943929,0.0010001738040759,5e-05,0.0608936121352207,1,0,5.46875,0
|
||||
62,2018-05-08-aa-invivo-1,643.65,36.66788911232605,0.2761728222642968,0.0083357504509621,330.2402625207435,0.0021657539780422,0.0018768276776544,0.0010942851413418,5e-05,0.2116606564116055,1,0,-68.75,0
|
||||
63,2018-05-08-ab-invivo-1,646.62,66.70525377272179,0.6014654520860893,0.005682795376896,328.0465980625613,0.001823255075318,0.0009180849887618,0.0008614237691425,5e-05,0.1472296039461372,1,0,-37.5,0
|
||||
64,2018-05-08-ac-invivo-1,655.16,35.32000871480389,0.3365254255760804,0.0067732193070078,139.23166556708537,0.0004350491142382,0.000401489691558,0.0013549977866199,5e-05,0.1531910034411788,1,0,-12.5,0
|
||||
65,2018-05-08-ad-invivo-1,655.66,44.994381556842654,0.1966955414103147,0.0024283512437206,141.095538216996,0.0029968871016672,0.0004073919444425,0.0008373923698767,5e-05,0.0998422947981054,1,0,-0.390625,0
|
||||
66,2018-05-08-ae-invivo-1,649.48,29.440282257876536,0.2018789493993832,0.003910493647611,170.6160808403345,0.0021895423364158,0.0002798942878887,0.0012411447920718,5e-05,0.130171888270862,1,0,-25.78125,0
|
||||
67,2018-05-08-af-invivo-1,649.93,41.849999531343975,0.1321076268905854,0.0052475491397625,228.20359643155803,0.0014814184541785,0.000495030241084,0.0007194589371705,5e-05,0.0617800897722998,1,0,-31.25,0
|
||||
68,2018-05-08-ai-invivo-1,653.62,10.138859439469911,0.0712064900990132,0.0012599754975274,40.34961621751716,0.0027325424460168,0.0002197690747209,0.0012116953449501,5e-05,0.054392058102494,1,0,-2.34375,0
|
||||
69,2018-06-25-ad-invivo-1,840.79,53.73684452063702,0.2072325783629882,0.0041833923107559,320.2100292094566,0.0028666513530079,0.0007840761526882,0.0007822294882607,5e-05,0.0841289508219278,1,0,-48.4375,0
|
||||
70,2018-06-26-ah-invivo-1,778.22,6.703026855077471,0.0341144423335754,0.0008151238083306,16.681124499669373,0.0013215872640159,0.0001692839665525,0.0007865435959385,5e-05,0.205762993728832,1,0,1.7578125,0
|
||||
71,2020-08-12-aa-invivo-1,746.68,44.46101827995927,0.106082537177636,0.0044832342587509,235.04483921079955,0.002487994738557,0.0005967131873841,0.0008508121416945,5e-05,0.1174296496534284,1,0,-29.296875,0
|
|
2001
data/models_starting_vals_transient_100_len_100small.csv
Normal file
2001
data/models_starting_vals_transient_100_len_100small.csv
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
@ -0,0 +1 @@
|
||||
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Binary file not shown.
@ -6,21 +6,23 @@ import pandas as pd
|
||||
from IPython import embed
|
||||
from matplotlib import gridspec, pyplot as plt
|
||||
|
||||
from threefish.plot_subplots import plt_model_flowcharts
|
||||
from threefish.values import ypos_x_modelanddata
|
||||
|
||||
try:
|
||||
from plotstyle import plot_style, spines_params
|
||||
except:
|
||||
print('plotstyle not installed')
|
||||
from threefish.RAM.plot_subplots import plot_lowpass2, plt_data_susept, plt_single_square_modl, plt_time_arrays
|
||||
from threefish.RAM.plot_subplots import plt_data_susept, plt_single_square_modl
|
||||
from threefish.RAM.values import overlap_cells, perc_model_full
|
||||
from threefish.load import resave_small_files, save_visualization
|
||||
from threefish.RAM.reformat_flowchart import get_flowchart_params
|
||||
from threefish.RAM.reformat_matrix import load_model_susept
|
||||
from threefish.core import find_folder_name
|
||||
from threefish.RAM.plot_labels import label_noise_name, nonlin_title, remove_xticks, remove_yticks, set_xlabel_arrow, \
|
||||
set_ylabel_arrow, title_find_cell_add, xlabel_xpos_y_modelanddata
|
||||
import itertools as it
|
||||
from threefish.defaults import default_figsize, default_settings
|
||||
from threefish.plot.limits import join_x, join_y, set_clim_same, set_same_ylim
|
||||
from threefish.plot.limits import set_clim_same, set_same_ylim
|
||||
|
||||
|
||||
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
|
||||
@ -99,7 +101,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
##################################
|
||||
# model part
|
||||
|
||||
trial_nr = 500000
|
||||
trial_nr = 100000
|
||||
cell = '2013-01-08-aa-invivo-1'
|
||||
cell = '2012-07-03-ak-invivo-1'
|
||||
|
||||
@ -120,16 +122,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
|
||||
]
|
||||
|
||||
save_names = [
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
|
||||
|
||||
##########
|
||||
# Erklärung
|
||||
@ -143,6 +135,65 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
|
||||
# oben habe ich einen bias factor weil die Zelle zu sensitiv gefittet ist, also passe ich das an dass die den
|
||||
# gleichen CV und feurrate hat, wie die Zelle in der Stimulation, deswegen ist dieser Bias faktor nur oben!
|
||||
#
|
||||
#bias_factors = [1, 1, 1, 1] # 0.3
|
||||
bias_factors = [0.36, 0.36, 1, 1] # 0.36
|
||||
|
||||
|
||||
#new
|
||||
save_names = [
|
||||
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
|
||||
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
]#'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
save_names = [
|
||||
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
|
||||
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_100000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
|
||||
]
|
||||
|
||||
|
||||
|
||||
save_names = [
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
|
||||
save_names = [
|
||||
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
]
|
||||
|
||||
save_names = [
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
|
||||
bias_factors = [0.36, 0.36, 1, 1]#0.36
|
||||
save_names = [
|
||||
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
@ -155,6 +206,11 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
|
||||
]
|
||||
|
||||
#
|
||||
|
||||
# 'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
#trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
|
||||
@ -206,7 +262,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
fr_print=fr_print, nr=nr)
|
||||
|
||||
# if s in [1,3,5]:
|
||||
|
||||
#embed()
|
||||
ims.append(im)
|
||||
mats.append(stack_plot)
|
||||
maxs.append(np.max(np.array(stack_plot)))
|
||||
@ -232,7 +288,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
if len(cells) > 1:
|
||||
a += 1
|
||||
|
||||
set_clim_same(ims, mats=mats, lim_type='up', nr_clim='perc', clims='', percnr=perc_model_full())
|
||||
set_clim_same(ims, mats=mats, lim_type='up', nr_clim='perc', clims='', percnr=perc_model_full())#
|
||||
|
||||
#################################################
|
||||
# Flowcharts
|
||||
@ -265,161 +321,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
|
||||
save_visualization(pdf=True)
|
||||
|
||||
|
||||
def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length):
|
||||
var_types = ['', 'additiv_cv_adapt_factor_scaled'] # 'additiv_cv_adapt_factor_scaled',
|
||||
##additiv_cv_adapt_factor_scaled
|
||||
a_fes = [c / 100, 0] # , 0.009
|
||||
eod_fe = [750, 750] # , 750
|
||||
ylim = [-0.5, 0.5]
|
||||
c_sigs = [0, 0.9] # , 0.9
|
||||
grid_left = [[], grid[1, 0]] # , grid[2, 0]
|
||||
ax_ams = []
|
||||
for g, grid_here in enumerate([grid[0, 2], grid[1, 2]]): # , grid[2, 0]
|
||||
grid_lowpass = gridspec.GridSpecFromSubplotSpec(4, 1,
|
||||
subplot_spec=grid_here, hspace=0.2,
|
||||
height_ratios=[1, 1, 1, 0.1])
|
||||
|
||||
models = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
||||
model_params = models[models['cell'] == '2012-07-03-ak-invivo-1'].iloc[0]
|
||||
cell = model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
|
||||
eod_fr = model_params['EODf'] # .iloc[0]
|
||||
deltat = model_params.pop("deltat") # .iloc[0]
|
||||
v_offset = model_params.pop("v_offset") # .iloc[0]
|
||||
eod_fr = stack.eod_fr.iloc[0]
|
||||
|
||||
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
|
||||
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
|
||||
eod_fe=eod_fe)
|
||||
|
||||
if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
|
||||
grid_lowpass2 = gridspec.GridSpecFromSubplotSpec(4, 1,
|
||||
subplot_spec=grid_here, height_ratios=[1, 1, 1, 0.1],
|
||||
hspace=0.05)
|
||||
|
||||
# if (np.unique(frame.RAM_afe) != 0):grid_left[g]
|
||||
|
||||
ax_external = plt_time_arrays('red', grid_lowpass2, 1, frame.RAM_afe * 100, time=time, nr=0)
|
||||
# if (np.unique(frame.RAM_noise) != 0):
|
||||
remove_xticks(ax_external)
|
||||
ax_intrinsic = plt_time_arrays('purple', grid_lowpass2, 1, frame.RAM_noise * 100, time=time, nr=1)
|
||||
ax_intrinsic.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=ax_intrinsic.transAxes)
|
||||
ax_intrinsic.show_spines('l')
|
||||
ax_external.show_spines('l')
|
||||
# ax_ams.append(axt_p2)
|
||||
# color_timeseries = 'black'
|
||||
# axt_p2.set_xlabel('Time [ms]')
|
||||
# axt_p2.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=axt_p2.transAxes)
|
||||
# ax_ams.append(axt_p2)
|
||||
vers = 'all'
|
||||
elif len(np.unique(frame.RAM_afe)) > 1:
|
||||
color_timeseries = 'red'
|
||||
nr_plot = 0
|
||||
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
||||
try:
|
||||
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
||||
(frame.RAM_afe + frame.RAM_noise) * 100,
|
||||
deltat, eod_fr,
|
||||
color1=color_timeseries, lw=1, extract=False)
|
||||
except:
|
||||
print('add up thing')
|
||||
embed()
|
||||
ax_external.show_spines('l')
|
||||
|
||||
ax_intrinsic = plt.subplot(grid_lowpass[1])
|
||||
ax_intrinsic.show_spines('l')
|
||||
ax_intrinsic.axhline(0, color='black', lw=0.5)
|
||||
ax_intrinsic.axhline(0, color='purple', lw=0.5)
|
||||
|
||||
remove_xticks(ax_external)
|
||||
remove_xticks(ax_intrinsic)
|
||||
join_x([ax_intrinsic, ax_external])
|
||||
join_y([ax_intrinsic, ax_external])
|
||||
vers = 'first'
|
||||
elif len(np.unique(frame.RAM_noise)) > 1:
|
||||
color_timeseries = 'purple'
|
||||
nr_plot = 1
|
||||
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
|
||||
try:
|
||||
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
|
||||
(frame.RAM_afe + frame.RAM_noise) * 100,
|
||||
deltat, eod_fr,
|
||||
color1=color_timeseries, lw=1, extract=False)
|
||||
except:
|
||||
print('add up thing')
|
||||
|
||||
embed()
|
||||
|
||||
ax_external = plt.subplot(grid_lowpass[0])
|
||||
ax_external.show_spines('l')
|
||||
ax_intrinsic.show_spines('l')
|
||||
|
||||
ax_external.axhline(0, color='black', lw=0.5)
|
||||
ax_external.axhline(0, color='red', lw=0.5)
|
||||
join_x([ax_intrinsic, ax_external])
|
||||
join_y([ax_intrinsic, ax_external])
|
||||
vers = 'second'
|
||||
ax_intrinsic.set_yticks_delta(6)
|
||||
ax_external.set_yticks_delta(6)
|
||||
ax_external.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_external.transAxes)
|
||||
ax_intrinsic.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_intrinsic.transAxes)
|
||||
remove_xticks(ax_intrinsic)
|
||||
# if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
|
||||
ax_external.set_xlabel('')
|
||||
# remove_yticks(ax)
|
||||
|
||||
ax_ams.append(ax_external)
|
||||
remove_xticks(ax_external)
|
||||
|
||||
ax_n, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[2]], time, noise_final_c, deltat, eod_fr,
|
||||
extract=False, color1='grey', lw=1)
|
||||
remove_yticks(ax_n)
|
||||
if g == 1:
|
||||
# ax_n.set_xlabel('Time [ms]', labelpad=-0.5)
|
||||
ax_n.text(0.5, xlabel_xpos_y_modelanddata() * 3, 'Time [ms]', transform=ax_n.transAxes, ha='center')
|
||||
else:
|
||||
remove_xticks(ax_n)
|
||||
ax_n.set_ylim(ylim)
|
||||
|
||||
if vers == 'first':
|
||||
ax_external.text(1, 1, 'RAM(' + cs[0] + ')', ha='right', color='red', transform=ax_external.transAxes)
|
||||
ax_n.text(start_pos_modeldata(), 1.1, noise_component_name(), ha='right', color='gray',
|
||||
transform=ax_n.transAxes)
|
||||
elif vers == 'second':
|
||||
ax_external.text(1, 1, 'RAM(' + cs[1] + ')', ha='right', color='red', transform=ax_external.transAxes)
|
||||
ax_intrinsic.text(start_pos_modeldata(), 1.1, signal_component_name(), ha='right', color='purple',
|
||||
transform=ax_intrinsic.transAxes)
|
||||
ax_n.text(start_pos_modeldata(), 0.9, noise_component_name(), ha='right', color='gray',
|
||||
transform=ax_n.transAxes)
|
||||
else:
|
||||
ax_n.text(start_pos_modeldata(), 0.9, noise_component_name(), ha='right', color='gray',
|
||||
transform=ax_n.transAxes)
|
||||
ax_external.text(1, 1, 'RAM', ha='right', color='red', transform=ax_external.transAxes)
|
||||
ax_intrinsic.text(start_pos_modeldata(), 1.1, signal_component_name(), ha='right', color='purple',
|
||||
transform=ax_intrinsic.transAxes)
|
||||
ax_external.tick_params(axis='y', which='major', labelsize=8.4)
|
||||
ax_intrinsic.tick_params(axis='y', which='major', labelsize=8.4)
|
||||
ax_n.tick_params(axis='y', which='major', labelsize=8.4)
|
||||
# xtick_labelsize =
|
||||
# embed()
|
||||
return ax_ams, ax_external
|
||||
|
||||
|
||||
def start_pos_modeldata():
|
||||
return 1.03
|
||||
|
||||
|
||||
def signal_component_name():
|
||||
return r'$s_\xi(t)$' #r'$\xi_{signal}$'#signal noise'
|
||||
|
||||
|
||||
def noise_component_name(): #$\xi_{noise}$noise_name =
|
||||
return 'Intrinsic noise' ##r'$\xi_{noise}$'#'Noise component'#'intrinsic noise'
|
||||
|
||||
|
||||
def ypos_x_modelanddata():
|
||||
return -0.45
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
|
||||
|
BIN
model_full.pdf
BIN
model_full.pdf
Binary file not shown.
BIN
model_full.png
BIN
model_full.png
Binary file not shown.
Before Width: | Height: | Size: 2.3 KiB After Width: | Height: | Size: 178 KiB |
@ -2,6 +2,7 @@
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from IPython import embed
|
||||
from matplotlib import gridspec, pyplot as plt
|
||||
|
||||
from threefish.RAM.calc_fft import create_full_matrix2
|
||||
@ -11,7 +12,7 @@ from threefish.RAM.reformat import check_var_substract_method, chose_certain_gro
|
||||
get_transfer_from_model, load_cells_three, predefine_grouping_frame, restrict_cell_type, save_arrays_susept
|
||||
from threefish.RAM.save import get_transfer_for_model_full
|
||||
from threefish.RAM.reformat_matrix import convert_csv_str_to_float, load_stack_data_susept
|
||||
from threefish.RAM.plot_subplots import adjust_factor_outside_nonlin, colors_suscept_paper_dots, letters_for_full_model, \
|
||||
from threefish.RAM.plot_subplots import colors_suscept_paper_dots, letters_for_full_model, \
|
||||
plt_model_big, \
|
||||
plt_model_full_model2, \
|
||||
plt_model_letters, \
|
||||
@ -28,6 +29,7 @@ from threefish.RAM.plot_labels import label_deltaf1, label_deltaf2, label_diff,
|
||||
label_two_deltaf2, \
|
||||
xlabel_transfer_hz
|
||||
from threefish.plot.limits import set_clim_same
|
||||
from threefish.values import values_nfft_full_model, values_stimuluslength_model_full
|
||||
|
||||
|
||||
#from utils_test import test_spikes_clusters
|
||||
@ -35,16 +37,16 @@ from threefish.plot.limits import set_clim_same
|
||||
|
||||
def model_full():
|
||||
|
||||
plot_style()
|
||||
default_figsize(column=2, length=3.5)#2.7
|
||||
grid = gridspec.GridSpec(2, 2, wspace=0.55, bottom = 0.15, height_ratios = [2, 5], width_ratios = [1.2, 1], hspace=0.7, top=0.92, left=0.06, right=0.98)#hspace=0.25,
|
||||
|
||||
|
||||
plot_style()
|
||||
default_figsize(column=2, length=3.5)#2.7
|
||||
grid = gridspec.GridSpec(2, 2, wspace=0.55, bottom = 0.15, height_ratios = [2, 5], width_ratios = [1.2, 1], hspace=0.7, top=0.88, left=0.06, right=0.98)#hspace=0.25,top=0.92
|
||||
|
||||
|
||||
axes = []
|
||||
a_size = 0.0095#0.0065#0.0065und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085
|
||||
adjust_factor_outside = 3#adjust_factor_outside_nonlin()
|
||||
a_size = 0.02#6#0.0095#0.01#15#0.0095#0.0065#0.0065und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085
|
||||
adjust_factor_outside = 1#adjust_factor_outside_nonlin()
|
||||
|
||||
|
||||
|
||||
@ -57,17 +59,25 @@ def model_full():
|
||||
axes.append(axm)
|
||||
|
||||
cell = '2012-07-03-ak-invivo-1'
|
||||
|
||||
cell = "2013-01-08-aa-invivo-1"
|
||||
#'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
|
||||
tr = 500000
|
||||
save_name_given = 'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_'
|
||||
save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_1000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
|
||||
#save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
|
||||
perc, im, stack_final, stack_saved = plt_model_big(axm, ls = ls, pos_rel=-0.12, lw = 0.75, cell = cell, lines = True,
|
||||
save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV')
|
||||
save_name_given = save_name_given)
|
||||
#embed()
|
||||
fr_waves = 139
|
||||
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
|
||||
DF1_frmult, DF2_frmult = vals_model_full(val=0.30833333333333335)
|
||||
|
||||
|
||||
models_name = "models_big_fit_d_right.csv"#_big_fit
|
||||
#############################################
|
||||
# plot coherence
|
||||
#embed()
|
||||
do_transfer = False
|
||||
if do_transfer:
|
||||
loaded_from_calc_RAM_model = False
|
||||
if loaded_from_calc_RAM_model:
|
||||
cross = get_transfer_from_model(stack_saved)
|
||||
@ -83,16 +93,16 @@ def model_full():
|
||||
# frequently used value
|
||||
# so harmonic is the right one since p-change and wave is some relict so take just harmonic
|
||||
|
||||
models = resave_small_files("models_big_fit_d_right.csv",
|
||||
models = resave_small_files(models_name,
|
||||
load_folder='calc_model_core')
|
||||
flowchart_cell = '2012-07-03-ak-invivo-1'
|
||||
#flowchart_cell = '2012-07-03-ak-invivo-1'
|
||||
|
||||
model_params = models[models['cell'] == flowchart_cell].iloc[0]
|
||||
print('cell=' + str(flowchart_cell))
|
||||
model_params = models[models['cell'] == flowchart_cell].iloc[0]
|
||||
print('cell=' + str(flowchart_cell))
|
||||
model_params = models[models['cell'] == cell].iloc[0]
|
||||
print('cell=' + str(cell))
|
||||
model_params = models[models['cell'] == cell].iloc[0]
|
||||
print('cell=' + str(cell))
|
||||
# amp_frame = pd.read_csv('peak_amplitudes_power.csv')
|
||||
cell = model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
|
||||
model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
|
||||
eod_fr = model_params['EODf'] # .iloc[0]
|
||||
deltat = model_params.pop("deltat") # .iloc[0]
|
||||
v_offset = model_params.pop("v_offset") # .iloc[0]
|
||||
@ -114,26 +124,32 @@ def model_full():
|
||||
stimulus_length,
|
||||
trials_nr,
|
||||
v_offset,
|
||||
c_sig = 0.9,
|
||||
c_sig = 0.9,redo =False,
|
||||
var_type='additiv_cv_adapt_factor_scaled')
|
||||
|
||||
axc = plt.subplot(grid[0, 1])
|
||||
f_same = frame.index
|
||||
#embed()
|
||||
try:
|
||||
transfer = frame['0']
|
||||
except:
|
||||
transfer = frame[0]
|
||||
axc.plot(f_same[f_same< xlim[-1]], np.abs(transfer[f_same< xlim[-1]])**power, color = 'black', zorder = 100)
|
||||
|
||||
axc.set_xlim(xlim)
|
||||
ylim_here = axc.get_ylim()
|
||||
#if c == 0:
|
||||
axc.set_ylabel(r'$|\chi_1|^2$')
|
||||
|
||||
else:
|
||||
f_same = False
|
||||
transfer = []
|
||||
|
||||
|
||||
#################
|
||||
# power spectra data
|
||||
log = 'log'#log'log'#'log'#'log'#'log'#'log'
|
||||
log = 'log'#'log'#log'log'#'log'#'log'#'log'#'log'
|
||||
ylim_log = (-14.2, 3)#(-14.2, 3)
|
||||
nfft = 20000#2 ** 13
|
||||
nfft = values_nfft_full_model()#length = values_stimuluslength_model_full()
|
||||
xlim_psd = [0, 300]
|
||||
|
||||
DF1_desired_orig = [133, 166]#33
|
||||
@ -149,7 +165,7 @@ def model_full():
|
||||
|
||||
#0.16666666666666666
|
||||
grid0 = gridspec.GridSpecFromSubplotSpec(2, 2, wspace=0.15, hspace=0.4,
|
||||
subplot_spec=grid[1,1])
|
||||
subplot_spec=grid[:,1])
|
||||
|
||||
|
||||
|
||||
@ -164,18 +180,20 @@ def model_full():
|
||||
diagonal = 'diagonal1'
|
||||
diagonal = ''
|
||||
plus_q = 'plus' # 'minus'#'plus'##'minus'
|
||||
length = 100#2*40 # 5
|
||||
length = values_stimuluslength_model_full()
|
||||
reshuffled = '' # ,
|
||||
array_len = 2
|
||||
alphas = [1,0.5]
|
||||
#a_size = 0.0065#0.0125#25#0.04#0.015
|
||||
|
||||
#embed()
|
||||
# ATTENTION: Diese Zelle ('2012-07-03-ak-invivo-1') braucht längere Abschnitte, mindsetesn 5 Sekunden damit das Powerspectrum nicht so niosy ist!
|
||||
#print('started')
|
||||
fr_noise, eod_fr_mm, axes2 = plt_model_full_model2(grid0, stack_final = stack_final, reshuffled=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size,
|
||||
stimulus_length=length, plus_q=plus_q, stack_saved = stack_saved,
|
||||
diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd,
|
||||
cells=[cell], dev_spikes ='original', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
|
||||
log = log, ms = ms, adjust_factor_outside = adjust_factor_outside, array_len = array_len, f_same = f_same, transfer = transfer, clip_on = False, trials_nr_all= [1, 1, 1, 1, 1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
|
||||
log = log, ms = ms, models_name = models_name, adjust_factor_outside = adjust_factor_outside, array_len = array_len, f_same = f_same, transfer = transfer, clip_on = False, trials_nr_all= [1, 1, 1, 1, 1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
|
||||
|
||||
|
||||
|
||||
@ -185,6 +203,16 @@ def model_full():
|
||||
plt_model_letters(DF1_frmult, DF2_frmult, axm, color012, color01_2, fr_noise, markers)
|
||||
|
||||
# letters for the transfer function
|
||||
if do_transfer:
|
||||
transferletters(DF1_frmult, DF2_frmult, array_len, axc, color01, color02, f_same, fr_noise, transfer)
|
||||
|
||||
fig = plt.gcf()#[axes[0], axes[3], axes[4]]
|
||||
fig.tag([axes[0], axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.35) # ax_ams[3],
|
||||
#plt.show()
|
||||
save_visualization()
|
||||
|
||||
|
||||
def transferletters(DF1_frmult, DF2_frmult, array_len, axc, color01, color02, f_same, fr_noise, transfer):
|
||||
letters = letters_for_full_model()
|
||||
for f in range(len(letters)):
|
||||
df1_recalc = recalc_fr_to_DF1(DF1_frmult, f, fr_noise)
|
||||
@ -204,11 +232,6 @@ def model_full():
|
||||
letters[f], color=color02, ha='center',
|
||||
va='center', zorder=100) # , alpha = alphas[f]
|
||||
|
||||
fig = plt.gcf()#[axes[0], axes[3], axes[4]]
|
||||
fig.tag([axes[0], axc, axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.2) # ax_ams[3],
|
||||
plt.show()
|
||||
save_visualization()
|
||||
|
||||
|
||||
def plt_data_matrix(axes, grid, ls, lw, perc):
|
||||
ax = plt.subplot(grid[0])
|
||||
|
BIN
nonlin_regime.pdf
Normal file
BIN
nonlin_regime.pdf
Normal file
Binary file not shown.
BIN
nonlin_regime.png
Normal file
BIN
nonlin_regime.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 114 KiB |
484
nonlin_regime.py
Normal file
484
nonlin_regime.py
Normal file
@ -0,0 +1,484 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from IPython import embed
|
||||
from matplotlib import gridspec, pyplot as plt
|
||||
|
||||
from plotstyle import plot_style
|
||||
from threefish.core import find_folder_name, info
|
||||
from threefish.defaults import default_figsize, default_ticks_talks
|
||||
from threefish.load import load_savedir, save_visualization
|
||||
from threefish.plot.limits import join_x, join_y, set_same_ylim
|
||||
from threefish.RAM.calc_fft import log_calc_psd
|
||||
from threefish.RAM.calc_model import chose_old_vs_new_model
|
||||
from threefish.RAM.plot_labels import label_f_eod_name_core_rm, onebeat_cond, remove_yticks
|
||||
from threefish.RAM.plot_subplots import colors_suscept_paper_dots, plt_spikes_ROC, recalc_fr_to_DF1
|
||||
from threefish.RAM.values import val_cm_to_inch, vals_model_full
|
||||
from threefish.twobeat.calc_model import calc_roc_amp_core_cocktail
|
||||
from threefish.twobeat.colors import colors_susept, twobeat_cond
|
||||
from threefish.twobeat.labels import f_stable_name, f_vary_name
|
||||
from threefish.twobeat.reformat import c_dist_recalc_func, c_dist_recalc_here, dist_recalc_phaselockingchapter, \
|
||||
find_dfs, \
|
||||
get_frame_cell_params
|
||||
from threefish.twobeat.subplots import plt_psd_saturation, plt_single_trace, plt_stim_saturation, plt_vmem_saturation, \
|
||||
power_spectrum_name
|
||||
from threefish.values import values_nfft_full_model, values_stimuluslength_model_full
|
||||
|
||||
|
||||
def nonlin_regime(yposs=[450, 450, 450], freqs=[(39.5, -210.5)], printing=False, beat='',
|
||||
nfft_for_morph=4096 * 4,
|
||||
gain=1,
|
||||
cells_here=["2013-01-08-aa-invivo-1"], fish_jammer='Alepto', us_name='',
|
||||
show=True):
|
||||
runs = 1
|
||||
n = 1
|
||||
|
||||
dev = 0.001
|
||||
|
||||
#reshuffled = 'reshuffled' # ,
|
||||
|
||||
# standard combination with intruder small
|
||||
a_f2s = [0.1]
|
||||
|
||||
min_amps = '_minamps_'
|
||||
dev_name = ['05']
|
||||
|
||||
#model_cells = pd.read_csv(find_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
|
||||
|
||||
#if len(cells_here) < 1:
|
||||
# cells_here = np.array(model_cells.cell)
|
||||
|
||||
a_fr = 1
|
||||
a = 0
|
||||
trials_nrs = [5]
|
||||
|
||||
datapoints = 1000
|
||||
stimulus_length = 2
|
||||
results_diff = pd.DataFrame()
|
||||
position_diff = 0
|
||||
plot_style()
|
||||
|
||||
default_figsize(column=2, length=7.5)
|
||||
|
||||
|
||||
########################################
|
||||
# für das model_full, die Freuqnezen
|
||||
DF1_frmult, DF2_frmult = vals_model_full(val=0.30833333333333335)
|
||||
frame_cvs = pd.read_csv(find_folder_name('calc_base')+'/csv_model_data.csv')
|
||||
frame_cell = frame_cvs[frame_cvs.cell == '2012-07-03-ak-invivo-1']
|
||||
#embed()
|
||||
for d in range(len(DF1_frmult)):
|
||||
#DF2_frmult[d] = str(DF2_frmult[d])+'Fr'
|
||||
#DF1_frmult[d] = str(DF1_frmult[d]) + 'Fr'
|
||||
DF2_frmult[d] = recalc_fr_to_DF1(DF2_frmult, d, frame_cell.fr_data.iloc[0])
|
||||
DF1_frmult[d] = recalc_fr_to_DF1(DF1_frmult, d, frame_cell.fr_data.iloc[0])
|
||||
##DF2_frmult[d] = recalc_fr_to_DF1(DF2_frmult, d, frame_cell.fr_data.iloc[0])
|
||||
freqs = [(DF1_frmult[2], DF2_frmult[2])]
|
||||
|
||||
|
||||
|
||||
|
||||
# sachen die ich variieren will
|
||||
###########################################
|
||||
|
||||
auci_wo = []
|
||||
auci_w = []
|
||||
|
||||
nfft = 32768
|
||||
cells_here = ['2012-07-03-ak-invivo-1']
|
||||
for cell_here in cells_here:
|
||||
|
||||
###########################################
|
||||
# über die frequenzen hinweg
|
||||
|
||||
for freq1, freq2 in freqs: # das ist
|
||||
full_names = [
|
||||
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_C2_0.1_C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1temporal',
|
||||
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_C2_0.1_C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1_old_fit_temporal']
|
||||
|
||||
full_names = ['calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_af_coupled__C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1temporal',
|
||||
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_af_coupled__C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1_old_fit_temporal']
|
||||
|
||||
c_grouped = ['c1'] # , 'c2']
|
||||
c_nrs_orig = [0.02, 0.2] # 0.0002, 0.05, 0.5
|
||||
trials_nr = 20 # 20
|
||||
redo = False # True
|
||||
log = 'log' # 'log'
|
||||
grid0 = gridspec.GridSpec(1, 1, bottom=0.08, top=0.93, left=0.11,
|
||||
right=0.95, wspace=0.04) #
|
||||
grid00 = gridspec.GridSpecFromSubplotSpec(2, 1,
|
||||
wspace=0.04, hspace=0.1,
|
||||
subplot_spec=grid0[0], height_ratios=[1.5,1],) # height_ratios=[2,1],
|
||||
|
||||
grid_up = gridspec.GridSpecFromSubplotSpec(len(c_nrs_orig) + 1, 3,
|
||||
hspace=0.75,
|
||||
wspace=0.1, height_ratios=[1, 1, 0.7],
|
||||
subplot_spec=grid00[
|
||||
0]) # 1.2hspace=0.4,wspace=0.2,len(chirps)
|
||||
grid_down = gridspec.GridSpecFromSubplotSpec(1, 2,
|
||||
hspace=0.75,
|
||||
wspace=0.1,
|
||||
subplot_spec=grid00[1]) # 1.2hspace=0.4,wspace=0.2,len(chirps)
|
||||
for i, full_name in enumerate(full_names):
|
||||
frame = pd.read_csv(find_folder_name('calc_cocktailparty') + '/' + full_name + '.csv')
|
||||
|
||||
frame_cell_orig = frame[(frame.cell == cell_here)]
|
||||
if len(frame_cell_orig) > 0:
|
||||
try:
|
||||
pass
|
||||
except:
|
||||
print('min thing')
|
||||
embed()
|
||||
|
||||
get_frame_cell_params(c_grouped, cell_here, frame, frame_cell_orig)
|
||||
|
||||
#################################################################
|
||||
|
||||
# calc_model_amp_freqs-F1_750-975-25_F2_500-775-25_C2_0.1_C1Len_20_FirstC1_0.0001_LastC1_1.0_StimLen_25_nfft_32768_trialsnr_1_absolut_power_1temporal.csv
|
||||
# devs_extra = ['stim','stim_rec','stim_am','original','05']#['original','05']
|
||||
|
||||
# da implementiere ich das jetzt für eine Zelle
|
||||
# wo wir den einezlnen Punkt und Kontraste variieren
|
||||
|
||||
f_counter = 0
|
||||
|
||||
frame_cell_orig, df1s, df2s, f1s, f2s = find_dfs(frame_cell_orig)
|
||||
|
||||
eodf = frame_cell_orig.f0.unique()[0]
|
||||
|
||||
f = -1
|
||||
|
||||
f += 1
|
||||
|
||||
#######################################################################################
|
||||
# übersicht
|
||||
|
||||
frame_cell = frame_cell_orig[
|
||||
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
|
||||
if len(frame_cell) < 1:
|
||||
freq1 = frame_cell_orig.iloc[(np.argmin(np.abs(frame_cell_orig.df1 - freq1)))].df1
|
||||
freq2 = frame_cell_orig.iloc[(np.argmin(np.abs(frame_cell_orig.df2 - freq2)))].df2
|
||||
|
||||
frame_cell = frame_cell_orig[
|
||||
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
|
||||
print('Tuning curve needed for F1' + str(frame_cell.f1.unique()) + ' F2' + str(
|
||||
frame_cell.f2.unique()) + ' for cell ' + str(cell_here))
|
||||
|
||||
labels, alpha, color01, color01_012, color02, color02_012, colors, colors_array, linestyles, scores, linewidths = colors_susept(
|
||||
add='_mean_original', nr=4)
|
||||
|
||||
#print(cell_here + ' F1' + str(freq1) + ' F2 ' + str(freq2))
|
||||
|
||||
sampling = 20000
|
||||
|
||||
c_dist_recalc = dist_recalc_phaselockingchapter()
|
||||
|
||||
c_nrs = c_dist_recalc_func(frame_cell, c_nrs=c_nrs_orig, cell=cell_here,
|
||||
c_dist_recalc=c_dist_recalc)
|
||||
if not c_dist_recalc:
|
||||
c_nrs = np.array(c_nrs) * 100
|
||||
|
||||
|
||||
|
||||
letters = ['A', 'B']
|
||||
|
||||
indexes = [[0, 1, 2, 3]]
|
||||
#scores_all = [scores]
|
||||
#embed()
|
||||
#
|
||||
scores = ['amp_B1_012_mean_original', 'amp_B2_012_mean_original', 'amp_B1+B2_012_mean_original', 'amp_B1-B2_012_mean_original']
|
||||
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
|
||||
colors = [color01, color02, color012, color01_2]
|
||||
linestyles = ['-','-','-','-']
|
||||
#frame_cell_orig['amp_B1+B2_012_mean_original']
|
||||
#frame_cell_orig['amp_B1-B2_012_mean_original']
|
||||
#for i, index in enumerate(indexes):
|
||||
index = [0, 1, 2, 3]
|
||||
try:
|
||||
ax_u1 = plt.subplot(grid_down[0, i])
|
||||
except:
|
||||
print('grid search problem4')
|
||||
embed()
|
||||
if 'old_fit' in full_name:
|
||||
ax_u1.set_title('old fit (before 2021)')
|
||||
else:
|
||||
ax_u1.set_title('new fit (after 2021)')
|
||||
plt_single_trace([], ax_u1, frame_cell_orig, freq1, freq2,
|
||||
scores=np.array(scores)[index], labels=np.array(labels)[index],
|
||||
colors=np.array(colors)[index],
|
||||
linestyles=np.array(linestyles)[index],
|
||||
linewidths=np.array(linewidths)[index],
|
||||
alpha=np.array(alpha)[index],
|
||||
thesum=False, B_replace='F', default_colors=False,
|
||||
c_dist_recalc=c_dist_recalc)
|
||||
#ax_us.append(ax_u1)
|
||||
frame_cell = frame_cell_orig[
|
||||
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
|
||||
c1 = c_dist_recalc_here(c_dist_recalc, frame_cell)
|
||||
ax_u1.set_xlim(0, 50)
|
||||
if i != 0:
|
||||
ax_u1.set_ylabel('')
|
||||
remove_yticks(ax_u1)
|
||||
if i < 2:
|
||||
ax_u1.fill_between(c1, frame_cell[np.array(scores)[index][0]],
|
||||
frame_cell[np.array(scores)[index][1]], color='grey',
|
||||
alpha=0.1)
|
||||
|
||||
ax_u1.scatter(c_nrs, (np.array(yposs[i]) - 35) * np.ones(len(c_nrs)), color='black',
|
||||
marker='v',
|
||||
clip_on=False)
|
||||
|
||||
#
|
||||
for c_nn, c_nr in enumerate(c_nrs):
|
||||
ax_u1.text(c_nr, yposs[i][c_nn] + 50, letters[c_nn], color='black', ha='center',
|
||||
va='top')
|
||||
# ax_u1.plot([c_nr, c_nr], [0, 435], color='black', linewidth=0.8, clip_on=False)
|
||||
|
||||
|
||||
start = 200 # 1000
|
||||
mults_period = 3
|
||||
xlim = [start, start + (mults_period * 1000 / np.min([np.abs(freq1), np.abs(freq2)]))]
|
||||
|
||||
#axts_all = []
|
||||
#axps_all = []
|
||||
#ax_us = []
|
||||
|
||||
# über die kontraste gehen
|
||||
axts = []
|
||||
axps = []
|
||||
axes = []
|
||||
|
||||
p_arrays_all = []
|
||||
model_fit = '_old_fit_' # ''#'_old_fit_'#''#'_old_fit_'#''#'_old_fit_'#''###'_old_fit_'
|
||||
model_cells, reshuffled = chose_old_vs_new_model(model_fit=model_fit)
|
||||
|
||||
for c_nn, c_nr in enumerate(c_nrs):
|
||||
|
||||
#################################
|
||||
# arrays plot
|
||||
save_dir = load_savedir(level=0).split('/')[0]
|
||||
name_psd = save_dir + '_psd.npy'
|
||||
name_psd_f = save_dir + '_psdf.npy'
|
||||
|
||||
do = False
|
||||
if ((not os.path.exists(name_psd)) | (redo == True)) & do:
|
||||
if log != 'log':
|
||||
stimulus_length_here = 0.5
|
||||
stimulus_length_here = values_stimuluslength_model_full()
|
||||
nfft_here = 32768
|
||||
nfft_here = values_nfft_full_model()
|
||||
else:
|
||||
stimulus_length_here = 50
|
||||
stimulus_length_here = values_stimuluslength_model_full()
|
||||
trials_nr = 1
|
||||
nfft_here = values_nfft_full_model()
|
||||
|
||||
else:
|
||||
nfft_here = 2 ** 14
|
||||
stimulus_length_here = 0.5
|
||||
|
||||
# #
|
||||
#
|
||||
|
||||
_, arrays_spikes, arrays_stim, results_diff, position_diff, auci_wo, auci_w, arrays, names, p_arrays_p, ff_p = calc_roc_amp_core_cocktail(
|
||||
[freq1 + eodf], [freq2 + eodf], datapoints, auci_wo, auci_w, results_diff,
|
||||
a_f2s,
|
||||
fish_jammer, trials_nr, nfft_here, us_name, gain, runs, a_fr, nfft_for_morph,
|
||||
beat,
|
||||
printing,
|
||||
stimulus_length_here,
|
||||
model_cells, position_diff, dev, cell_here, dev_name=dev_name,
|
||||
a_f1s=[c_nrs_orig[c_nn]],
|
||||
n=n,
|
||||
reshuffled=reshuffled, min_amps=min_amps)
|
||||
# ff_p, arrays, names, p_arrays_p, arrays_spikes, arrays_stim,
|
||||
p_arrays_here = p_arrays_p[1::]
|
||||
xlimp = (0, 300)
|
||||
for p in range(len(p_arrays_here)):
|
||||
p_arrays_here[p][0] = p_arrays_here[p][0][ff_p < xlimp[1]]
|
||||
|
||||
ff_p = ff_p[ff_p < xlimp[1]]
|
||||
|
||||
time = np.arange(0, len(arrays[a][0]) / sampling, 1 / sampling)
|
||||
time = time * 1000
|
||||
|
||||
# plot the first array
|
||||
arrays_time = arrays[1::] # [v_mems[1],v_mems[3]]#[1,2]#[1::]
|
||||
arrays_here = arrays[1::] # [arrays[1],arrays[3]]#arrays[1::]#
|
||||
|
||||
arrays_st = arrays_stim[1::] # [arrays_stim[1],arrays_stim[3]]#
|
||||
arrays_sp = arrays_spikes[
|
||||
1::] # [arrays_spikes[1],arrays_spikes[3]]#arrays_spikes[1::]
|
||||
colors_array_here = ['grey', 'grey', 'grey'] # colors_array[1::]
|
||||
|
||||
p_arrays_all.append(p_arrays_here)
|
||||
for a in range(len(arrays_here)):
|
||||
print('a' + str(a))
|
||||
|
||||
if a == 0:
|
||||
freqs = [np.abs(freq1)] # ], np.abs(freq2)],
|
||||
elif a == 1:
|
||||
freqs = [np.abs(freq2)]
|
||||
else:
|
||||
freqs = [np.abs(freq1), np.abs(freq2)]
|
||||
grid_pt = gridspec.GridSpecFromSubplotSpec(5, 1,
|
||||
hspace=0.3,
|
||||
wspace=0.2,
|
||||
subplot_spec=grid_up[c_nn, a],
|
||||
height_ratios=[1, 0.7, 1, 0.25,
|
||||
2.5]) # hspace=0.4,wspace=0.2,len(chirps)
|
||||
|
||||
axe = plt.subplot(grid_pt[0])
|
||||
axes.append(axe)
|
||||
plt_stim_saturation(a, [], arrays_st, axe, colors_array_here, f,
|
||||
f_counter, names, time,
|
||||
xlim=xlim) # np.array(arrays_sp)*1000
|
||||
|
||||
a_f2_cm = c_dist_recalc_func(frame_cell, c_nrs=[a_f2s[0]], cell=cell_here,
|
||||
c_dist_recalc=c_dist_recalc)
|
||||
|
||||
if not c_dist_recalc:
|
||||
a_f2_cm = np.array(a_f2_cm) * 100
|
||||
|
||||
if a == 2: # if (a_f1s[0] != 0) & (a_f2s[0] != 0):
|
||||
fish = 'Three fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_vary_name() + '\,\&\,' + f_stable_name() # + '$'#' $\Delta '$\Delta$
|
||||
beat_here = twobeat_cond(big=True, double=True,
|
||||
cond=False) + '\,' + f_vary_name(
|
||||
freq=int(freq1), delta=True) + ',\,$c_{1}=%s$' % (
|
||||
int(np.round(c_nrs[c_nn]))) + '$\%$' + '\n' + f_stable_name(
|
||||
freq=int(freq2), delta=True) + ',\,$c_{2}=%s$' % (
|
||||
int(np.round(a_f2_cm[0]))) + '$\%$' # +'$'
|
||||
|
||||
title_name = fish + '\n' + beat_here # +c1+c2
|
||||
elif a == 0: # elif (a_f1s[0] != 0):
|
||||
beat_here = ' ' + onebeat_cond(big=True, double=True,
|
||||
cond=False) + '\,' + f_vary_name(
|
||||
freq=int(freq1), delta=True) # +'$' + ' $\Delta '
|
||||
fish = 'Two fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_vary_name() # +'$'
|
||||
c1 = ',\,$c_{1}=%s$' % (int(np.round(c_nrs[c_nn]))) + '$\%$ \n '
|
||||
title_name = fish + '\n' + beat_here + c1 # +'cm'+'cm'+'cm'
|
||||
elif a == 1: # elif (a_f2s[0] != 0):
|
||||
beat_here = ' ' + onebeat_cond(big=True, double=True,
|
||||
cond=False) + '\,' + f_stable_name(
|
||||
freq=int(freq2),
|
||||
delta=True) # +'$'
|
||||
fish = '\n Two fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_stable_name() # +'$'
|
||||
c1 = ',\,$c_{2}=%s$' % (int(np.round(a_f2_cm[0]))) + '$\%$ \n'
|
||||
title_name = fish + '\n' + beat_here + c1 # +'cm'
|
||||
|
||||
axe.text(1, 1.1, title_name, va='bottom', ha='right',
|
||||
transform=axe.transAxes)
|
||||
|
||||
#############################
|
||||
|
||||
axs = plt.subplot(grid_pt[1])
|
||||
|
||||
plt_spikes_ROC(axs, 'grey', np.array(arrays_sp[a]) * 1000, xlim, lw=1)
|
||||
|
||||
#############################
|
||||
axt = plt.subplot(grid_pt[2])
|
||||
axts.append(axt)
|
||||
plt_vmem_saturation(a, arrays_sp, arrays_time, axt, colors_array_here, f,
|
||||
time, xlim=xlim)
|
||||
|
||||
axp = plt.subplot(grid_pt[-1])
|
||||
axps.append(axp)
|
||||
|
||||
if a == 0:
|
||||
axt.show_spines('')
|
||||
axt.xscalebar(0.1, -0.1, 10, 'ms', va='right', ha='bottom')
|
||||
axt.yscalebar(-0.02, 0.35, 600, 'Hz', va='left', ha='top')
|
||||
|
||||
f_counter += 1
|
||||
|
||||
if (not os.path.exists(name_psd)) | (redo == True):
|
||||
np.save(name_psd, p_arrays_all)
|
||||
np.save(name_psd_f, ff_p)
|
||||
else:
|
||||
ff_p = np.load(name_psd_f) # p_arrays_p
|
||||
p_arrays_all = np.load(name_psd) # p_arrays_p
|
||||
|
||||
for c_nn, c_nr in enumerate(c_nrs):
|
||||
for a in range(len(arrays_here)):
|
||||
|
||||
axps_here = [[axps[0], axps[1], axps[2]], [axps[3], axps[4], axps[5]]]
|
||||
axp = axps_here[c_nn][a]
|
||||
pp = log_calc_psd(log, p_arrays_all[c_nn][a][0],
|
||||
np.nanmax(p_arrays_all))
|
||||
|
||||
markeredgecolors = []
|
||||
if a == 0:
|
||||
colors_peaks = [color01] # , 'red']
|
||||
freqs = [np.abs(freq1)] # ], np.abs(freq2)],
|
||||
elif a == 1:
|
||||
colors_peaks = [color02] # , 'red']
|
||||
freqs = [np.abs(freq2)]
|
||||
else:
|
||||
colors_peaks = [color01_012, color02_012] # , 'red']
|
||||
freqs = [np.abs(freq1), np.abs(freq2)]
|
||||
markeredgecolors = [color01, color02]
|
||||
colors_peaks = [color01, color02, color012, color01_2]
|
||||
markeredgecolors = [color01, color02, color012, color01_2]
|
||||
freqs = [np.abs(freq1), np.abs(freq2), np.abs(freq1)+np.abs(freq2), np.abs(np.abs(freq1)-np.abs(freq2))]
|
||||
plt_psd_saturation(pp, ff_p, a, axp, colors_array_here, freqs=freqs,
|
||||
colors_peaks=colors_peaks, xlim=xlimp,
|
||||
markeredgecolor=markeredgecolors, )
|
||||
|
||||
if log:
|
||||
scalebar = False
|
||||
if scalebar:
|
||||
axp.show_spines('b')
|
||||
if a == 0:
|
||||
axp.yscalebar(-0.05, 0.5, 20, 'dB', va='center', ha='left')
|
||||
axp.set_ylim(-33, 5)
|
||||
else:
|
||||
|
||||
axp.show_spines('lb')
|
||||
if a == 0:
|
||||
axp.set_ylabel('dB') # , va='center', ha='left'
|
||||
else:
|
||||
remove_yticks(axp)
|
||||
axp.set_ylim(-39, 5)
|
||||
else:
|
||||
axp.show_spines('lb')
|
||||
if a != 0:
|
||||
remove_yticks(axp)
|
||||
else:
|
||||
axp.set_ylabel(power_spectrum_name())
|
||||
axp.set_xlabel('Frequency [Hz]')
|
||||
|
||||
#a#xts_all.extend(axts)
|
||||
#axps_all.extend(axps)
|
||||
|
||||
#ax_us[-1].legend(loc=(-2.22, 1.2), ncol=2, handlelength=2.5) # -0.07loc=(0.4,1)
|
||||
|
||||
#axts_all[0].get_shared_y_axes().join(*axts_all)
|
||||
#axts_all[0].get_shared_x_axes().join(*axts_all)
|
||||
#axps_all[0].get_shared_y_axes().join(*axps_all)
|
||||
#axps_all[0].get_shared_x_axes().join(*axps_all)
|
||||
axts[0].get_shared_y_axes().join(*axts)
|
||||
axts[0].get_shared_x_axes().join(*axts)
|
||||
axps[0].get_shared_y_axes().join(*axps)
|
||||
axps[0].get_shared_x_axes().join(*axps)
|
||||
join_y(axts)
|
||||
set_same_ylim(axts)
|
||||
set_same_ylim(axps)
|
||||
join_x(axts)
|
||||
#join_x(ax_us)
|
||||
#join_y(ax_us)
|
||||
fig = plt.gcf()
|
||||
|
||||
fig.tag([[axes[0], axes[1], axes[2]]], xoffs=0, yoffs=3.7)
|
||||
fig.tag([[axes[3], axes[4], axes[5]]], xoffs=0, yoffs=3.7)
|
||||
|
||||
#fig.tag([ax_us[0], ax_us[1], ax_us[2]], xoffs=-2.3, yoffs=1.4)
|
||||
|
||||
save_visualization(cell_here, show)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#embed()
|
||||
sys.excepthook = info
|
||||
nonlin_regime(yposs = [[170,180], [200,200]],)#, [430,470]
|
BIN
nonlin_regime_psd.npy
Normal file
BIN
nonlin_regime_psd.npy
Normal file
Binary file not shown.
BIN
nonlin_regime_psdf.npy
Normal file
BIN
nonlin_regime_psdf.npy
Normal file
Binary file not shown.
@ -467,7 +467,7 @@ In contrast, a high-CV P-unit (CV$_{\text{base}}=0.4$) does not exhibit pronounc
|
||||
|
||||
\begin{figure*}[t]
|
||||
\includegraphics[width=\columnwidth]{ampullary}
|
||||
\caption{\label{fig:ampullary} Linear and nonlinear stimulus encoding in an ampullary afferent (cell identifier ``2012-04-26-ae"). \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The very low CV of the ISIs indicates almost perfect periodic spiking. \figitem{B} Power spectral density of baseline activity with peaks at the cell's baseline firing rate and its harmonics. \figitem{C} Bad-limited white noise stimulus (top, with cutoff frequency of 150\,Hz) added to the fish's self-generated electric field and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). \figitem{D} Gain of the transfer function, \Eqnref{linearencoding_methods}, of the responses to stimulation with 2\,\% (light green) and 20\,\% contrast (dark green). \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both stimulus contrasts as indicated. Pink triangles indicate baseline firing rate. \figitem{G} Projections of the second-order susceptibilities in \panel{E, F} onto the diagonal. \notejb{`` Wurden die ampullaeren auch auf 10s ausgewertet?.''}
|
||||
\caption{\label{fig:ampullary} Linear and nonlinear stimulus encoding in an ampullary afferent (cell identifier ``2012-04-26-ae"). \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The very low CV of the ISIs indicates almost perfect periodic spiking. \figitem{B} Power spectral density of baseline activity with peaks at the cell's baseline firing rate and its harmonics. \figitem{C} Bad-limited white noise stimulus (top, with cutoff frequency of 150\,Hz) added to the fish's self-generated electric field and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). \figitem{D} Gain of the transfer function, \Eqnref{linearencoding_methods}, of the responses to stimulation with 2\,\% (light green) and 20\,\% contrast (dark green). \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both stimulus contrasts as indicated. Pink triangles indicate baseline firing rate. \figitem{G} Projections of the second-order susceptibilities in \panel{E, F} onto the diagonal. \notejb{`` Wurden die ampullaeren auch auf 10s ausgewertet?.''}\notesr{ja}
|
||||
}
|
||||
\end{figure*}
|
||||
|
||||
@ -480,7 +480,7 @@ In the example recordings shown above (\figsrefb{fig:cells_suscept} and \fref{fi
|
||||
|
||||
\begin{figure*}[t]
|
||||
\includegraphics[width=\columnwidth]{model_and_data}
|
||||
\caption{\label{model_and_data} Estimation of second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials \notejb{of duration XXX?} of an electrophysiological recording of another low-CV P-unit (cell 2012-07-03-ak, $\fbase=120$\,Hz, CV=0.20) driven with a weak RAM stimulus with contrast 2.5\,\%. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \notejb{Since the model overestimated the sensitivity of the real P-unit, we adjusted the RAM contrast to 0.009\,\%, such that the resulting spike trains had the same CV as the electrophysiolgical recorded P-unit during the 2.5\,\% contrast stimulation (see table~\ref{modelparams} for model parameters).} \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility.}
|
||||
\caption{\label{model_and_data} Estimation of second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials \notejb{of duration XXX?} \notesr{0.5\,s} of an electrophysiological recording of another low-CV P-unit (cell 2012-07-03-ak, $\fbase=120$\,Hz, CV=0.20) driven with a weak RAM stimulus with contrast 2.5\,\%. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \notejb{Since the model overestimated the sensitivity of the real P-unit, we adjusted the RAM contrast to 0.009\,\%, such that the resulting spike trains had the same CV as the electrophysiolgical recorded P-unit during the 2.5\,\% contrast stimulation (see table~\ref{modelparams} for model parameters).} \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility.}
|
||||
\end{figure*}
|
||||
|
||||
One reason could be simply too little data for a good estimate of the second-order susceptibility. Electrophysiological recordings are limited in time, and therefore responses to only a limited number of trials, i.e. repetitions of the same RAM stimulus, are available. As a consequence, the cross-spectra, \Eqnref{eq:crosshigh}, are insufficiently averaged and the full structure of the second-order susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \citep{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of trials as in the experiment ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).
|
||||
|
File diff suppressed because it is too large
Load Diff
BIN
trialnr.pdf
Normal file
BIN
trialnr.pdf
Normal file
Binary file not shown.
BIN
trialnr.png
BIN
trialnr.png
Binary file not shown.
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 25 KiB |
30
trialnr.py
30
trialnr.py
@ -2,6 +2,7 @@ import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from IPython import embed
|
||||
from matplotlib import pyplot as plt
|
||||
from plotstyle import plot_style
|
||||
from threefish.RAM.plot_labels import title_find_cell_add
|
||||
@ -84,8 +85,10 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
# model part
|
||||
|
||||
trial_nr = 500000
|
||||
|
||||
|
||||
cell = '2013-01-08-aa-invivo-1'
|
||||
cell = '2012-07-03-ak-invivo-1'
|
||||
#cell = '2012-07-03-ak-invivo-1'
|
||||
#print('cell'+str(cell))
|
||||
cells_given = [cell]
|
||||
save_name_rev = find_folder_name(
|
||||
@ -103,9 +106,9 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
ax = [ax]
|
||||
alphas = [0.5, 1, ]
|
||||
colors = ['black', 'red']
|
||||
for s in range(2):
|
||||
alphas = [0.5]#, 1, 1]
|
||||
colors = ['black']#, 'black','red']
|
||||
for s in range(len(colors)):
|
||||
stacks = []
|
||||
perc95 = []
|
||||
perc90 = []
|
||||
@ -124,7 +127,10 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV','calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
|
||||
tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
|
||||
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
|
||||
|
||||
]
|
||||
save_names = ['calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV']
|
||||
nrs_s = [3, 4, 8, 9]#, 10, 11
|
||||
save_name = save_names[s]
|
||||
tr_name = trial_nr/1000000
|
||||
@ -138,6 +144,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
|
||||
path = save_name + '.pkl' # '../'+
|
||||
|
||||
#embed()
|
||||
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
|
||||
|
||||
if len(stack)> 0:
|
||||
@ -151,7 +158,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
fr_stims.append(stack['fr_stim_mean'].iloc[0])
|
||||
vars.append(stack['var_RAM'].iloc[0])
|
||||
|
||||
perc95.append(np.percentile(stack_plot,99.99))
|
||||
perc95.append(np.percentile(stack_plot,99.9))#99.99
|
||||
perc90.append(np.percentile(stack_plot, 90))
|
||||
perc05.append(np.percentile(stack_plot, 10))
|
||||
median.append(np.percentile(stack_plot, 50))
|
||||
@ -176,8 +183,11 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
median_wo_norm.append(float('nan'))
|
||||
counter.append(float('nan'))
|
||||
|
||||
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s])
|
||||
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
|
||||
#if s == 0:
|
||||
|
||||
ax[0].plot(trial_nrs_here, perc95, color = colors[s], clip_on = False, label = '99.99th percentile', alpha = alphas[s])
|
||||
ax[0].scatter(trial_nrs_here, perc95, color = colors[s], clip_on = False, alpha = alphas[s])
|
||||
#embed()
|
||||
ax[0].set_xscale('log')#colors[s]
|
||||
ax[0].set_yscale('log')
|
||||
ax[0].set_xlabel('Trials [$N$]')
|
||||
@ -185,13 +195,17 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
|
||||
|
||||
|
||||
############################################
|
||||
if s == 1:
|
||||
if s == 0:
|
||||
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
|
||||
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
|
||||
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
|
||||
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
|
||||
ax[0].legend()
|
||||
|
||||
|
||||
#ax[1].plot(trial_nrs_here,cv_stims/ trial_nrs_here, color = colors[s])
|
||||
#embed()
|
||||
|
||||
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
|
||||
|
||||
save_visualization(pdf=True)
|
||||
|
Loading…
Reference in New Issue
Block a user