updating figures

This commit is contained in:
saschuta 2024-06-13 10:08:50 +02:00
parent 9cf0dbd178
commit 08388ae10e
86 changed files with 47232 additions and 703 deletions

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

73
data/models_d_right.csv Normal file
View File

@ -0,0 +1,73 @@
,cell,EODf,a_zero,delta_a,dend_tau,input_scaling,mem_tau,noise_strength,ref_period,deltat,tau_a,threshold,v_base,v_offset,v_zero
0,2010-11-08-al-invivo-1,744.66,9.450855200303527,0.0604984400793618,0.0007742334994649,31.363843698084207,0.0017257848281706,7.699289148855061e-05,0.0010273077926126,5e-05,0.1022386553157565,1,0,-0.390625,0
1,2011-10-25-aa-invivo-1,724.94,17.324840755350014,0.0591913568259293,0.0041765955988219,126.0907181735006,0.0011845579843807,0.0002904021591991,0.0006959832098553,5e-05,0.1089142677011385,1,0,-23.046875,0
2,2011-10-25-ad-invivo-1,760.5,42.322806986231576,0.1128743560865006,0.0049804702817868,275.52394339936325,0.0023119383270376,0.0006602840501078,0.0009167762282024,5e-05,0.0641670185687361,1,0,-43.359375,0
3,2012-04-20-ad-invivo-1,811.57,61.15542998217432,0.1809911409228079,0.0065499545871112,317.4201379309943,0.0014460502988963,0.0006154752637016,0.0010070482769896,5e-05,0.1718068006049748,1,0,-39.84375,0
4,2012-04-20-af-invivo-1,800.03,8.666272965511395,0.0224254352605947,0.0020948092014818,90.3326105895584,0.0011619511953103,0.0002692291234707,0.0004258027499815,5e-05,0.0962203612055438,1,0,-20.21484375,0
5,2012-04-20-ak-invivo-1,826.07,121.42077896009448,0.2988122723355702,0.0076752433311956,351.9448656755738,0.0011845244136958,0.0004816469185333,0.0012197526571388,5e-05,0.2031230589577027,1,0,10.9375,0
6,2012-05-10-ad-invivo-1,891.62,27.619562499220827,0.1345056224178351,0.0012767974341065,142.840493368597,0.0044191056484668,0.0008633092166519,0.0005977574869045,5e-05,0.0967205016994888,1,0,-18.359375,0
7,2012-06-27-ah-invivo-1,752.07,5.2388344597197705,0.03659696633407,0.0037989519965752,128.3173271059041,0.0016438953019065,0.0001808735038323,0.0012129185117702,5e-05,0.0792718029100008,1,0,-35.3515625,0
8,2012-06-27-an-invivo-1,786.29,4.068827736501855,0.0430511192677837,0.0041551502152155,57.95001821363863,0.0015554768512448,2.764259961706088e-05,0.0009668453379819,5e-05,0.0913176474972983,1,0,-13.671875,0
9,2012-07-03-ak-invivo-1,928.45,1.8853753804955329,0.0125302977789627,0.0010172326122311,11.282392495019522,0.0002496247649189,4.646383539997057e-06,2.781559315405718e-05,5e-05,0.0216226842883503,1,0,-1.904296875,0
10,2012-07-12-ag-invivo-1,744.95,16.239434635393348,0.1513550832994938,0.0037504710528958,50.2874125565955,0.0001730827178691,5.723487349821114e-05,0.0003381486858513,5e-05,0.0734227017767456,1,0,-1.5625,0
11,2012-07-12-ap-invivo-1,772.92,53.79680098764822,0.3098624628785055,0.006491044613537,274.7676513500772,0.0011314183472882,0.0003901229594757,0.0013282603439871,5e-05,0.0991670999413088,1,0,-32.8125,0
12,2012-12-13-af-invivo-1,673.56,7.535514342013602,0.0422372510373371,0.0065539636971129,204.3615261447709,0.0018080213635166,0.0001348017868766,0.0012332624623859,5e-05,0.0583762732248613,1,0,-57.03125,0
13,2012-12-13-ag-invivo-1,667.87,7.061602153402829,0.0546674984677376,0.0041487403958944,102.45822047850346,0.001412243047861,3.526703241249884e-05,0.000162275520082,5e-05,0.0393528925991773,1,0,-25.0,0
14,2012-12-13-ah-invivo-1,664.7,6.823985334369345,0.0368958234780879,0.0066161666396143,102.86922103180392,0.0010940273699727,3.810537599772437e-05,0.0012246243965823,5e-05,0.0779443868884807,1,0,-25.5859375,0
15,2012-12-13-an-invivo-1,657.91,4.458558193012667,0.0305497815969178,0.0013786872283781,35.834438055915825,0.0029913612464463,1.7125985827976543e-05,0.0012567714114379,5e-05,0.0248706231740213,1,0,-6.25,0
16,2012-12-13-ao-invivo-1,657.82,5.435481358638207,0.0374623330424542,0.001970018378635,49.69904954465432,0.002328069209402,9.134402806092888e-05,0.0015081600329058,5e-05,0.0331211905447775,1,0,-9.765625,0
17,2012-12-20-aa-invivo-1,668.32,4.195725270757472,0.0349469498459069,0.0049449391407958,61.926544628777336,0.0017742557744246,2.0461330360757243e-05,0.0013298764071622,5e-05,0.0625906100055979,1,0,-14.84375,0
18,2012-12-20-ab-invivo-1,738.71,109.33434336088948,0.278266740784194,0.0060093620164311,246.87907584805632,0.0011102966287199,0.0003214275666699,0.0014015863938401,5e-05,0.0879400403500039,1,0,29.6875,0
19,2012-12-20-ac-invivo-1,744.95,5.980561640857971,0.0266121874032581,0.0027843960684635,54.35498975113278,0.0016410099311694,3.736520494044416e-05,0.0008493183014978,5e-05,0.0464782969356258,1,0,-10.9375,0
20,2012-12-20-ad-invivo-1,759.82,47.8899415032243,0.1572111340156579,0.004412827130915,294.3089535429343,0.0019082595931216,0.0005454793744743,0.0003902027099212,5e-05,0.0657687561129787,1,0,-45.3125,0
21,2012-12-20-ae-invivo-1,763.79,50.2191242194429,0.1230203924349023,0.0056716684601917,286.1135698773513,0.0019726034024348,0.0005025289084042,0.0004045686352769,5e-05,0.0804183995591541,1,0,-40.625,0
22,2012-12-21-ai-invivo-1,787.12,19.552681407982867,0.0636151659491776,0.0046658522913592,178.85419634079997,0.0019037662037406,0.0002308125575111,0.0004834553836243,5e-05,0.0939907169906999,1,0,-37.5,0
23,2012-12-21-ak-invivo-1,796.83,2.4867707329905,0.0141270344770176,0.0028616283324329,31.510428742268093,0.0003974311599786,5.775335040006332e-06,0.0006089766381869,5e-05,0.0135933352352287,1,0,-7.71484375,0
24,2012-12-21-am-invivo-1,806.15,2.599996979076464,0.0210131719161386,0.0072703458079583,46.67063036950735,0.0007837211245351,1.411589095846406e-05,0.0011669771041571,5e-05,0.043353864209255,1,0,-11.328125,0
25,2012-12-21-an-invivo-1,812.7,2.657969122279684,0.0126980011518428,0.0029290565793311,30.47330327087832,0.0006812296678529,2.2698725628118127e-05,0.0010815182714474,5e-05,0.0298009543582118,1,0,-6.54296875,0
26,2013-01-08-aa-invivo-1,800.63,1.7775663328189109,0.0139724469616012,0.0003756860850739,8.567002390828673,0.0011008277277909,7.296503188131748e-05,0.0001635438226173,5e-05,0.013192502003356,1,0,-0.5859375,0
27,2013-01-08-ab-invivo-1,800.25,54.67466209697357,0.2380256573695303,0.003147952593016,401.4746609830789,0.0032334816919704,0.0009482203053873,0.0004075044135951,5e-05,0.1060140977474878,1,0,-75.78125,0
28,2013-02-21-ae-invivo-1,665.93,4.294576393156899,0.0349079955577279,0.0042335826224234,193.03334826738376,0.0028604383906985,0.0003229739386601,0.0012770259072818,5e-05,0.0707596447935943,1,0,-56.8359375,0
29,2013-02-21-ag-invivo-1,658.7,12.638812661345776,0.1016749009225033,0.0035367702668509,104.74966687228977,0.0016256371684299,9.994911396704052e-05,0.0012702670089049,5e-05,0.078155035148488,1,0,-20.3125,0
30,2013-04-10-aa-invivo-1,623.77,7.2029389446183565,0.0526419078304854,0.0022248980461019,62.65798249994464,0.0028732093372693,0.000164159124109,0.0015625668737142,5e-05,0.0635449101638369,1,0,-12.5,0
31,2013-04-10-ac-invivo-1,684.72,2.8892039094434803,0.042548818572458,0.0016869020510687,58.09049670735142,0.0023708232278567,0.0003152371416419,0.0010783506078415,5e-05,0.0348236653456585,1,0,-15.91796875,0
32,2013-04-17-ab-invivo-1,601.09,42.53156496468646,0.1178301462037476,0.0057660381404226,295.0137656954471,0.0021325123481165,0.0008618261070858,0.0005865905086141,5e-05,0.078251177677974,1,0,-51.5625,0
33,2013-04-17-ac-invivo-1,597.94,6.731685804526344,0.0880636102661295,0.0050639791128441,26.766210174285348,0.0002329228437903,1.6714951095492286e-05,0.0016821794608443,5e-05,0.1005180087588643,1,0,-1.953125,0
34,2014-01-10-ab-invivo-1,724.72,37.22921835919794,0.105865032837993,0.0077800750459636,382.4713961027781,0.0013793118050116,0.0011037648201998,0.0006409865558835,5e-05,0.0785213908371962,1,0,-86.328125,0
35,2014-01-10-ac-invivo-1,708.44,74.22028683769639,0.2062867838543796,0.0086275878935938,522.8738003484584,0.0019099084777949,0.0010896710668221,0.0007561837419108,5e-05,0.1387768914538001,1,0,-92.96875,0
36,2014-01-10-ae-invivo-1,670.21,14.403635240773651,0.0927322308690146,0.0051211977513466,205.9862062669372,0.0025386240396386,0.0006095586872081,0.0010368267806298,5e-05,0.0994530945069613,1,0,-51.171875,0
37,2014-01-16-ak-invivo-1,803.26,2.3120229511581782,0.0141654897826262,0.007112977431183,24.30632120240236,0.000285109630943,4.089968833381081e-06,0.0011963117586515,5e-05,0.06057228972437,1,0,-4.98046875,0
38,2014-01-23-ab-invivo-1,775.18,9.42831561175426,0.0224514357612552,0.0045903654403364,128.9209928230727,0.0007476859066578,0.0001912651734499,0.0004929147142214,5e-05,0.0461635400578526,1,0,-31.0546875,0
39,2014-03-19-ad-invivo-1,681.98,69.19466420583639,0.2893760409210132,0.0054364329221975,254.4826491240454,0.0007254371985574,0.0006771079934558,0.0014615164586903,5e-05,0.1345471235735028,1,0,-13.28125,0
40,2014-03-19-ae-invivo-1,658.18,38.918760336221055,0.2480858206656654,0.0069955407767959,411.2324502457813,0.0027246186835932,0.0007951136822738,0.0007615925807794,5e-05,0.1169994719346085,1,0,-92.1875,0
41,2014-03-19-ah-invivo-1,635.84,56.35167256285228,0.1974715379528175,0.0081228403287698,490.6872518263162,0.0025561010713697,0.0009226463077239,0.0006702491128007,5e-05,0.1445226828597265,1,0,-100.78125,0
42,2014-03-19-ai-invivo-1,653.3,88.77458424718674,0.2913937065789225,0.008559140638147,523.4583656536372,0.0020914527733905,0.0014209210970579,0.00066567652942,5e-05,0.1121355388450789,1,0,-78.125,0
43,2014-03-19-aj-invivo-1,669.86,32.547605273546935,0.2456940849344553,0.0063333108683462,420.54333434151465,0.0029116982298775,0.0013842790319836,0.0009552598932444,5e-05,0.0877717308089366,1,0,-101.5625,0
44,2014-03-25-aa-invivo-1,870.98,21.701016139817888,0.0960172639965266,0.0061302790825722,245.39704801461176,0.0013015964681189,0.0002991440776181,0.0007199971612111,5e-05,0.0733662951162392,1,0,-58.203125,0
45,2014-03-25-af-invivo-1,837.7,37.66383751511725,0.1928208471155374,0.0055587552838484,319.58811665224687,0.0012758102274061,0.0003895600960509,0.0007605506254404,5e-05,0.0572208929359239,1,0,-65.625,0
46,2014-06-06-ac-invivo-1,800.02,82.92925558245138,0.2497281199063106,0.0058805791567524,401.0507428419596,0.00276420009562,0.0014107594831631,0.0005758934406361,5e-05,0.1571647789884099,1,0,-43.75,0
47,2014-06-06-ag-invivo-1,800.12,63.10829705951355,0.5313050862748335,0.0145518013760081,617.8190914088805,0.0023091597305128,0.0036613353060679,0.0009675638720757,5e-05,0.157597675961733,1,0,-134.375,0
48,2014-12-03-ai-invivo-1,858.5,34.062575827557275,0.3244570611395585,0.0093071756342572,461.2788968601441,0.0045649933974013,0.0029183532103229,0.0006210470513751,5e-05,0.1037876538806647,1,0,-112.5,0
49,2014-12-11-aa-invivo-1,651.29,29.028405021923344,0.3825449567612229,0.0071781591428417,259.88530639963346,0.002849966390513,0.0014916969045105,0.0010340774235971,5e-05,0.1741002240578827,1,0,-54.6875,0
50,2014-12-11-ad-invivo-1,650.07,6.884193252440972,0.125103799166033,0.005008289539649,111.76045965688944,0.001884129168681,0.0003939483088535,0.0014575051585428,5e-05,0.1131104818008776,1,0,-28.90625,0
51,2015-01-15-ab-invivo-1,708.7,45.11066366134594,0.3830355936726118,0.0142573616079807,437.9661974380556,0.0014288922816903,0.001889557163285,0.0009721128113178,5e-05,0.1302311388392199,1,0,-96.875,0
52,2015-01-20-ab-invivo-1,747.35,2.388006758171008,0.0460455856570295,0.0058274300652638,125.51425676781496,0.0026078497201184,0.0005355608495797,0.0013648958604759,5e-05,0.072682482481134,1,0,-36.9140625,0
53,2015-01-20-ac-invivo-1,749.16,3.0637076562911862,0.0361482523844888,0.0038837828744527,40.161166949813975,0.0022024851776428,0.0001775828935248,0.0010111334953581,5e-05,0.0912778908591642,1,0,-8.984375,0
54,2015-01-20-ae-invivo-1,775.45,10.29173021176557,0.1265554462422453,0.0072071781109798,356.19007281857216,0.0021576432183898,0.0007082894532779,0.0010720005959728,5e-05,0.1036278314600582,1,0,-102.734375,0
55,2015-01-20-af-invivo-1,778.15,17.378611201243178,0.2373397050748237,0.006486977712037,233.2942526663853,0.0040916872369868,0.0018519688539093,0.0009390077156995,5e-05,0.0987058568785954,1,0,-57.8125,0
56,2015-01-20-ag-invivo-1,778.5,18.07439316562912,0.2669718966923193,0.0059345812215258,228.01386728096296,0.0017130481512641,0.0004828089842224,0.0007940405766277,5e-05,0.173402795420842,1,0,-55.46875,0
57,2017-07-18-ah-invivo-1,816.18,4.492478880802049,0.0306800492065723,0.0005510176207879,11.010435284946723,0.0012660814616981,6.939326220065633e-05,0.0001048071222688,5e-05,0.0534712893535971,1,0,1.171875,0
58,2017-07-18-ai-invivo-1,817.53,4.836173387076376,0.0459604089024203,0.0005713395854796,19.082872790172893,0.0017648069889998,0.0002954943164986,0.0003799242606729,5e-05,0.0219438187457692,1,0,-2.5390625,0
59,2017-07-18-aj-invivo-1,818.98,62.59548468438461,0.2668879734232494,0.0063976464842525,344.9549845381489,0.0006269389203256,0.000542355661302,0.0004845893795398,5e-05,0.0884760312971245,1,0,-48.4375,0
60,2018-01-10-al,822.43,6.53045784849496,0.0477523266938062,0.0026516323266361,20.951337676489,0.000384722118084,5.630808827711224e-05,0.0004011848987451,5e-05,0.0468008096291354,1,0,-0.09765625,0
61,2018-01-12-af,646.31,27.48409535758441,0.0822784189321632,0.0027716752344402,72.69113348986389,0.0013786805385745,0.0001421670943929,0.0010001738040759,5e-05,0.0608936121352207,1,0,5.46875,0
62,2018-05-08-aa-invivo-1,643.65,36.66788911232605,0.2761728222642968,0.0083357504509621,330.2402625207435,0.0021657539780422,0.0018768276776544,0.0010942851413418,5e-05,0.2116606564116055,1,0,-68.75,0
63,2018-05-08-ab-invivo-1,646.62,66.70525377272179,0.6014654520860893,0.005682795376896,328.0465980625613,0.001823255075318,0.0009180849887618,0.0008614237691425,5e-05,0.1472296039461372,1,0,-37.5,0
64,2018-05-08-ac-invivo-1,655.16,35.32000871480389,0.3365254255760804,0.0067732193070078,139.23166556708537,0.0004350491142382,0.000401489691558,0.0013549977866199,5e-05,0.1531910034411788,1,0,-12.5,0
65,2018-05-08-ad-invivo-1,655.66,44.994381556842654,0.1966955414103147,0.0024283512437206,141.095538216996,0.0029968871016672,0.0004073919444425,0.0008373923698767,5e-05,0.0998422947981054,1,0,-0.390625,0
66,2018-05-08-ae-invivo-1,649.48,29.440282257876536,0.2018789493993832,0.003910493647611,170.6160808403345,0.0021895423364158,0.0002798942878887,0.0012411447920718,5e-05,0.130171888270862,1,0,-25.78125,0
67,2018-05-08-af-invivo-1,649.93,41.849999531343975,0.1321076268905854,0.0052475491397625,228.20359643155803,0.0014814184541785,0.000495030241084,0.0007194589371705,5e-05,0.0617800897722998,1,0,-31.25,0
68,2018-05-08-ai-invivo-1,653.62,10.138859439469911,0.0712064900990132,0.0012599754975274,40.34961621751716,0.0027325424460168,0.0002197690747209,0.0012116953449501,5e-05,0.054392058102494,1,0,-2.34375,0
69,2018-06-25-ad-invivo-1,840.79,53.73684452063702,0.2072325783629882,0.0041833923107559,320.2100292094566,0.0028666513530079,0.0007840761526882,0.0007822294882607,5e-05,0.0841289508219278,1,0,-48.4375,0
70,2018-06-26-ah-invivo-1,778.22,6.703026855077471,0.0341144423335754,0.0008151238083306,16.681124499669373,0.0013215872640159,0.0001692839665525,0.0007865435959385,5e-05,0.205762993728832,1,0,1.7578125,0
71,2020-08-12-aa-invivo-1,746.68,44.46101827995927,0.106082537177636,0.0044832342587509,235.04483921079955,0.002487994738557,0.0005967131873841,0.0008508121416945,5e-05,0.1174296496534284,1,0,-29.296875,0
1 cell EODf a_zero delta_a dend_tau input_scaling mem_tau noise_strength ref_period deltat tau_a threshold v_base v_offset v_zero
2 0 2010-11-08-al-invivo-1 744.66 9.450855200303527 0.0604984400793618 0.0007742334994649 31.363843698084207 0.0017257848281706 7.699289148855061e-05 0.0010273077926126 5e-05 0.1022386553157565 1 0 -0.390625 0
3 1 2011-10-25-aa-invivo-1 724.94 17.324840755350014 0.0591913568259293 0.0041765955988219 126.0907181735006 0.0011845579843807 0.0002904021591991 0.0006959832098553 5e-05 0.1089142677011385 1 0 -23.046875 0
4 2 2011-10-25-ad-invivo-1 760.5 42.322806986231576 0.1128743560865006 0.0049804702817868 275.52394339936325 0.0023119383270376 0.0006602840501078 0.0009167762282024 5e-05 0.0641670185687361 1 0 -43.359375 0
5 3 2012-04-20-ad-invivo-1 811.57 61.15542998217432 0.1809911409228079 0.0065499545871112 317.4201379309943 0.0014460502988963 0.0006154752637016 0.0010070482769896 5e-05 0.1718068006049748 1 0 -39.84375 0
6 4 2012-04-20-af-invivo-1 800.03 8.666272965511395 0.0224254352605947 0.0020948092014818 90.3326105895584 0.0011619511953103 0.0002692291234707 0.0004258027499815 5e-05 0.0962203612055438 1 0 -20.21484375 0
7 5 2012-04-20-ak-invivo-1 826.07 121.42077896009448 0.2988122723355702 0.0076752433311956 351.9448656755738 0.0011845244136958 0.0004816469185333 0.0012197526571388 5e-05 0.2031230589577027 1 0 10.9375 0
8 6 2012-05-10-ad-invivo-1 891.62 27.619562499220827 0.1345056224178351 0.0012767974341065 142.840493368597 0.0044191056484668 0.0008633092166519 0.0005977574869045 5e-05 0.0967205016994888 1 0 -18.359375 0
9 7 2012-06-27-ah-invivo-1 752.07 5.2388344597197705 0.03659696633407 0.0037989519965752 128.3173271059041 0.0016438953019065 0.0001808735038323 0.0012129185117702 5e-05 0.0792718029100008 1 0 -35.3515625 0
10 8 2012-06-27-an-invivo-1 786.29 4.068827736501855 0.0430511192677837 0.0041551502152155 57.95001821363863 0.0015554768512448 2.764259961706088e-05 0.0009668453379819 5e-05 0.0913176474972983 1 0 -13.671875 0
11 9 2012-07-03-ak-invivo-1 928.45 1.8853753804955329 0.0125302977789627 0.0010172326122311 11.282392495019522 0.0002496247649189 4.646383539997057e-06 2.781559315405718e-05 5e-05 0.0216226842883503 1 0 -1.904296875 0
12 10 2012-07-12-ag-invivo-1 744.95 16.239434635393348 0.1513550832994938 0.0037504710528958 50.2874125565955 0.0001730827178691 5.723487349821114e-05 0.0003381486858513 5e-05 0.0734227017767456 1 0 -1.5625 0
13 11 2012-07-12-ap-invivo-1 772.92 53.79680098764822 0.3098624628785055 0.006491044613537 274.7676513500772 0.0011314183472882 0.0003901229594757 0.0013282603439871 5e-05 0.0991670999413088 1 0 -32.8125 0
14 12 2012-12-13-af-invivo-1 673.56 7.535514342013602 0.0422372510373371 0.0065539636971129 204.3615261447709 0.0018080213635166 0.0001348017868766 0.0012332624623859 5e-05 0.0583762732248613 1 0 -57.03125 0
15 13 2012-12-13-ag-invivo-1 667.87 7.061602153402829 0.0546674984677376 0.0041487403958944 102.45822047850346 0.001412243047861 3.526703241249884e-05 0.000162275520082 5e-05 0.0393528925991773 1 0 -25.0 0
16 14 2012-12-13-ah-invivo-1 664.7 6.823985334369345 0.0368958234780879 0.0066161666396143 102.86922103180392 0.0010940273699727 3.810537599772437e-05 0.0012246243965823 5e-05 0.0779443868884807 1 0 -25.5859375 0
17 15 2012-12-13-an-invivo-1 657.91 4.458558193012667 0.0305497815969178 0.0013786872283781 35.834438055915825 0.0029913612464463 1.7125985827976543e-05 0.0012567714114379 5e-05 0.0248706231740213 1 0 -6.25 0
18 16 2012-12-13-ao-invivo-1 657.82 5.435481358638207 0.0374623330424542 0.001970018378635 49.69904954465432 0.002328069209402 9.134402806092888e-05 0.0015081600329058 5e-05 0.0331211905447775 1 0 -9.765625 0
19 17 2012-12-20-aa-invivo-1 668.32 4.195725270757472 0.0349469498459069 0.0049449391407958 61.926544628777336 0.0017742557744246 2.0461330360757243e-05 0.0013298764071622 5e-05 0.0625906100055979 1 0 -14.84375 0
20 18 2012-12-20-ab-invivo-1 738.71 109.33434336088948 0.278266740784194 0.0060093620164311 246.87907584805632 0.0011102966287199 0.0003214275666699 0.0014015863938401 5e-05 0.0879400403500039 1 0 29.6875 0
21 19 2012-12-20-ac-invivo-1 744.95 5.980561640857971 0.0266121874032581 0.0027843960684635 54.35498975113278 0.0016410099311694 3.736520494044416e-05 0.0008493183014978 5e-05 0.0464782969356258 1 0 -10.9375 0
22 20 2012-12-20-ad-invivo-1 759.82 47.8899415032243 0.1572111340156579 0.004412827130915 294.3089535429343 0.0019082595931216 0.0005454793744743 0.0003902027099212 5e-05 0.0657687561129787 1 0 -45.3125 0
23 21 2012-12-20-ae-invivo-1 763.79 50.2191242194429 0.1230203924349023 0.0056716684601917 286.1135698773513 0.0019726034024348 0.0005025289084042 0.0004045686352769 5e-05 0.0804183995591541 1 0 -40.625 0
24 22 2012-12-21-ai-invivo-1 787.12 19.552681407982867 0.0636151659491776 0.0046658522913592 178.85419634079997 0.0019037662037406 0.0002308125575111 0.0004834553836243 5e-05 0.0939907169906999 1 0 -37.5 0
25 23 2012-12-21-ak-invivo-1 796.83 2.4867707329905 0.0141270344770176 0.0028616283324329 31.510428742268093 0.0003974311599786 5.775335040006332e-06 0.0006089766381869 5e-05 0.0135933352352287 1 0 -7.71484375 0
26 24 2012-12-21-am-invivo-1 806.15 2.599996979076464 0.0210131719161386 0.0072703458079583 46.67063036950735 0.0007837211245351 1.411589095846406e-05 0.0011669771041571 5e-05 0.043353864209255 1 0 -11.328125 0
27 25 2012-12-21-an-invivo-1 812.7 2.657969122279684 0.0126980011518428 0.0029290565793311 30.47330327087832 0.0006812296678529 2.2698725628118127e-05 0.0010815182714474 5e-05 0.0298009543582118 1 0 -6.54296875 0
28 26 2013-01-08-aa-invivo-1 800.63 1.7775663328189109 0.0139724469616012 0.0003756860850739 8.567002390828673 0.0011008277277909 7.296503188131748e-05 0.0001635438226173 5e-05 0.013192502003356 1 0 -0.5859375 0
29 27 2013-01-08-ab-invivo-1 800.25 54.67466209697357 0.2380256573695303 0.003147952593016 401.4746609830789 0.0032334816919704 0.0009482203053873 0.0004075044135951 5e-05 0.1060140977474878 1 0 -75.78125 0
30 28 2013-02-21-ae-invivo-1 665.93 4.294576393156899 0.0349079955577279 0.0042335826224234 193.03334826738376 0.0028604383906985 0.0003229739386601 0.0012770259072818 5e-05 0.0707596447935943 1 0 -56.8359375 0
31 29 2013-02-21-ag-invivo-1 658.7 12.638812661345776 0.1016749009225033 0.0035367702668509 104.74966687228977 0.0016256371684299 9.994911396704052e-05 0.0012702670089049 5e-05 0.078155035148488 1 0 -20.3125 0
32 30 2013-04-10-aa-invivo-1 623.77 7.2029389446183565 0.0526419078304854 0.0022248980461019 62.65798249994464 0.0028732093372693 0.000164159124109 0.0015625668737142 5e-05 0.0635449101638369 1 0 -12.5 0
33 31 2013-04-10-ac-invivo-1 684.72 2.8892039094434803 0.042548818572458 0.0016869020510687 58.09049670735142 0.0023708232278567 0.0003152371416419 0.0010783506078415 5e-05 0.0348236653456585 1 0 -15.91796875 0
34 32 2013-04-17-ab-invivo-1 601.09 42.53156496468646 0.1178301462037476 0.0057660381404226 295.0137656954471 0.0021325123481165 0.0008618261070858 0.0005865905086141 5e-05 0.078251177677974 1 0 -51.5625 0
35 33 2013-04-17-ac-invivo-1 597.94 6.731685804526344 0.0880636102661295 0.0050639791128441 26.766210174285348 0.0002329228437903 1.6714951095492286e-05 0.0016821794608443 5e-05 0.1005180087588643 1 0 -1.953125 0
36 34 2014-01-10-ab-invivo-1 724.72 37.22921835919794 0.105865032837993 0.0077800750459636 382.4713961027781 0.0013793118050116 0.0011037648201998 0.0006409865558835 5e-05 0.0785213908371962 1 0 -86.328125 0
37 35 2014-01-10-ac-invivo-1 708.44 74.22028683769639 0.2062867838543796 0.0086275878935938 522.8738003484584 0.0019099084777949 0.0010896710668221 0.0007561837419108 5e-05 0.1387768914538001 1 0 -92.96875 0
38 36 2014-01-10-ae-invivo-1 670.21 14.403635240773651 0.0927322308690146 0.0051211977513466 205.9862062669372 0.0025386240396386 0.0006095586872081 0.0010368267806298 5e-05 0.0994530945069613 1 0 -51.171875 0
39 37 2014-01-16-ak-invivo-1 803.26 2.3120229511581782 0.0141654897826262 0.007112977431183 24.30632120240236 0.000285109630943 4.089968833381081e-06 0.0011963117586515 5e-05 0.06057228972437 1 0 -4.98046875 0
40 38 2014-01-23-ab-invivo-1 775.18 9.42831561175426 0.0224514357612552 0.0045903654403364 128.9209928230727 0.0007476859066578 0.0001912651734499 0.0004929147142214 5e-05 0.0461635400578526 1 0 -31.0546875 0
41 39 2014-03-19-ad-invivo-1 681.98 69.19466420583639 0.2893760409210132 0.0054364329221975 254.4826491240454 0.0007254371985574 0.0006771079934558 0.0014615164586903 5e-05 0.1345471235735028 1 0 -13.28125 0
42 40 2014-03-19-ae-invivo-1 658.18 38.918760336221055 0.2480858206656654 0.0069955407767959 411.2324502457813 0.0027246186835932 0.0007951136822738 0.0007615925807794 5e-05 0.1169994719346085 1 0 -92.1875 0
43 41 2014-03-19-ah-invivo-1 635.84 56.35167256285228 0.1974715379528175 0.0081228403287698 490.6872518263162 0.0025561010713697 0.0009226463077239 0.0006702491128007 5e-05 0.1445226828597265 1 0 -100.78125 0
44 42 2014-03-19-ai-invivo-1 653.3 88.77458424718674 0.2913937065789225 0.008559140638147 523.4583656536372 0.0020914527733905 0.0014209210970579 0.00066567652942 5e-05 0.1121355388450789 1 0 -78.125 0
45 43 2014-03-19-aj-invivo-1 669.86 32.547605273546935 0.2456940849344553 0.0063333108683462 420.54333434151465 0.0029116982298775 0.0013842790319836 0.0009552598932444 5e-05 0.0877717308089366 1 0 -101.5625 0
46 44 2014-03-25-aa-invivo-1 870.98 21.701016139817888 0.0960172639965266 0.0061302790825722 245.39704801461176 0.0013015964681189 0.0002991440776181 0.0007199971612111 5e-05 0.0733662951162392 1 0 -58.203125 0
47 45 2014-03-25-af-invivo-1 837.7 37.66383751511725 0.1928208471155374 0.0055587552838484 319.58811665224687 0.0012758102274061 0.0003895600960509 0.0007605506254404 5e-05 0.0572208929359239 1 0 -65.625 0
48 46 2014-06-06-ac-invivo-1 800.02 82.92925558245138 0.2497281199063106 0.0058805791567524 401.0507428419596 0.00276420009562 0.0014107594831631 0.0005758934406361 5e-05 0.1571647789884099 1 0 -43.75 0
49 47 2014-06-06-ag-invivo-1 800.12 63.10829705951355 0.5313050862748335 0.0145518013760081 617.8190914088805 0.0023091597305128 0.0036613353060679 0.0009675638720757 5e-05 0.157597675961733 1 0 -134.375 0
50 48 2014-12-03-ai-invivo-1 858.5 34.062575827557275 0.3244570611395585 0.0093071756342572 461.2788968601441 0.0045649933974013 0.0029183532103229 0.0006210470513751 5e-05 0.1037876538806647 1 0 -112.5 0
51 49 2014-12-11-aa-invivo-1 651.29 29.028405021923344 0.3825449567612229 0.0071781591428417 259.88530639963346 0.002849966390513 0.0014916969045105 0.0010340774235971 5e-05 0.1741002240578827 1 0 -54.6875 0
52 50 2014-12-11-ad-invivo-1 650.07 6.884193252440972 0.125103799166033 0.005008289539649 111.76045965688944 0.001884129168681 0.0003939483088535 0.0014575051585428 5e-05 0.1131104818008776 1 0 -28.90625 0
53 51 2015-01-15-ab-invivo-1 708.7 45.11066366134594 0.3830355936726118 0.0142573616079807 437.9661974380556 0.0014288922816903 0.001889557163285 0.0009721128113178 5e-05 0.1302311388392199 1 0 -96.875 0
54 52 2015-01-20-ab-invivo-1 747.35 2.388006758171008 0.0460455856570295 0.0058274300652638 125.51425676781496 0.0026078497201184 0.0005355608495797 0.0013648958604759 5e-05 0.072682482481134 1 0 -36.9140625 0
55 53 2015-01-20-ac-invivo-1 749.16 3.0637076562911862 0.0361482523844888 0.0038837828744527 40.161166949813975 0.0022024851776428 0.0001775828935248 0.0010111334953581 5e-05 0.0912778908591642 1 0 -8.984375 0
56 54 2015-01-20-ae-invivo-1 775.45 10.29173021176557 0.1265554462422453 0.0072071781109798 356.19007281857216 0.0021576432183898 0.0007082894532779 0.0010720005959728 5e-05 0.1036278314600582 1 0 -102.734375 0
57 55 2015-01-20-af-invivo-1 778.15 17.378611201243178 0.2373397050748237 0.006486977712037 233.2942526663853 0.0040916872369868 0.0018519688539093 0.0009390077156995 5e-05 0.0987058568785954 1 0 -57.8125 0
58 56 2015-01-20-ag-invivo-1 778.5 18.07439316562912 0.2669718966923193 0.0059345812215258 228.01386728096296 0.0017130481512641 0.0004828089842224 0.0007940405766277 5e-05 0.173402795420842 1 0 -55.46875 0
59 57 2017-07-18-ah-invivo-1 816.18 4.492478880802049 0.0306800492065723 0.0005510176207879 11.010435284946723 0.0012660814616981 6.939326220065633e-05 0.0001048071222688 5e-05 0.0534712893535971 1 0 1.171875 0
60 58 2017-07-18-ai-invivo-1 817.53 4.836173387076376 0.0459604089024203 0.0005713395854796 19.082872790172893 0.0017648069889998 0.0002954943164986 0.0003799242606729 5e-05 0.0219438187457692 1 0 -2.5390625 0
61 59 2017-07-18-aj-invivo-1 818.98 62.59548468438461 0.2668879734232494 0.0063976464842525 344.9549845381489 0.0006269389203256 0.000542355661302 0.0004845893795398 5e-05 0.0884760312971245 1 0 -48.4375 0
62 60 2018-01-10-al 822.43 6.53045784849496 0.0477523266938062 0.0026516323266361 20.951337676489 0.000384722118084 5.630808827711224e-05 0.0004011848987451 5e-05 0.0468008096291354 1 0 -0.09765625 0
63 61 2018-01-12-af 646.31 27.48409535758441 0.0822784189321632 0.0027716752344402 72.69113348986389 0.0013786805385745 0.0001421670943929 0.0010001738040759 5e-05 0.0608936121352207 1 0 5.46875 0
64 62 2018-05-08-aa-invivo-1 643.65 36.66788911232605 0.2761728222642968 0.0083357504509621 330.2402625207435 0.0021657539780422 0.0018768276776544 0.0010942851413418 5e-05 0.2116606564116055 1 0 -68.75 0
65 63 2018-05-08-ab-invivo-1 646.62 66.70525377272179 0.6014654520860893 0.005682795376896 328.0465980625613 0.001823255075318 0.0009180849887618 0.0008614237691425 5e-05 0.1472296039461372 1 0 -37.5 0
66 64 2018-05-08-ac-invivo-1 655.16 35.32000871480389 0.3365254255760804 0.0067732193070078 139.23166556708537 0.0004350491142382 0.000401489691558 0.0013549977866199 5e-05 0.1531910034411788 1 0 -12.5 0
67 65 2018-05-08-ad-invivo-1 655.66 44.994381556842654 0.1966955414103147 0.0024283512437206 141.095538216996 0.0029968871016672 0.0004073919444425 0.0008373923698767 5e-05 0.0998422947981054 1 0 -0.390625 0
68 66 2018-05-08-ae-invivo-1 649.48 29.440282257876536 0.2018789493993832 0.003910493647611 170.6160808403345 0.0021895423364158 0.0002798942878887 0.0012411447920718 5e-05 0.130171888270862 1 0 -25.78125 0
69 67 2018-05-08-af-invivo-1 649.93 41.849999531343975 0.1321076268905854 0.0052475491397625 228.20359643155803 0.0014814184541785 0.000495030241084 0.0007194589371705 5e-05 0.0617800897722998 1 0 -31.25 0
70 68 2018-05-08-ai-invivo-1 653.62 10.138859439469911 0.0712064900990132 0.0012599754975274 40.34961621751716 0.0027325424460168 0.0002197690747209 0.0012116953449501 5e-05 0.054392058102494 1 0 -2.34375 0
71 69 2018-06-25-ad-invivo-1 840.79 53.73684452063702 0.2072325783629882 0.0041833923107559 320.2100292094566 0.0028666513530079 0.0007840761526882 0.0007822294882607 5e-05 0.0841289508219278 1 0 -48.4375 0
72 70 2018-06-26-ah-invivo-1 778.22 6.703026855077471 0.0341144423335754 0.0008151238083306 16.681124499669373 0.0013215872640159 0.0001692839665525 0.0007865435959385 5e-05 0.205762993728832 1 0 1.7578125 0
73 71 2020-08-12-aa-invivo-1 746.68 44.46101827995927 0.106082537177636 0.0044832342587509 235.04483921079955 0.002487994738557 0.0005967131873841 0.0008508121416945 5e-05 0.1174296496534284 1 0 -29.296875 0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

View File

@ -0,0 +1 @@
,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,287.0,288.0,289.0,290.0,291.0,292.0,293.0,294.0,295.0,296.0,297.0,298.0,299.0,isf_psd,osf_psd,io_cross,d_isf_all,d_osf_all,var_RAM,trial_nr,counter_validate,cell,file_name,eod_fr,cv,fr,fr_stim,cv_stim,ser_stim,ser_first_stim,ser_sum_stim,fr_stim_mean,cv_stim_mean,ser_stim_mean,ser_first_stim_mean,ser_sum_stim_mean
1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 106.0 107.0 108.0 109.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0 151.0 152.0 153.0 154.0 155.0 156.0 157.0 158.0 159.0 160.0 161.0 162.0 163.0 164.0 165.0 166.0 167.0 168.0 169.0 170.0 171.0 172.0 173.0 174.0 175.0 176.0 177.0 178.0 179.0 180.0 181.0 182.0 183.0 184.0 185.0 186.0 187.0 188.0 189.0 190.0 191.0 192.0 193.0 194.0 195.0 196.0 197.0 198.0 199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0 209.0 210.0 211.0 212.0 213.0 214.0 215.0 216.0 217.0 218.0 219.0 220.0 221.0 222.0 223.0 224.0 225.0 226.0 227.0 228.0 229.0 230.0 231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0 241.0 242.0 243.0 244.0 245.0 246.0 247.0 248.0 249.0 250.0 251.0 252.0 253.0 254.0 255.0 256.0 257.0 258.0 259.0 260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 268.0 269.0 270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 295.0 296.0 297.0 298.0 299.0 isf_psd osf_psd io_cross d_isf_all d_osf_all var_RAM trial_nr counter_validate cell file_name eod_fr cv fr fr_stim cv_stim ser_stim ser_first_stim ser_sum_stim fr_stim_mean cv_stim_mean ser_stim_mean ser_first_stim_mean ser_sum_stim_mean

Binary file not shown.

View File

@ -6,21 +6,23 @@ import pandas as pd
from IPython import embed from IPython import embed
from matplotlib import gridspec, pyplot as plt from matplotlib import gridspec, pyplot as plt
from threefish.plot_subplots import plt_model_flowcharts
from threefish.values import ypos_x_modelanddata
try: try:
from plotstyle import plot_style, spines_params from plotstyle import plot_style, spines_params
except: except:
print('plotstyle not installed') print('plotstyle not installed')
from threefish.RAM.plot_subplots import plot_lowpass2, plt_data_susept, plt_single_square_modl, plt_time_arrays from threefish.RAM.plot_subplots import plt_data_susept, plt_single_square_modl
from threefish.RAM.values import overlap_cells, perc_model_full from threefish.RAM.values import overlap_cells, perc_model_full
from threefish.load import resave_small_files, save_visualization from threefish.load import resave_small_files, save_visualization
from threefish.RAM.reformat_flowchart import get_flowchart_params
from threefish.RAM.reformat_matrix import load_model_susept from threefish.RAM.reformat_matrix import load_model_susept
from threefish.core import find_folder_name from threefish.core import find_folder_name
from threefish.RAM.plot_labels import label_noise_name, nonlin_title, remove_xticks, remove_yticks, set_xlabel_arrow, \ from threefish.RAM.plot_labels import label_noise_name, nonlin_title, remove_xticks, remove_yticks, set_xlabel_arrow, \
set_ylabel_arrow, title_find_cell_add, xlabel_xpos_y_modelanddata set_ylabel_arrow, title_find_cell_add, xlabel_xpos_y_modelanddata
import itertools as it import itertools as it
from threefish.defaults import default_figsize, default_settings from threefish.defaults import default_figsize, default_settings
from threefish.plot.limits import join_x, join_y, set_clim_same, set_same_ylim from threefish.plot.limits import set_clim_same, set_same_ylim
#from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2 #from plt_RAM import model_and_data, model_and_data_sheme, model_and_data_vertical2
@ -99,7 +101,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
################################## ##################################
# model part # model part
trial_nr = 500000 trial_nr = 100000
cell = '2013-01-08-aa-invivo-1' cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1' cell = '2012-07-03-ak-invivo-1'
@ -120,16 +122,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
] ]
save_names = [
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
########## ##########
# Erklärung # Erklärung
@ -143,6 +135,65 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
# oben habe ich einen bias factor weil die Zelle zu sensitiv gefittet ist, also passe ich das an dass die den # oben habe ich einen bias factor weil die Zelle zu sensitiv gefittet ist, also passe ich das an dass die den
# gleichen CV und feurrate hat, wie die Zelle in der Stimulation, deswegen ist dieser Bias faktor nur oben! # gleichen CV und feurrate hat, wie die Zelle in der Stimulation, deswegen ist dieser Bias faktor nur oben!
#
#bias_factors = [1, 1, 1, 1] # 0.3
bias_factors = [0.36, 0.36, 1, 1] # 0.36
#new
save_names = [
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
]#'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
save_names = [
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_100000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
]
save_names = [
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
save_names = [
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-3__nfft_whole_power_1_afe_0.025_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
]
save_names = [
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_afe_0.023_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
] #calc_RAM_model-2__nfft_whole_power_1_afe_2.6_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV
bias_factors = [0.36, 0.36, 1, 1]#0.36 bias_factors = [0.36, 0.36, 1, 1]#0.36
save_names = [ save_names = [
'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV', 'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
@ -155,6 +206,11 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
] ]
#
# 'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
#trial_nr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV', #'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_11_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
#'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV', #'calc_RAM_model-2__nfft_whole_power_1_afe_0.009_RAM_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_500000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
@ -206,7 +262,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
fr_print=fr_print, nr=nr) fr_print=fr_print, nr=nr)
# if s in [1,3,5]: # if s in [1,3,5]:
#embed()
ims.append(im) ims.append(im)
mats.append(stack_plot) mats.append(stack_plot)
maxs.append(np.max(np.array(stack_plot))) maxs.append(np.max(np.array(stack_plot)))
@ -232,7 +288,7 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
if len(cells) > 1: if len(cells) > 1:
a += 1 a += 1
set_clim_same(ims, mats=mats, lim_type='up', nr_clim='perc', clims='', percnr=perc_model_full()) set_clim_same(ims, mats=mats, lim_type='up', nr_clim='perc', clims='', percnr=perc_model_full())#
################################################# #################################################
# Flowcharts # Flowcharts
@ -265,161 +321,6 @@ def model_and_data2(eod_metrice=False, width=0.005, nffts=['whole'], powers=[1],
save_visualization(pdf=True) save_visualization(pdf=True)
def plt_model_flowcharts(a_fr, ax_external, c, cs, grid, stack, stimulus_length):
var_types = ['', 'additiv_cv_adapt_factor_scaled'] # 'additiv_cv_adapt_factor_scaled',
##additiv_cv_adapt_factor_scaled
a_fes = [c / 100, 0] # , 0.009
eod_fe = [750, 750] # , 750
ylim = [-0.5, 0.5]
c_sigs = [0, 0.9] # , 0.9
grid_left = [[], grid[1, 0]] # , grid[2, 0]
ax_ams = []
for g, grid_here in enumerate([grid[0, 2], grid[1, 2]]): # , grid[2, 0]
grid_lowpass = gridspec.GridSpecFromSubplotSpec(4, 1,
subplot_spec=grid_here, hspace=0.2,
height_ratios=[1, 1, 1, 0.1])
models = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')
model_params = models[models['cell'] == '2012-07-03-ak-invivo-1'].iloc[0]
cell = model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
eod_fr = model_params['EODf'] # .iloc[0]
deltat = model_params.pop("deltat") # .iloc[0]
v_offset = model_params.pop("v_offset") # .iloc[0]
eod_fr = stack.eod_fr.iloc[0]
noise_final_c, spike_times, stimulus, stimulus_here, time, v_dent_output, v_mem_output, frame = get_flowchart_params(
a_fes, a_fr, g, c_sigs[g], cell, deltat, eod_fr, model_params, stimulus_length, v_offset, var_types,
eod_fe=eod_fe)
if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
grid_lowpass2 = gridspec.GridSpecFromSubplotSpec(4, 1,
subplot_spec=grid_here, height_ratios=[1, 1, 1, 0.1],
hspace=0.05)
# if (np.unique(frame.RAM_afe) != 0):grid_left[g]
ax_external = plt_time_arrays('red', grid_lowpass2, 1, frame.RAM_afe * 100, time=time, nr=0)
# if (np.unique(frame.RAM_noise) != 0):
remove_xticks(ax_external)
ax_intrinsic = plt_time_arrays('purple', grid_lowpass2, 1, frame.RAM_noise * 100, time=time, nr=1)
ax_intrinsic.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=ax_intrinsic.transAxes)
ax_intrinsic.show_spines('l')
ax_external.show_spines('l')
# ax_ams.append(axt_p2)
# color_timeseries = 'black'
# axt_p2.set_xlabel('Time [ms]')
# axt_p2.text(-0.6, 0.5, '$\%$', rotation=90, va='center', transform=axt_p2.transAxes)
# ax_ams.append(axt_p2)
vers = 'all'
elif len(np.unique(frame.RAM_afe)) > 1:
color_timeseries = 'red'
nr_plot = 0
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try:
ax_external, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100,
deltat, eod_fr,
color1=color_timeseries, lw=1, extract=False)
except:
print('add up thing')
embed()
ax_external.show_spines('l')
ax_intrinsic = plt.subplot(grid_lowpass[1])
ax_intrinsic.show_spines('l')
ax_intrinsic.axhline(0, color='black', lw=0.5)
ax_intrinsic.axhline(0, color='purple', lw=0.5)
remove_xticks(ax_external)
remove_xticks(ax_intrinsic)
join_x([ax_intrinsic, ax_external])
join_y([ax_intrinsic, ax_external])
vers = 'first'
elif len(np.unique(frame.RAM_noise)) > 1:
color_timeseries = 'purple'
nr_plot = 1
#print(str(g) + ' afevar ' + str(np.var(frame.RAM_afe)) + ' afenoise ' + str(np.var(frame.RAM_noise)))
try:
ax_intrinsic, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[nr_plot]], time,
(frame.RAM_afe + frame.RAM_noise) * 100,
deltat, eod_fr,
color1=color_timeseries, lw=1, extract=False)
except:
print('add up thing')
embed()
ax_external = plt.subplot(grid_lowpass[0])
ax_external.show_spines('l')
ax_intrinsic.show_spines('l')
ax_external.axhline(0, color='black', lw=0.5)
ax_external.axhline(0, color='red', lw=0.5)
join_x([ax_intrinsic, ax_external])
join_y([ax_intrinsic, ax_external])
vers = 'second'
ax_intrinsic.set_yticks_delta(6)
ax_external.set_yticks_delta(6)
ax_external.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_external.transAxes)
ax_intrinsic.text(-0.6, 0.5, '$\%$', va='center', rotation=90, transform=ax_intrinsic.transAxes)
remove_xticks(ax_intrinsic)
# if (len(np.unique(frame.RAM_afe)) > 1) & (len(np.unique(frame.RAM_noise)) > 1):
ax_external.set_xlabel('')
# remove_yticks(ax)
ax_ams.append(ax_external)
remove_xticks(ax_external)
ax_n, ff, pp, ff_am, pp_am = plot_lowpass2([grid_lowpass[2]], time, noise_final_c, deltat, eod_fr,
extract=False, color1='grey', lw=1)
remove_yticks(ax_n)
if g == 1:
# ax_n.set_xlabel('Time [ms]', labelpad=-0.5)
ax_n.text(0.5, xlabel_xpos_y_modelanddata() * 3, 'Time [ms]', transform=ax_n.transAxes, ha='center')
else:
remove_xticks(ax_n)
ax_n.set_ylim(ylim)
if vers == 'first':
ax_external.text(1, 1, 'RAM(' + cs[0] + ')', ha='right', color='red', transform=ax_external.transAxes)
ax_n.text(start_pos_modeldata(), 1.1, noise_component_name(), ha='right', color='gray',
transform=ax_n.transAxes)
elif vers == 'second':
ax_external.text(1, 1, 'RAM(' + cs[1] + ')', ha='right', color='red', transform=ax_external.transAxes)
ax_intrinsic.text(start_pos_modeldata(), 1.1, signal_component_name(), ha='right', color='purple',
transform=ax_intrinsic.transAxes)
ax_n.text(start_pos_modeldata(), 0.9, noise_component_name(), ha='right', color='gray',
transform=ax_n.transAxes)
else:
ax_n.text(start_pos_modeldata(), 0.9, noise_component_name(), ha='right', color='gray',
transform=ax_n.transAxes)
ax_external.text(1, 1, 'RAM', ha='right', color='red', transform=ax_external.transAxes)
ax_intrinsic.text(start_pos_modeldata(), 1.1, signal_component_name(), ha='right', color='purple',
transform=ax_intrinsic.transAxes)
ax_external.tick_params(axis='y', which='major', labelsize=8.4)
ax_intrinsic.tick_params(axis='y', which='major', labelsize=8.4)
ax_n.tick_params(axis='y', which='major', labelsize=8.4)
# xtick_labelsize =
# embed()
return ax_ams, ax_external
def start_pos_modeldata():
return 1.03
def signal_component_name():
return r'$s_\xi(t)$' #r'$\xi_{signal}$'#signal noise'
def noise_component_name(): #$\xi_{noise}$noise_name =
return 'Intrinsic noise' ##r'$\xi_{noise}$'#'Noise component'#'intrinsic noise'
def ypos_x_modelanddata():
return -0.45
if __name__ == '__main__': if __name__ == '__main__':
model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core') model = resave_small_files("models_big_fit_d_right.csv", load_folder='calc_model_core')

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.3 KiB

After

Width:  |  Height:  |  Size: 178 KiB

View File

@ -2,6 +2,7 @@
import sys import sys
import numpy as np import numpy as np
from IPython import embed
from matplotlib import gridspec, pyplot as plt from matplotlib import gridspec, pyplot as plt
from threefish.RAM.calc_fft import create_full_matrix2 from threefish.RAM.calc_fft import create_full_matrix2
@ -11,7 +12,7 @@ from threefish.RAM.reformat import check_var_substract_method, chose_certain_gro
get_transfer_from_model, load_cells_three, predefine_grouping_frame, restrict_cell_type, save_arrays_susept get_transfer_from_model, load_cells_three, predefine_grouping_frame, restrict_cell_type, save_arrays_susept
from threefish.RAM.save import get_transfer_for_model_full from threefish.RAM.save import get_transfer_for_model_full
from threefish.RAM.reformat_matrix import convert_csv_str_to_float, load_stack_data_susept from threefish.RAM.reformat_matrix import convert_csv_str_to_float, load_stack_data_susept
from threefish.RAM.plot_subplots import adjust_factor_outside_nonlin, colors_suscept_paper_dots, letters_for_full_model, \ from threefish.RAM.plot_subplots import colors_suscept_paper_dots, letters_for_full_model, \
plt_model_big, \ plt_model_big, \
plt_model_full_model2, \ plt_model_full_model2, \
plt_model_letters, \ plt_model_letters, \
@ -28,6 +29,7 @@ from threefish.RAM.plot_labels import label_deltaf1, label_deltaf2, label_diff,
label_two_deltaf2, \ label_two_deltaf2, \
xlabel_transfer_hz xlabel_transfer_hz
from threefish.plot.limits import set_clim_same from threefish.plot.limits import set_clim_same
from threefish.values import values_nfft_full_model, values_stimuluslength_model_full
#from utils_test import test_spikes_clusters #from utils_test import test_spikes_clusters
@ -35,16 +37,16 @@ from threefish.plot.limits import set_clim_same
def model_full(): def model_full():
plot_style()
default_figsize(column=2, length=3.5)#2.7
grid = gridspec.GridSpec(2, 2, wspace=0.55, bottom = 0.15, height_ratios = [2, 5], width_ratios = [1.2, 1], hspace=0.7, top=0.92, left=0.06, right=0.98)#hspace=0.25,
plot_style()
default_figsize(column=2, length=3.5)#2.7
grid = gridspec.GridSpec(2, 2, wspace=0.55, bottom = 0.15, height_ratios = [2, 5], width_ratios = [1.2, 1], hspace=0.7, top=0.88, left=0.06, right=0.98)#hspace=0.25,top=0.92
axes = [] axes = []
a_size = 0.0095#0.0065#0.0065und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085 a_size = 0.02#6#0.0095#0.01#15#0.0095#0.0065#0.0065und 0.0005 für das lineare das ist vielleicht für das nichtlienare 0.0065#0.0085#0.01#0.0085#125 # 0.0025# 0.01 0.005 und davor 0.025, funktioniert gut 0.0085
adjust_factor_outside = 3#adjust_factor_outside_nonlin() adjust_factor_outside = 1#adjust_factor_outside_nonlin()
@ -57,83 +59,97 @@ def model_full():
axes.append(axm) axes.append(axm)
cell = '2012-07-03-ak-invivo-1' cell = '2012-07-03-ak-invivo-1'
cell = "2013-01-08-aa-invivo-1"
#'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
tr = 500000
save_name_given = 'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_'
save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_1000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
#save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV'
perc, im, stack_final, stack_saved = plt_model_big(axm, ls = ls, pos_rel=-0.12, lw = 0.75, cell = cell, lines = True, perc, im, stack_final, stack_saved = plt_model_big(axm, ls = ls, pos_rel=-0.12, lw = 0.75, cell = cell, lines = True,
save_name_given = 'calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_4000000_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV') save_name_given = save_name_given)
#embed() #embed()
fr_waves = 139 fr_waves = 139
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots() color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
DF1_frmult, DF2_frmult = vals_model_full(val=0.30833333333333335) DF1_frmult, DF2_frmult = vals_model_full(val=0.30833333333333335)
models_name = "models_big_fit_d_right.csv"#_big_fit
############################################# #############################################
# plot coherence # plot coherence
loaded_from_calc_RAM_model = False #embed()
if loaded_from_calc_RAM_model: do_transfer = False
cross = get_transfer_from_model(stack_saved) if do_transfer:
axc = plt.subplot(grid[0, 1]) loaded_from_calc_RAM_model = False
axc.plot(stack_saved.index, cross, color = 'black') if loaded_from_calc_RAM_model:
axc.set_xlabel('Frequency [Hz]') cross = get_transfer_from_model(stack_saved)
axc.set_ylabel(xlabel_transfer_hz()) axc = plt.subplot(grid[0, 1])
axc.plot(stack_saved.index, cross, color = 'black')
axc.set_xlabel('Frequency [Hz]')
axc.set_ylabel(xlabel_transfer_hz())
else:
############################################################
#calculate the noise induced tranferfunction
# start_eod_emitter -- the lowest frequency of the emmiter fish, default 20
# frequently used value
# so harmonic is the right one since p-change and wave is some relict so take just harmonic
models = resave_small_files(models_name,
load_folder='calc_model_core')
#flowchart_cell = '2012-07-03-ak-invivo-1'
model_params = models[models['cell'] == cell].iloc[0]
print('cell=' + str(cell))
model_params = models[models['cell'] == cell].iloc[0]
print('cell=' + str(cell))
# amp_frame = pd.read_csv('peak_amplitudes_power.csv')
model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
eod_fr = model_params['EODf'] # .iloc[0]
deltat = model_params.pop("deltat") # .iloc[0]
v_offset = model_params.pop("v_offset") # .iloc[0]
stimulus_length = 1
power = 1
xlim = [0,300]
c_sigs = [0.9] # '',0,
var_types = [
] # ''#'additiv_cv_adapt_factor_scaled'
# 'additiv_visual_d_4_scaled', '']
#a_f = 0.009 # 2
a_fes = [a_size, a_size, 0] # alpha\alpha0.1,
trials_nr = 100 # 100
frame = get_transfer_for_model_full([a_size], 0,cell, deltat,eod_fr,
model_params,
stimulus_length,
trials_nr,
v_offset,
c_sig = 0.9,redo =False,
var_type='additiv_cv_adapt_factor_scaled')
axc = plt.subplot(grid[0, 1])
f_same = frame.index
#embed()
try:
transfer = frame['0']
except:
transfer = frame[0]
axc.plot(f_same[f_same< xlim[-1]], np.abs(transfer[f_same< xlim[-1]])**power, color = 'black', zorder = 100)
axc.set_xlim(xlim)
ylim_here = axc.get_ylim()
#if c == 0:
axc.set_ylabel(r'$|\chi_1|^2$')
else: else:
############################################################ f_same = False
#calculate the noise induced tranferfunction transfer = []
# start_eod_emitter -- the lowest frequency of the emmiter fish, default 20
# frequently used value
# so harmonic is the right one since p-change and wave is some relict so take just harmonic
models = resave_small_files("models_big_fit_d_right.csv",
load_folder='calc_model_core')
flowchart_cell = '2012-07-03-ak-invivo-1'
model_params = models[models['cell'] == flowchart_cell].iloc[0]
print('cell=' + str(flowchart_cell))
model_params = models[models['cell'] == flowchart_cell].iloc[0]
print('cell=' + str(flowchart_cell))
# amp_frame = pd.read_csv('peak_amplitudes_power.csv')
cell = model_params.pop('cell') # .iloc[0]# Werte für das Paper nachschauen
eod_fr = model_params['EODf'] # .iloc[0]
deltat = model_params.pop("deltat") # .iloc[0]
v_offset = model_params.pop("v_offset") # .iloc[0]
stimulus_length = 1
power = 1
xlim = [0,300]
c_sigs = [0.9] # '',0,
var_types = [
] # ''#'additiv_cv_adapt_factor_scaled'
# 'additiv_visual_d_4_scaled', '']
#a_f = 0.009 # 2
a_fes = [a_size, a_size, 0] # alpha\alpha0.1,
trials_nr = 100 # 100
frame = get_transfer_for_model_full([a_size], 0,cell, deltat,eod_fr,
model_params,
stimulus_length,
trials_nr,
v_offset,
c_sig = 0.9,
var_type='additiv_cv_adapt_factor_scaled')
axc = plt.subplot(grid[0, 1])
f_same = frame.index
#embed()
transfer = frame['0']
axc.plot(f_same[f_same< xlim[-1]], np.abs(transfer[f_same< xlim[-1]])**power, color = 'black', zorder = 100)
axc.set_xlim(xlim)
#if c == 0:
axc.set_ylabel(r'$|\chi_1|^2$')
################# #################
# power spectra data # power spectra data
log = 'log'#log'log'#'log'#'log'#'log'#'log' log = 'log'#'log'#log'log'#'log'#'log'#'log'#'log'
ylim_log = (-14.2, 3)#(-14.2, 3) ylim_log = (-14.2, 3)#(-14.2, 3)
nfft = 20000#2 ** 13 nfft = values_nfft_full_model()#length = values_stimuluslength_model_full()
xlim_psd = [0, 300] xlim_psd = [0, 300]
DF1_desired_orig = [133, 166]#33 DF1_desired_orig = [133, 166]#33
@ -149,7 +165,7 @@ def model_full():
#0.16666666666666666 #0.16666666666666666
grid0 = gridspec.GridSpecFromSubplotSpec(2, 2, wspace=0.15, hspace=0.4, grid0 = gridspec.GridSpecFromSubplotSpec(2, 2, wspace=0.15, hspace=0.4,
subplot_spec=grid[1,1]) subplot_spec=grid[:,1])
@ -164,18 +180,20 @@ def model_full():
diagonal = 'diagonal1' diagonal = 'diagonal1'
diagonal = '' diagonal = ''
plus_q = 'plus' # 'minus'#'plus'##'minus' plus_q = 'plus' # 'minus'#'plus'##'minus'
length = 100#2*40 # 5 length = values_stimuluslength_model_full()
reshuffled = '' # , reshuffled = '' # ,
array_len = 2 array_len = 2
alphas = [1,0.5] alphas = [1,0.5]
#a_size = 0.0065#0.0125#25#0.04#0.015 #a_size = 0.0065#0.0125#25#0.04#0.015
#embed()
# ATTENTION: Diese Zelle ('2012-07-03-ak-invivo-1') braucht längere Abschnitte, mindsetesn 5 Sekunden damit das Powerspectrum nicht so niosy ist! # ATTENTION: Diese Zelle ('2012-07-03-ak-invivo-1') braucht längere Abschnitte, mindsetesn 5 Sekunden damit das Powerspectrum nicht so niosy ist!
#print('started')
fr_noise, eod_fr_mm, axes2 = plt_model_full_model2(grid0, stack_final = stack_final, reshuffled=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size, fr_noise, eod_fr_mm, axes2 = plt_model_full_model2(grid0, stack_final = stack_final, reshuffled=reshuffled, dev=0.0005, a_f1s=[a_size], af_2 = a_size,
stimulus_length=length, plus_q=plus_q, stack_saved = stack_saved, stimulus_length=length, plus_q=plus_q, stack_saved = stack_saved,
diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd, diagonal=diagonal, runs=1, nfft = nfft, xlim_psd = xlim_psd,
cells=[cell], dev_spikes ='original', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult, cells=[cell], dev_spikes ='original', markers = markers, DF1_frmult = DF1_frmult, DF2_frmult = DF2_frmult,
log = log, ms = ms, adjust_factor_outside = adjust_factor_outside, array_len = array_len, f_same = f_same, transfer = transfer, clip_on = False, trials_nr_all= [1, 1, 1, 1, 1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1' log = log, ms = ms, models_name = models_name, adjust_factor_outside = adjust_factor_outside, array_len = array_len, f_same = f_same, transfer = transfer, clip_on = False, trials_nr_all= [1, 1, 1, 1, 1]) #arrays_len a_f1s=[0.02]"2012-12-13-an-invivo-1"'2013-01-08-aa-invivo-1'
@ -185,6 +203,16 @@ def model_full():
plt_model_letters(DF1_frmult, DF2_frmult, axm, color012, color01_2, fr_noise, markers) plt_model_letters(DF1_frmult, DF2_frmult, axm, color012, color01_2, fr_noise, markers)
# letters for the transfer function # letters for the transfer function
if do_transfer:
transferletters(DF1_frmult, DF2_frmult, array_len, axc, color01, color02, f_same, fr_noise, transfer)
fig = plt.gcf()#[axes[0], axes[3], axes[4]]
fig.tag([axes[0], axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.35) # ax_ams[3],
#plt.show()
save_visualization()
def transferletters(DF1_frmult, DF2_frmult, array_len, axc, color01, color02, f_same, fr_noise, transfer):
letters = letters_for_full_model() letters = letters_for_full_model()
for f in range(len(letters)): for f in range(len(letters)):
df1_recalc = recalc_fr_to_DF1(DF1_frmult, f, fr_noise) df1_recalc = recalc_fr_to_DF1(DF1_frmult, f, fr_noise)
@ -197,17 +225,12 @@ def model_full():
'C,D', color=color01, ha='center', 'C,D', color=color01, ha='center',
va='center', zorder=100) # , alpha = alphas[f] va='center', zorder=100) # , alpha = alphas[f]
if (letters[f] not in ['C', 'D']): if (letters[f] not in ['C', 'D']):
axc.text(df1_recalc, np.max(transfer[pos_df1-array_len:pos_df1+array_len])+3500, axc.text(df1_recalc, np.max(transfer[pos_df1 - array_len:pos_df1 + array_len]) + 3500,
letters[f], color=color01, ha='center', letters[f], color=color01, ha='center',
va='center', zorder = 100) # , alpha = alphas[f] va='center', zorder=100) # , alpha = alphas[f]
axc.text(df2_recalc, np.max(transfer[pos_df2-array_len:pos_df2+array_len])+2500, axc.text(df2_recalc, np.max(transfer[pos_df2 - array_len:pos_df2 + array_len]) + 2500,
letters[f], color=color02, ha='center', letters[f], color=color02, ha='center',
va='center', zorder = 100) # , alpha = alphas[f] va='center', zorder=100) # , alpha = alphas[f]
fig = plt.gcf()#[axes[0], axes[3], axes[4]]
fig.tag([axes[0], axc, axes2[0], axes2[1], axes2[2], axes2[3]], xoffs=-4.5, yoffs=1.2) # ax_ams[3],
plt.show()
save_visualization()
def plt_data_matrix(axes, grid, ls, lw, perc): def plt_data_matrix(axes, grid, ls, lw, perc):

BIN
nonlin_regime.pdf Normal file

Binary file not shown.

BIN
nonlin_regime.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

484
nonlin_regime.py Normal file
View File

@ -0,0 +1,484 @@
import os
import sys
import numpy as np
import pandas as pd
from IPython import embed
from matplotlib import gridspec, pyplot as plt
from plotstyle import plot_style
from threefish.core import find_folder_name, info
from threefish.defaults import default_figsize, default_ticks_talks
from threefish.load import load_savedir, save_visualization
from threefish.plot.limits import join_x, join_y, set_same_ylim
from threefish.RAM.calc_fft import log_calc_psd
from threefish.RAM.calc_model import chose_old_vs_new_model
from threefish.RAM.plot_labels import label_f_eod_name_core_rm, onebeat_cond, remove_yticks
from threefish.RAM.plot_subplots import colors_suscept_paper_dots, plt_spikes_ROC, recalc_fr_to_DF1
from threefish.RAM.values import val_cm_to_inch, vals_model_full
from threefish.twobeat.calc_model import calc_roc_amp_core_cocktail
from threefish.twobeat.colors import colors_susept, twobeat_cond
from threefish.twobeat.labels import f_stable_name, f_vary_name
from threefish.twobeat.reformat import c_dist_recalc_func, c_dist_recalc_here, dist_recalc_phaselockingchapter, \
find_dfs, \
get_frame_cell_params
from threefish.twobeat.subplots import plt_psd_saturation, plt_single_trace, plt_stim_saturation, plt_vmem_saturation, \
power_spectrum_name
from threefish.values import values_nfft_full_model, values_stimuluslength_model_full
def nonlin_regime(yposs=[450, 450, 450], freqs=[(39.5, -210.5)], printing=False, beat='',
nfft_for_morph=4096 * 4,
gain=1,
cells_here=["2013-01-08-aa-invivo-1"], fish_jammer='Alepto', us_name='',
show=True):
runs = 1
n = 1
dev = 0.001
#reshuffled = 'reshuffled' # ,
# standard combination with intruder small
a_f2s = [0.1]
min_amps = '_minamps_'
dev_name = ['05']
#model_cells = pd.read_csv(find_folder_name('calc_model_core') + "/models_big_fit_d_right.csv")
#if len(cells_here) < 1:
# cells_here = np.array(model_cells.cell)
a_fr = 1
a = 0
trials_nrs = [5]
datapoints = 1000
stimulus_length = 2
results_diff = pd.DataFrame()
position_diff = 0
plot_style()
default_figsize(column=2, length=7.5)
########################################
# für das model_full, die Freuqnezen
DF1_frmult, DF2_frmult = vals_model_full(val=0.30833333333333335)
frame_cvs = pd.read_csv(find_folder_name('calc_base')+'/csv_model_data.csv')
frame_cell = frame_cvs[frame_cvs.cell == '2012-07-03-ak-invivo-1']
#embed()
for d in range(len(DF1_frmult)):
#DF2_frmult[d] = str(DF2_frmult[d])+'Fr'
#DF1_frmult[d] = str(DF1_frmult[d]) + 'Fr'
DF2_frmult[d] = recalc_fr_to_DF1(DF2_frmult, d, frame_cell.fr_data.iloc[0])
DF1_frmult[d] = recalc_fr_to_DF1(DF1_frmult, d, frame_cell.fr_data.iloc[0])
##DF2_frmult[d] = recalc_fr_to_DF1(DF2_frmult, d, frame_cell.fr_data.iloc[0])
freqs = [(DF1_frmult[2], DF2_frmult[2])]
# sachen die ich variieren will
###########################################
auci_wo = []
auci_w = []
nfft = 32768
cells_here = ['2012-07-03-ak-invivo-1']
for cell_here in cells_here:
###########################################
# über die frequenzen hinweg
for freq1, freq2 in freqs: # das ist
full_names = [
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_C2_0.1_C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1temporal',
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_C2_0.1_C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1_old_fit_temporal']
full_names = ['calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_af_coupled__C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1temporal',
'calc_model_amp_freqs-_F1_0.22833333333333333Fr_F2_1Fr_af_coupled__C1Len_50_FirstC1_0.0001_LastC1_1.0_FRrelavtiv__start_0.0001_end_1_StimLen_100_nfft_20000_trialsnr_1_mult_minimum_1_power_1_minamps__dev_original_05_point_1_old_fit_temporal']
c_grouped = ['c1'] # , 'c2']
c_nrs_orig = [0.02, 0.2] # 0.0002, 0.05, 0.5
trials_nr = 20 # 20
redo = False # True
log = 'log' # 'log'
grid0 = gridspec.GridSpec(1, 1, bottom=0.08, top=0.93, left=0.11,
right=0.95, wspace=0.04) #
grid00 = gridspec.GridSpecFromSubplotSpec(2, 1,
wspace=0.04, hspace=0.1,
subplot_spec=grid0[0], height_ratios=[1.5,1],) # height_ratios=[2,1],
grid_up = gridspec.GridSpecFromSubplotSpec(len(c_nrs_orig) + 1, 3,
hspace=0.75,
wspace=0.1, height_ratios=[1, 1, 0.7],
subplot_spec=grid00[
0]) # 1.2hspace=0.4,wspace=0.2,len(chirps)
grid_down = gridspec.GridSpecFromSubplotSpec(1, 2,
hspace=0.75,
wspace=0.1,
subplot_spec=grid00[1]) # 1.2hspace=0.4,wspace=0.2,len(chirps)
for i, full_name in enumerate(full_names):
frame = pd.read_csv(find_folder_name('calc_cocktailparty') + '/' + full_name + '.csv')
frame_cell_orig = frame[(frame.cell == cell_here)]
if len(frame_cell_orig) > 0:
try:
pass
except:
print('min thing')
embed()
get_frame_cell_params(c_grouped, cell_here, frame, frame_cell_orig)
#################################################################
# calc_model_amp_freqs-F1_750-975-25_F2_500-775-25_C2_0.1_C1Len_20_FirstC1_0.0001_LastC1_1.0_StimLen_25_nfft_32768_trialsnr_1_absolut_power_1temporal.csv
# devs_extra = ['stim','stim_rec','stim_am','original','05']#['original','05']
# da implementiere ich das jetzt für eine Zelle
# wo wir den einezlnen Punkt und Kontraste variieren
f_counter = 0
frame_cell_orig, df1s, df2s, f1s, f2s = find_dfs(frame_cell_orig)
eodf = frame_cell_orig.f0.unique()[0]
f = -1
f += 1
#######################################################################################
# übersicht
frame_cell = frame_cell_orig[
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
if len(frame_cell) < 1:
freq1 = frame_cell_orig.iloc[(np.argmin(np.abs(frame_cell_orig.df1 - freq1)))].df1
freq2 = frame_cell_orig.iloc[(np.argmin(np.abs(frame_cell_orig.df2 - freq2)))].df2
frame_cell = frame_cell_orig[
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
print('Tuning curve needed for F1' + str(frame_cell.f1.unique()) + ' F2' + str(
frame_cell.f2.unique()) + ' for cell ' + str(cell_here))
labels, alpha, color01, color01_012, color02, color02_012, colors, colors_array, linestyles, scores, linewidths = colors_susept(
add='_mean_original', nr=4)
#print(cell_here + ' F1' + str(freq1) + ' F2 ' + str(freq2))
sampling = 20000
c_dist_recalc = dist_recalc_phaselockingchapter()
c_nrs = c_dist_recalc_func(frame_cell, c_nrs=c_nrs_orig, cell=cell_here,
c_dist_recalc=c_dist_recalc)
if not c_dist_recalc:
c_nrs = np.array(c_nrs) * 100
letters = ['A', 'B']
indexes = [[0, 1, 2, 3]]
#scores_all = [scores]
#embed()
#
scores = ['amp_B1_012_mean_original', 'amp_B2_012_mean_original', 'amp_B1+B2_012_mean_original', 'amp_B1-B2_012_mean_original']
color01, color012, color01_2, color02, color0_burst, color0 = colors_suscept_paper_dots()
colors = [color01, color02, color012, color01_2]
linestyles = ['-','-','-','-']
#frame_cell_orig['amp_B1+B2_012_mean_original']
#frame_cell_orig['amp_B1-B2_012_mean_original']
#for i, index in enumerate(indexes):
index = [0, 1, 2, 3]
try:
ax_u1 = plt.subplot(grid_down[0, i])
except:
print('grid search problem4')
embed()
if 'old_fit' in full_name:
ax_u1.set_title('old fit (before 2021)')
else:
ax_u1.set_title('new fit (after 2021)')
plt_single_trace([], ax_u1, frame_cell_orig, freq1, freq2,
scores=np.array(scores)[index], labels=np.array(labels)[index],
colors=np.array(colors)[index],
linestyles=np.array(linestyles)[index],
linewidths=np.array(linewidths)[index],
alpha=np.array(alpha)[index],
thesum=False, B_replace='F', default_colors=False,
c_dist_recalc=c_dist_recalc)
#ax_us.append(ax_u1)
frame_cell = frame_cell_orig[
(frame_cell_orig.df1 == freq1) & (frame_cell_orig.df2 == freq2)]
c1 = c_dist_recalc_here(c_dist_recalc, frame_cell)
ax_u1.set_xlim(0, 50)
if i != 0:
ax_u1.set_ylabel('')
remove_yticks(ax_u1)
if i < 2:
ax_u1.fill_between(c1, frame_cell[np.array(scores)[index][0]],
frame_cell[np.array(scores)[index][1]], color='grey',
alpha=0.1)
ax_u1.scatter(c_nrs, (np.array(yposs[i]) - 35) * np.ones(len(c_nrs)), color='black',
marker='v',
clip_on=False)
#
for c_nn, c_nr in enumerate(c_nrs):
ax_u1.text(c_nr, yposs[i][c_nn] + 50, letters[c_nn], color='black', ha='center',
va='top')
# ax_u1.plot([c_nr, c_nr], [0, 435], color='black', linewidth=0.8, clip_on=False)
start = 200 # 1000
mults_period = 3
xlim = [start, start + (mults_period * 1000 / np.min([np.abs(freq1), np.abs(freq2)]))]
#axts_all = []
#axps_all = []
#ax_us = []
# über die kontraste gehen
axts = []
axps = []
axes = []
p_arrays_all = []
model_fit = '_old_fit_' # ''#'_old_fit_'#''#'_old_fit_'#''#'_old_fit_'#''###'_old_fit_'
model_cells, reshuffled = chose_old_vs_new_model(model_fit=model_fit)
for c_nn, c_nr in enumerate(c_nrs):
#################################
# arrays plot
save_dir = load_savedir(level=0).split('/')[0]
name_psd = save_dir + '_psd.npy'
name_psd_f = save_dir + '_psdf.npy'
do = False
if ((not os.path.exists(name_psd)) | (redo == True)) & do:
if log != 'log':
stimulus_length_here = 0.5
stimulus_length_here = values_stimuluslength_model_full()
nfft_here = 32768
nfft_here = values_nfft_full_model()
else:
stimulus_length_here = 50
stimulus_length_here = values_stimuluslength_model_full()
trials_nr = 1
nfft_here = values_nfft_full_model()
else:
nfft_here = 2 ** 14
stimulus_length_here = 0.5
# #
#
_, arrays_spikes, arrays_stim, results_diff, position_diff, auci_wo, auci_w, arrays, names, p_arrays_p, ff_p = calc_roc_amp_core_cocktail(
[freq1 + eodf], [freq2 + eodf], datapoints, auci_wo, auci_w, results_diff,
a_f2s,
fish_jammer, trials_nr, nfft_here, us_name, gain, runs, a_fr, nfft_for_morph,
beat,
printing,
stimulus_length_here,
model_cells, position_diff, dev, cell_here, dev_name=dev_name,
a_f1s=[c_nrs_orig[c_nn]],
n=n,
reshuffled=reshuffled, min_amps=min_amps)
# ff_p, arrays, names, p_arrays_p, arrays_spikes, arrays_stim,
p_arrays_here = p_arrays_p[1::]
xlimp = (0, 300)
for p in range(len(p_arrays_here)):
p_arrays_here[p][0] = p_arrays_here[p][0][ff_p < xlimp[1]]
ff_p = ff_p[ff_p < xlimp[1]]
time = np.arange(0, len(arrays[a][0]) / sampling, 1 / sampling)
time = time * 1000
# plot the first array
arrays_time = arrays[1::] # [v_mems[1],v_mems[3]]#[1,2]#[1::]
arrays_here = arrays[1::] # [arrays[1],arrays[3]]#arrays[1::]#
arrays_st = arrays_stim[1::] # [arrays_stim[1],arrays_stim[3]]#
arrays_sp = arrays_spikes[
1::] # [arrays_spikes[1],arrays_spikes[3]]#arrays_spikes[1::]
colors_array_here = ['grey', 'grey', 'grey'] # colors_array[1::]
p_arrays_all.append(p_arrays_here)
for a in range(len(arrays_here)):
print('a' + str(a))
if a == 0:
freqs = [np.abs(freq1)] # ], np.abs(freq2)],
elif a == 1:
freqs = [np.abs(freq2)]
else:
freqs = [np.abs(freq1), np.abs(freq2)]
grid_pt = gridspec.GridSpecFromSubplotSpec(5, 1,
hspace=0.3,
wspace=0.2,
subplot_spec=grid_up[c_nn, a],
height_ratios=[1, 0.7, 1, 0.25,
2.5]) # hspace=0.4,wspace=0.2,len(chirps)
axe = plt.subplot(grid_pt[0])
axes.append(axe)
plt_stim_saturation(a, [], arrays_st, axe, colors_array_here, f,
f_counter, names, time,
xlim=xlim) # np.array(arrays_sp)*1000
a_f2_cm = c_dist_recalc_func(frame_cell, c_nrs=[a_f2s[0]], cell=cell_here,
c_dist_recalc=c_dist_recalc)
if not c_dist_recalc:
a_f2_cm = np.array(a_f2_cm) * 100
if a == 2: # if (a_f1s[0] != 0) & (a_f2s[0] != 0):
fish = 'Three fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_vary_name() + '\,\&\,' + f_stable_name() # + '$'#' $\Delta '$\Delta$
beat_here = twobeat_cond(big=True, double=True,
cond=False) + '\,' + f_vary_name(
freq=int(freq1), delta=True) + ',\,$c_{1}=%s$' % (
int(np.round(c_nrs[c_nn]))) + '$\%$' + '\n' + f_stable_name(
freq=int(freq2), delta=True) + ',\,$c_{2}=%s$' % (
int(np.round(a_f2_cm[0]))) + '$\%$' # +'$'
title_name = fish + '\n' + beat_here # +c1+c2
elif a == 0: # elif (a_f1s[0] != 0):
beat_here = ' ' + onebeat_cond(big=True, double=True,
cond=False) + '\,' + f_vary_name(
freq=int(freq1), delta=True) # +'$' + ' $\Delta '
fish = 'Two fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_vary_name() # +'$'
c1 = ',\,$c_{1}=%s$' % (int(np.round(c_nrs[c_nn]))) + '$\%$ \n '
title_name = fish + '\n' + beat_here + c1 # +'cm'+'cm'+'cm'
elif a == 1: # elif (a_f2s[0] != 0):
beat_here = ' ' + onebeat_cond(big=True, double=True,
cond=False) + '\,' + f_stable_name(
freq=int(freq2),
delta=True) # +'$'
fish = '\n Two fish: $' + label_f_eod_name_core_rm() + '$\,\&\,' + f_stable_name() # +'$'
c1 = ',\,$c_{2}=%s$' % (int(np.round(a_f2_cm[0]))) + '$\%$ \n'
title_name = fish + '\n' + beat_here + c1 # +'cm'
axe.text(1, 1.1, title_name, va='bottom', ha='right',
transform=axe.transAxes)
#############################
axs = plt.subplot(grid_pt[1])
plt_spikes_ROC(axs, 'grey', np.array(arrays_sp[a]) * 1000, xlim, lw=1)
#############################
axt = plt.subplot(grid_pt[2])
axts.append(axt)
plt_vmem_saturation(a, arrays_sp, arrays_time, axt, colors_array_here, f,
time, xlim=xlim)
axp = plt.subplot(grid_pt[-1])
axps.append(axp)
if a == 0:
axt.show_spines('')
axt.xscalebar(0.1, -0.1, 10, 'ms', va='right', ha='bottom')
axt.yscalebar(-0.02, 0.35, 600, 'Hz', va='left', ha='top')
f_counter += 1
if (not os.path.exists(name_psd)) | (redo == True):
np.save(name_psd, p_arrays_all)
np.save(name_psd_f, ff_p)
else:
ff_p = np.load(name_psd_f) # p_arrays_p
p_arrays_all = np.load(name_psd) # p_arrays_p
for c_nn, c_nr in enumerate(c_nrs):
for a in range(len(arrays_here)):
axps_here = [[axps[0], axps[1], axps[2]], [axps[3], axps[4], axps[5]]]
axp = axps_here[c_nn][a]
pp = log_calc_psd(log, p_arrays_all[c_nn][a][0],
np.nanmax(p_arrays_all))
markeredgecolors = []
if a == 0:
colors_peaks = [color01] # , 'red']
freqs = [np.abs(freq1)] # ], np.abs(freq2)],
elif a == 1:
colors_peaks = [color02] # , 'red']
freqs = [np.abs(freq2)]
else:
colors_peaks = [color01_012, color02_012] # , 'red']
freqs = [np.abs(freq1), np.abs(freq2)]
markeredgecolors = [color01, color02]
colors_peaks = [color01, color02, color012, color01_2]
markeredgecolors = [color01, color02, color012, color01_2]
freqs = [np.abs(freq1), np.abs(freq2), np.abs(freq1)+np.abs(freq2), np.abs(np.abs(freq1)-np.abs(freq2))]
plt_psd_saturation(pp, ff_p, a, axp, colors_array_here, freqs=freqs,
colors_peaks=colors_peaks, xlim=xlimp,
markeredgecolor=markeredgecolors, )
if log:
scalebar = False
if scalebar:
axp.show_spines('b')
if a == 0:
axp.yscalebar(-0.05, 0.5, 20, 'dB', va='center', ha='left')
axp.set_ylim(-33, 5)
else:
axp.show_spines('lb')
if a == 0:
axp.set_ylabel('dB') # , va='center', ha='left'
else:
remove_yticks(axp)
axp.set_ylim(-39, 5)
else:
axp.show_spines('lb')
if a != 0:
remove_yticks(axp)
else:
axp.set_ylabel(power_spectrum_name())
axp.set_xlabel('Frequency [Hz]')
#a#xts_all.extend(axts)
#axps_all.extend(axps)
#ax_us[-1].legend(loc=(-2.22, 1.2), ncol=2, handlelength=2.5) # -0.07loc=(0.4,1)
#axts_all[0].get_shared_y_axes().join(*axts_all)
#axts_all[0].get_shared_x_axes().join(*axts_all)
#axps_all[0].get_shared_y_axes().join(*axps_all)
#axps_all[0].get_shared_x_axes().join(*axps_all)
axts[0].get_shared_y_axes().join(*axts)
axts[0].get_shared_x_axes().join(*axts)
axps[0].get_shared_y_axes().join(*axps)
axps[0].get_shared_x_axes().join(*axps)
join_y(axts)
set_same_ylim(axts)
set_same_ylim(axps)
join_x(axts)
#join_x(ax_us)
#join_y(ax_us)
fig = plt.gcf()
fig.tag([[axes[0], axes[1], axes[2]]], xoffs=0, yoffs=3.7)
fig.tag([[axes[3], axes[4], axes[5]]], xoffs=0, yoffs=3.7)
#fig.tag([ax_us[0], ax_us[1], ax_us[2]], xoffs=-2.3, yoffs=1.4)
save_visualization(cell_here, show)
if __name__ == '__main__':
#embed()
sys.excepthook = info
nonlin_regime(yposs = [[170,180], [200,200]],)#, [430,470]

BIN
nonlin_regime_psd.npy Normal file

Binary file not shown.

BIN
nonlin_regime_psdf.npy Normal file

Binary file not shown.

View File

@ -467,7 +467,7 @@ In contrast, a high-CV P-unit (CV$_{\text{base}}=0.4$) does not exhibit pronounc
\begin{figure*}[t] \begin{figure*}[t]
\includegraphics[width=\columnwidth]{ampullary} \includegraphics[width=\columnwidth]{ampullary}
\caption{\label{fig:ampullary} Linear and nonlinear stimulus encoding in an ampullary afferent (cell identifier ``2012-04-26-ae"). \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The very low CV of the ISIs indicates almost perfect periodic spiking. \figitem{B} Power spectral density of baseline activity with peaks at the cell's baseline firing rate and its harmonics. \figitem{C} Bad-limited white noise stimulus (top, with cutoff frequency of 150\,Hz) added to the fish's self-generated electric field and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). \figitem{D} Gain of the transfer function, \Eqnref{linearencoding_methods}, of the responses to stimulation with 2\,\% (light green) and 20\,\% contrast (dark green). \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both stimulus contrasts as indicated. Pink triangles indicate baseline firing rate. \figitem{G} Projections of the second-order susceptibilities in \panel{E, F} onto the diagonal. \notejb{`` Wurden die ampullaeren auch auf 10s ausgewertet?.''} \caption{\label{fig:ampullary} Linear and nonlinear stimulus encoding in an ampullary afferent (cell identifier ``2012-04-26-ae"). \figitem{A} Interspike interval (ISI) distribution of the cell's baseline activity. The very low CV of the ISIs indicates almost perfect periodic spiking. \figitem{B} Power spectral density of baseline activity with peaks at the cell's baseline firing rate and its harmonics. \figitem{C} Bad-limited white noise stimulus (top, with cutoff frequency of 150\,Hz) added to the fish's self-generated electric field and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). \figitem{D} Gain of the transfer function, \Eqnref{linearencoding_methods}, of the responses to stimulation with 2\,\% (light green) and 20\,\% contrast (dark green). \figitem{E, F} Absolute value of the second-order susceptibility, \Eqnref{eq:susceptibility}, for both stimulus contrasts as indicated. Pink triangles indicate baseline firing rate. \figitem{G} Projections of the second-order susceptibilities in \panel{E, F} onto the diagonal. \notejb{`` Wurden die ampullaeren auch auf 10s ausgewertet?.''}\notesr{ja}
} }
\end{figure*} \end{figure*}
@ -480,7 +480,7 @@ In the example recordings shown above (\figsrefb{fig:cells_suscept} and \fref{fi
\begin{figure*}[t] \begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_and_data} \includegraphics[width=\columnwidth]{model_and_data}
\caption{\label{model_and_data} Estimation of second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials \notejb{of duration XXX?} of an electrophysiological recording of another low-CV P-unit (cell 2012-07-03-ak, $\fbase=120$\,Hz, CV=0.20) driven with a weak RAM stimulus with contrast 2.5\,\%. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \notejb{Since the model overestimated the sensitivity of the real P-unit, we adjusted the RAM contrast to 0.009\,\%, such that the resulting spike trains had the same CV as the electrophysiolgical recorded P-unit during the 2.5\,\% contrast stimulation (see table~\ref{modelparams} for model parameters).} \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility.} \caption{\label{model_and_data} Estimation of second-order susceptibilities in the limit of weak stimuli. \figitem{A} \suscept{} estimated from $N=11$ trials \notejb{of duration XXX?} \notesr{0.5\,s} of an electrophysiological recording of another low-CV P-unit (cell 2012-07-03-ak, $\fbase=120$\,Hz, CV=0.20) driven with a weak RAM stimulus with contrast 2.5\,\%. Pink edges mark baseline firing rate where enhanced nonlinear responses are expected. \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \notejb{Since the model overestimated the sensitivity of the real P-unit, we adjusted the RAM contrast to 0.009\,\%, such that the resulting spike trains had the same CV as the electrophysiolgical recorded P-unit during the 2.5\,\% contrast stimulation (see table~\ref{modelparams} for model parameters).} \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell 2012-07-03-ak, table~\ref{modelparams}) based on the same number of trials as in the electrophysiological recording. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ stimulus repetitions. \figitem[i-iii]{C} Same as in \panel[i-iii]{B} but in the \textit{noise split} condition: there is no external RAM signal driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as signal and is presented as an equivalent amplitude modulation (\signalnoise, center), while the intrinsic noise is reduced to 10\,\% of its original strength (see methods for details). In addition to one million trials, this reveals the full expected structure of the second-order susceptibility.}
\end{figure*} \end{figure*}
One reason could be simply too little data for a good estimate of the second-order susceptibility. Electrophysiological recordings are limited in time, and therefore responses to only a limited number of trials, i.e. repetitions of the same RAM stimulus, are available. As a consequence, the cross-spectra, \Eqnref{eq:crosshigh}, are insufficiently averaged and the full structure of the second-order susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \citep{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of trials as in the experiment ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}). One reason could be simply too little data for a good estimate of the second-order susceptibility. Electrophysiological recordings are limited in time, and therefore responses to only a limited number of trials, i.e. repetitions of the same RAM stimulus, are available. As a consequence, the cross-spectra, \Eqnref{eq:crosshigh}, are insufficiently averaged and the full structure of the second-order susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current and dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (\figrefb{flowchart}) \citep{Barayeu2023}. The model faithfully reproduces the second-order susceptibility of a low-CV cell estimated from the same low number of trials as in the experiment ($\n{}=11$, compare \panel{A} and \panel[ii]{B} in \figrefb{model_and_data}).

File diff suppressed because it is too large Load Diff

BIN
trialnr.pdf Normal file

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -2,6 +2,7 @@ import os
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from IPython import embed
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from plotstyle import plot_style from plotstyle import plot_style
from threefish.RAM.plot_labels import title_find_cell_add from threefish.RAM.plot_labels import title_find_cell_add
@ -84,8 +85,10 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
# model part # model part
trial_nr = 500000 trial_nr = 500000
cell = '2013-01-08-aa-invivo-1' cell = '2013-01-08-aa-invivo-1'
cell = '2012-07-03-ak-invivo-1' #cell = '2012-07-03-ak-invivo-1'
#print('cell'+str(cell)) #print('cell'+str(cell))
cells_given = [cell] cells_given = [cell]
save_name_rev = find_folder_name( save_name_rev = find_folder_name(
@ -103,9 +106,9 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
fig, ax = plt.subplots(1, 1) fig, ax = plt.subplots(1, 1)
ax = [ax] ax = [ax]
alphas = [0.5, 1, ] alphas = [0.5]#, 1, 1]
colors = ['black', 'red'] colors = ['black']#, 'black','red']
for s in range(2): for s in range(len(colors)):
stacks = [] stacks = []
perc95 = [] perc95 = []
perc90 = [] perc90 = []
@ -124,7 +127,10 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str( 'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV','calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str( tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV','calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_' + str(
tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV', tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV',
] 'calc_RAM_model-3__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV_old_fit_',
]
save_names = ['calc_RAM_model-2__nfft_whole_power_1_RAM_additiv_cv_adapt_factor_scaled_cNoise_0.1_cSig_0.9_cutoff1_300_cutoff2_300no_sinz_length1_TrialsStim_'+str(tr) + '_a_fr_1__trans1s__TrialsNr_1_fft_o_forward_fft_i_forward_Hz_mV']
nrs_s = [3, 4, 8, 9]#, 10, 11 nrs_s = [3, 4, 8, 9]#, 10, 11
save_name = save_names[s] save_name = save_names[s]
tr_name = trial_nr/1000000 tr_name = trial_nr/1000000
@ -138,6 +144,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
path = save_name + '.pkl' # '../'+ path = save_name + '.pkl' # '../'+
#embed()
stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add) stack = load_model_susept(path, cells_save, save_name.split(r'/')[-1] + cell_add)
if len(stack)> 0: if len(stack)> 0:
@ -151,7 +158,7 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
fr_stims.append(stack['fr_stim_mean'].iloc[0]) fr_stims.append(stack['fr_stim_mean'].iloc[0])
vars.append(stack['var_RAM'].iloc[0]) vars.append(stack['var_RAM'].iloc[0])
perc95.append(np.percentile(stack_plot,99.99)) perc95.append(np.percentile(stack_plot,99.9))#99.99
perc90.append(np.percentile(stack_plot, 90)) perc90.append(np.percentile(stack_plot, 90))
perc05.append(np.percentile(stack_plot, 10)) perc05.append(np.percentile(stack_plot, 10))
median.append(np.percentile(stack_plot, 50)) median.append(np.percentile(stack_plot, 50))
@ -176,8 +183,11 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
median_wo_norm.append(float('nan')) median_wo_norm.append(float('nan'))
counter.append(float('nan')) counter.append(float('nan'))
ax[0].plot(trial_nrs_here, perc95, color = 'black', clip_on = False, label = '99.99th percentile', alpha = alphas[s]) #if s == 0:
ax[0].scatter(trial_nrs_here, perc95, color = 'black', clip_on = False, alpha = alphas[s])
ax[0].plot(trial_nrs_here, perc95, color = colors[s], clip_on = False, label = '99.99th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc95, color = colors[s], clip_on = False, alpha = alphas[s])
#embed()
ax[0].set_xscale('log')#colors[s] ax[0].set_xscale('log')#colors[s]
ax[0].set_yscale('log') ax[0].set_yscale('log')
ax[0].set_xlabel('Trials [$N$]') ax[0].set_xlabel('Trials [$N$]')
@ -185,13 +195,17 @@ def trialnr(nffts=['whole'], powers=[1], contrasts=[0], noises_added=[''], D_ext
############################################ ############################################
if s == 1: if s == 0:
ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s]) ax[0].plot(trial_nrs_here, perc05, color='lightgrey', clip_on=False, label = '10th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s]) ax[0].scatter(trial_nrs_here, perc05, color='lightgrey', clip_on=False, alpha = alphas[s])
ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s]) ax[0].plot(trial_nrs_here, perc90, color='grey', clip_on=False, label='90th percentile', alpha = alphas[s])
ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s]) ax[0].scatter(trial_nrs_here, perc90, color='grey', clip_on=False, alpha = alphas[s])
ax[0].legend() ax[0].legend()
#ax[1].plot(trial_nrs_here,cv_stims/ trial_nrs_here, color = colors[s])
#embed()
plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95) plt.subplots_adjust(left = 0.1, right = 0.9, bottom = 0.2, top = 0.95)
save_visualization(pdf=True) save_visualization(pdf=True)