nonlinearbaseline2025/regimes.py
2025-05-20 00:12:23 +02:00

326 lines
11 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from scipy.stats import linregress
from numba import jit
from plotstyle import plot_style, lighter, darker
model_cell = '2018-05-08-ad-invivo-1' # 228Hz, CV=0.67
data_path = Path('data')
sims_path = data_path / 'simulations'
def load_data(file_path):
data = np.load(file_path)
ratebase = float(data['ratebase'])
cvbase = float(data['cvbase'])
beatf1 = float(data['beatf1'])
beatf2 = float(data['beatf2'])
contrasts = data['contrasts']
powerf1 = data['powerf1']
powerf2 = data['powerf2']
powerfsum = data['powerfsum']
powerfdiff = data['powerfdiff']
return (ratebase, cvbase, beatf1, beatf2,
contrasts, powerf1, powerf2, powerfsum, powerfdiff)
def load_models(file):
""" Load model parameter from csv file.
Parameters
----------
file: string
Name of file with model parameters.
Returns
-------
parameters: list of dict
For each cell a dictionary with model parameters.
"""
parameters = []
with open(file, 'r') as file:
header_line = file.readline()
header_parts = header_line.strip().split(",")
keys = header_parts
for line in file:
line_parts = line.strip().split(",")
parameter = {}
for i in range(len(keys)):
parameter[keys[i]] = float(line_parts[i]) if i > 0 else line_parts[i]
parameters.append(parameter)
return parameters
def cell_parameters(parameters, cell_name):
for params in parameters:
if params['cell'] == cell_name:
return params
print('cell', cell_name, 'not found!')
exit()
return None
@jit(nopython=True)
def simulate(stimulus, deltat=0.00005, v_zero=0.0, a_zero=2.0,
threshold=1.0, v_base=0.0, delta_a=0.08, tau_a=0.1,
v_offset=-10.0, mem_tau=0.015, noise_strength=0.05,
input_scaling=60.0, dend_tau=0.001, ref_period=0.001):
""" Simulate a P-unit.
Returns
-------
spike_times: 1-D array
Simulated spike times in seconds.
"""
# initial conditions:
v_dend = stimulus[0]
v_mem = v_zero
adapt = a_zero
# prepare noise:
noise = np.random.randn(len(stimulus))
noise *= noise_strength / np.sqrt(deltat)
# rectify stimulus array:
stimulus = stimulus.copy()
stimulus[stimulus < 0.0] = 0.0
# integrate:
spike_times = []
for i in range(len(stimulus)):
v_dend += (-v_dend + stimulus[i]) / dend_tau * deltat
v_mem += (v_base - v_mem + v_offset + (
v_dend * input_scaling) - adapt + noise[i]) / mem_tau * deltat
adapt += -adapt / tau_a * deltat
# refractory period:
if len(spike_times) > 0 and (deltat * i) - spike_times[-1] < ref_period + deltat/2:
v_mem = v_base
# threshold crossing:
if v_mem > threshold:
v_mem = v_base
spike_times.append(i * deltat)
adapt += delta_a / tau_a
return np.array(spike_times)
def punit_spikes(parameter, alpha, beatf1, beatf2, tmax, trials):
tini = 0.2
model_params = dict(parameter)
cell = model_params.pop('cell')
eodf0 = model_params.pop('EODf')
time = np.arange(-tini, tmax, model_params['deltat'])
stimulus = np.sin(2*np.pi*eodf0*time)
stimulus += alpha*np.sin(2*np.pi*(eodf0 + beatf1)*time)
stimulus += alpha*np.sin(2*np.pi*(eodf0 + beatf2)*time)
spikes = []
for i in range(trials):
model_params['v_zero'] = np.random.rand()
model_params['a_zero'] += 0.02*parameter['a_zero']*np.random.randn()
spiket = simulate(stimulus, **model_params)
spikes.append(spiket[spiket > tini] - tini)
return spikes
def plot_am(ax, s, alpha, beatf1, beatf2, tmax):
time = np.arange(0, tmax, 0.0001)
am = alpha*np.sin(2*np.pi*beatf1*time)
am += alpha*np.sin(2*np.pi*beatf2*time)
ax.show_spines('l')
ax.plot(1000*time, -100*am, **s.lsAM)
ax.set_xlim(0, 1000*tmax)
ax.set_ylim(-13, 13)
ax.set_yticks_delta(10)
#ax.set_xlabel('Time', 'ms')
ax.set_ylabel('AM', r'\%')
ax.text(1, 1.2, f'Contrast = {100*alpha:g}\\,\\%',
transform=ax.transAxes, ha='right')
def plot_raster(ax, s, spikes, tmax):
spikes_ms = [1000*s[s<tmax] for s in spikes[:16]]
ax.show_spines('')
ax.eventplot(spikes_ms, linelengths=0.9, **s.lsRaster)
ax.set_xlim(0, 1000*tmax)
#ax.set_xlabel('Time', 'ms')
#ax.set_ylabel('Trials')
def compute_power(path, contrast, spikes, nfft, dt):
if not path.exists():
print(f' Compute power spectrum for contrast = {100*contrast:4.1f}%')
psds = []
time = np.arange(nfft + 1)*dt
tmax = nfft*dt
for s in spikes:
b, _ = np.histogram(s, time)
b = b / dt
fourier = np.fft.rfft(b - np.mean(b))
psds.append(np.abs(fourier)**2)
freqs = np.fft.rfftfreq(nfft, dt)
prr = np.mean(psds, 0)*dt/nfft
np.savez(path, nfft=nfft, deltat=dt, nsegs=len(spikes),
freqs=freqs, prr=prr)
else:
print(f' Load power spectrum for contrast = {100*contrast:4.1f}%')
data = np.load(path)
freqs = data['freqs']
prr = data['prr']
return freqs, prr
def decibel(x):
return 10*np.log10(x/1e8)
def plot_psd(ax, s, path, contrast, spikes, nfft, dt, beatf1, beatf2):
offs = 4
freqs, psd = compute_power(path, contrast, spikes, nfft, dt)
psd /= freqs[1]
ax.plot(freqs, decibel(psd), **s.lsPower)
ax.plot(beatf2, decibel(peak_ampl(freqs, psd, beatf2)) + offs,
label=r'$r$', clip_on=False, **s.psF0)
ax.plot(beatf1, decibel(peak_ampl(freqs, psd, beatf1)) + offs,
label=r'$\Delta f_1$', clip_on=False, **s.psF01)
ax.plot(beatf2, decibel(peak_ampl(freqs, psd, beatf2)) + offs + 5.5,
label=r'$\Delta f_2$', clip_on=False, **s.psF02)
ax.plot(beatf2 - beatf1, decibel(peak_ampl(freqs, psd, beatf2 - beatf1)) + offs,
label=r'$\Delta f_2 - \Delta f_1$', clip_on=False, **s.psF01_2)
ax.plot(beatf1 + beatf2, decibel(peak_ampl(freqs, psd, beatf1 + beatf2)) + offs,
label=r'$\Delta f_1 + \Delta f_2$', clip_on=False, **s.psF012)
ax.set_xlim(0, 300)
ax.set_ylim(-60, 0)
ax.set_xlabel('Frequency', 'Hz')
ax.set_ylabel('Power [dB]')
def plot_example(axs, axr, axp, s, path, cell, alpha, beatf1, beatf2,
nfft, trials):
dt = 0.0001
tmax = nfft*dt
t1 = 0.1
spikes = punit_spikes(cell, alpha, beatf1, beatf2, tmax, trials)
plot_am(axs, s, alpha, beatf1, beatf2, t1)
plot_raster(axr, s, spikes, t1)
plot_psd(axp, s, path, alpha, spikes, nfft, dt, beatf1, beatf2)
def peak_ampl(freqs, psd, f):
df = 2
psd_snippet = psd[(freqs > f - df) & (freqs < f + df)]
return np.max(psd_snippet)
def amplitude(power):
power -= power[0]
power[power<0] = 0
return np.sqrt(power)
def amplitude_linearfit(contrast, power, max_contrast):
power -= power[0]
power[power<0] = 0
ampl = np.sqrt(power)
a = ampl[contrast <= max_contrast]
c = contrast[contrast <= max_contrast]
r = linregress(c, a)
return r.intercept + r.slope*contrast
def amplitude_squarefit(contrast, power, max_contrast):
power -= power[0]
power[power<0] = 0
ampl = np.sqrt(power)
a = np.sqrt(ampl[contrast <= max_contrast])
c = contrast[contrast <= max_contrast]
r = linregress(c, a)
return (r.intercept + r.slope*contrast)**2
def plot_peaks(ax, s, alphas, contrasts, powerf1, powerf2, powerfsum,
powerfdiff):
cmax = 10
contrasts *= 100
ax.plot(contrasts, amplitude_linearfit(contrasts, powerf1, 4),
**s.lsF01m)
ax.plot(contrasts, amplitude_linearfit(contrasts, powerf2, 2),
**s.lsF02m)
ax.plot(contrasts, amplitude_squarefit(contrasts, powerfsum, 4),
**s.lsF012m)
ax.plot(contrasts, amplitude_squarefit(contrasts, powerfdiff, 4),
**s.lsF01_2m)
ax.plot(contrasts, amplitude(powerf1), **s.lsF01)
ax.plot(contrasts, amplitude(powerf2), **s.lsF02)
mask = contrasts < cmax
ax.plot(contrasts[mask], amplitude(powerfsum)[mask],
clip_on=False, **s.lsF012)
ax.plot(contrasts[mask], amplitude(powerfdiff)[mask],
clip_on=False, **s.lsF01_2)
ymax = 60
for alpha, tag in zip(alphas, ['A', 'B', 'C', 'D']):
ax.plot(100*alpha, ymax*0.95, 'vk', ms=4, clip_on=False)
ax.text(100*alpha, ymax, tag, ha='center')
#ax.axvline(contrast, **s.lsGrid)
#ax.text(contrast, 630, tag, ha='center')
ax.axvline(1.2, **s.lsLine)
ax.axvline(3.5, **s.lsLine)
yoffs = 35
ax.text(1.2/2, yoffs, 'linear\nregime',
ha='center', va='center')
ax.text((1.2 + 3.5)/2, yoffs, 'weakly\nnonlinear\nregime',
ha='center', va='center')
ax.text(5.5, yoffs, 'strongly\nnonlinear\nregime',
ha='center', va='center')
ax.set_xlim(0, cmax)
ax.set_ylim(0, ymax)
ax.set_xticks_delta(2)
ax.set_yticks_delta(20)
ax.set_xlabel('Contrast', r'\%')
ax.set_ylabel('Amplitude', 'Hz')
if __name__ == '__main__':
ratebase, cvbase, beatf1, beatf2, \
contrasts, powerf1, powerf2, powerfsum, powerfdiff = \
load_data(sims_path / f'{model_cell}-contrastpeaks.npz')
alphas = [0.002, 0.01, 0.03, 0.06]
parameters = load_models(data_path / 'punitmodels.csv')
cell = cell_parameters(parameters, model_cell)
nfft = 2**18
print(f'Loaded data for cell {model_cell}: '
f'baseline rate = {ratebase:.0f}Hz, CV = {cvbase:.2f}')
s = plot_style()
fig, (axes, axa) = plt.subplots(2, 1, height_ratios=[4, 3],
cmsize=(s.plot_width, 0.6*s.plot_width))
fig.subplots_adjust(leftm=8, rightm=2, topm=2, bottomm=3.5, hspace=0.6)
axe = axes.subplots(3, 4, wspace=0.4, hspace=0.2,
height_ratios=[1, 2, 3])
fig.show_spines('lb')
# example power spectra:
for c, alpha in enumerate(alphas):
path = sims_path / f'{model_cell}-contrastspectrum-{1000*alpha:03.0f}.npz'
plot_example(axe[0, c], axe[1, c], axe[2, c], s, path,
cell, alpha, beatf1, beatf2, nfft, 100)
axe[1, 0].xscalebar(1, -0.1, 20, 'ms', ha='right')
axe[2, 0].legend(loc='center left', bbox_to_anchor=(0, -0.8),
ncol=5, columnspacing=2)
fig.common_yspines(axe[0, :])
fig.common_yticks(axe[2, :])
fig.tag(axe[0, :], xoffs=-3, yoffs=1.6)
# contrast dependence:
plot_peaks(axa, s, alphas, contrasts, powerf1, powerf2,
powerfsum, powerfdiff)
fig.tag(axa, yoffs=2)
fig.savefig()
print()