nonlinearbaseline2025/modelsusceptlown.py
2025-05-20 00:12:23 +02:00

204 lines
7.6 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, linregress, gaussian_kde
from thunderlab.tabledata import TableData
from pathlib import Path
from plotstyle import plot_style, labels_params, significance_str
model_cell = '2012-12-21-ak-invivo-1'
data_path = Path('data')
sims_path = data_path / 'simulations'
def sort_files(cell_name, all_files, n):
files = [fn for fn in all_files if '-'.join(fn.stem.split('-')[2:-n]) == cell_name]
if len(files) == 0:
return None, 0
nums = [int(fn.stem.split('-')[-1]) for fn in files]
idxs = np.argsort(nums)
files = [files[i] for i in idxs]
nums = [nums[i] for i in idxs]
return files, nums
def plot_chi2(ax, s, data_file):
data = np.load(data_file)
n = data['n']
alpha = data['alpha']
freqs = data['freqs']
pss = data['pss']
dt_fix = 1 # 0.0005
prss = np.abs(data['prss'])/dt_fix*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
ax.set_visible(True)
ax.set_aspect('equal')
i0 = np.argmin(freqs < -300)
i0 = np.argmin(freqs < 0)
i1 = np.argmax(freqs > 300)
if i1 == 0:
i1 = len(freqs)
freqs = freqs[i0:i1]
prss = prss[i0:i1, i0:i1]
vmax = np.quantile(prss, 0.996)
ten = 10**np.floor(np.log10(vmax))
for fac, delta in zip([1, 2, 3, 4, 6, 8, 10],
[0.5, 1, 1, 2, 3, 4, 5]):
if fac*ten >= vmax:
vmax = fac*ten
ten *= delta
break
pc = ax.pcolormesh(freqs, freqs, prss, vmin=0, vmax=vmax,
rasterized=True)
ns = f'$N={n}$' if n <= 100 else f'$N=10^{np.log10(n):.0f}$'
if 'noise_frac' in data:
ax.set_title(f'$c$=0\\,\\%, {ns}', fontsize='medium')
else:
ax.set_title(f'$c$={100*alpha:g}\\,\\%, {ns}', fontsize='medium')
ax.set_xlim(0, 300)
ax.set_ylim(0, 300)
ax.set_xticks_delta(100)
ax.set_yticks_delta(100)
ax.set_xlabel('$f_1$', 'Hz')
ax.set_ylabel('$f_2$', 'Hz')
cax = ax.inset_axes([1.04, 0, 0.05, 1])
cax.set_spines_outward('lrbt', 0)
if alpha == 0.1:
cb = fig.colorbar(pc, cax=cax, label=r'$|\chi_2|$ [Hz]')
else:
cb = fig.colorbar(pc, cax=cax)
cb.outline.set_color('none')
cb.outline.set_linewidth(0)
cax.set_yticks_delta(ten)
def plot_chi2_contrasts(axs, s, cell_name, n=None):
print(f' {cell_name}')
files, nums = sort_files(cell_name,
sims_path.glob(f'chi2-split-{cell_name}-*.npz'), 1)
idx = -1 if n is None else nums.index(n)
plot_chi2(axs[0], s, files[idx])
for k, alphastr in enumerate(['010', '030', '100']):
files, nums = sort_files(cell_name,
sims_path.glob(f'chi2-noisen-{cell_name}-{alphastr}-*.npz'), 2)
idx = -1 if n is None else nums.index(n)
plot_chi2(axs[k + 1], s, files[idx])
def plot_nli_diags(ax, s, data, alphax, alphay, xthresh, ythresh, cell_name):
datax = data[data['contrast'] == alphax, :]
datay = data[data['contrast'] == alphay, :]
nlix = datax['dnli']
nliy = datay['dnli100']
nfp = np.sum((nliy > ythresh) & (nlix < xthresh))
ntp = np.sum((nliy > ythresh) & (nlix > xthresh))
ntn = np.sum((nliy < ythresh) & (nlix < xthresh))
nfn = np.sum((nliy < ythresh) & (nlix > xthresh))
print(f' {ntp:2d} ({100*ntp/len(nlix):2.0f}%) true positive')
print(f' {nfp:2d} ({100*nfp/len(nlix):2.0f}%) false positive')
print(f' {ntn:2d} ({100*ntn/len(nlix):2.0f}%) true negative')
print(f' {nfn:2d} ({100*nfn/len(nlix):2.0f}%) false negative')
r, p = pearsonr(nlix, nliy)
l = linregress(nlix, nliy)
x = np.linspace(0, 10, 10)
ax.set_visible(True)
ax.set_title(f'$c$={100*alphay:g}\\,\\%', fontsize='medium')
ax.plot(x, x, **s.lsLine)
ax.plot(x, l.slope*x + l.intercept, **s.lsGrid)
ax.axhline(ythresh, **s.lsLine)
ax.axvline(xthresh, 0, 0.5, **s.lsLine)
if alphax == 0:
mask = datax['triangle'] > 0.5
ax.plot(nlix[mask], nliy[mask], zorder=30, label='strong', **s.psA1m)
mask = datax['border'] > 0.5
ax.plot(nliy[mask], nliy[mask], zorder=20, label='weak', **s.psA2m)
ax.plot(nlix, nliy, zorder=10, label='none', **s.psB1m)
# mark cell:
mask = datax['cell'] == cell_name
color = s.psB1m['color']
if alphax == 0:
if datax[mask, 'border']:
color = s.psA2m['color']
elif datax[mask, 'triangle']:
color = s.psA1m['color']
ax.plot(nlix[mask], nliy[mask], zorder=40, marker='o',
ms=s.psB1m['markersize'], mfc=color, mec='k', mew=0.8)
box = dict(boxstyle='square,pad=0.1', fc='white', ec='none')
ax.text(1.0, 0.0, f'{ntn}', ha='right', fontsize='small', bbox=box)
ax.text(7.5, 0.0, f'{nfn}', ha='right', fontsize='small', bbox=box)
ax.text(1.0, 3.7, f'{nfp}', ha='right', fontsize='small', bbox=box)
ax.text(7.5, 3.7, f'{ntp}', ha='right', fontsize='small', bbox=box)
ax.set_ylim(0, 9)
ax.set_xlim(0, 9)
n = datax[0, 'nsegs']
if alphax == 0:
ax.set_xlabel(f'SI, $c=0$, $N=10^{np.log10(n):.0f}$')
else:
ax.set_xlabel(f'SI, $N=10^{np.log10(n):.0f}$')
ax.set_ylabel('SI, $N=100$')
ax.set_xticks_delta(4)
ax.set_yticks_delta(4)
ax.set_minor_xticks_delta(1)
ax.set_minor_yticks_delta(1)
ax.text(0, 0.9, f'$R={r:.2f}$', transform=ax.transAxes, fontsize='small')
ax.text(0, 0.75, significance_str(p), transform=ax.transAxes,
fontsize='small')
if alphax == 0 and alphay == 0.01:
ax.legend(loc='upper left', bbox_to_anchor=(-1.5, 1),
title='triangle', handlelength=0.5,
handletextpad=0.5, labelspacing=0.2)
kde = gaussian_kde(nliy, 0.15/np.std(nliy, ddof=1))
nli = np.linspace(0, 8, 100)
pdf = kde(nli)
dax = ax.inset_axes([1.04, 0, 0.3, 1])
dax.show_spines('')
dax.fill_betweenx(nli, pdf, **s.fsB1a)
dax.plot(pdf, nli, clip_on=False, **s.lsB1m)
def plot_summary_contrasts(axs, s, xthresh, ythresh, cell_name):
print(f'against contrast with thresholds: x={xthresh} and y={ythresh}')
data = TableData(data_path / 'Apteronotus_leptorhynchus-Punit-models.csv')
for i, a in enumerate([0.01, 0.03, 0.1]):
print(f'contrast {100*a:2g}%:')
plot_nli_diags(axs[1 + i], s, data, a, a, xthresh, ythresh, cell_name)
print()
def plot_summary_diags(axs, s, xthresh, ythresh, cell_name):
print(f'against split with thresholds: x={xthresh} and y={ythresh}')
data = TableData(data_path / 'Apteronotus_leptorhynchus-Punit-models.csv')
for i, a in enumerate([0.01, 0.03, 0.1]):
print(f'contrast {100*a:2g}%:')
plot_nli_diags(axs[1 + i], s, data, 0, a, xthresh, ythresh, cell_name)
if __name__ == '__main__':
xthresh = 1.2
ythresh = 1.8
s = plot_style()
fig, axs = plt.subplots(6, 4, cmsize=(s.plot_width, 0.85*s.plot_width),
height_ratios=[1, 1, 0, 1, 0, 1])
fig.subplots_adjust(leftm=7, rightm=9, topm=2, bottomm=4,
wspace=1, hspace=1)
for ax in axs.flat:
ax.set_visible(False)
print('Example cells:')
plot_chi2_contrasts(axs[0], s, model_cell)
plot_chi2_contrasts(axs[1], s, model_cell, 10)
for k in range(2):
fig.common_yticks(axs[k, :])
for k in range(4):
fig.common_xticks(axs[:2, k])
print()
plot_summary_contrasts(axs[3], s, xthresh, ythresh, model_cell)
plot_summary_diags(axs[5], s, xthresh, ythresh, model_cell)
fig.common_yticks(axs[3, 1:])
fig.common_yticks(axs[5, 1:])
fig.tag(axs, xoffs=-4.5, yoffs=1.8)
axs[1, 0].set_visible(False)
fig.savefig()
print()