47 lines
1.5 KiB
Python
47 lines
1.5 KiB
Python
import numpy as np
|
|
from pathlib import Path
|
|
from importlib import import_module
|
|
|
|
|
|
exclude = ['examplecells.py', 'plotstyle.py', 'spectral.py']
|
|
data_cells = []
|
|
model_cells = []
|
|
for pf in sorted(Path('.').glob('*.py'), key=lambda x: x.stem):
|
|
if pf.name in exclude:
|
|
continue
|
|
print(pf.name)
|
|
figure = import_module(pf.stem)
|
|
if hasattr(figure, 'example_cell'):
|
|
name = figure.example_cell
|
|
while isinstance(name, list):
|
|
name = name[0]
|
|
print(f' found example_cell: {name}')
|
|
data_cells.append(name)
|
|
if hasattr(figure, 'example_cells'):
|
|
for name in figure.example_cells:
|
|
while isinstance(name, list):
|
|
name = name[0]
|
|
print(f' found example_cells: {name}')
|
|
data_cells.append(name)
|
|
if hasattr(figure, 'model_cell'):
|
|
name = figure.model_cell
|
|
while isinstance(name, list):
|
|
name = name[0]
|
|
print(f' found model_cell: {name}')
|
|
model_cells.append(name)
|
|
if hasattr(figure, 'model_cells'):
|
|
for name in figure.model_cells:
|
|
while isinstance(name, list):
|
|
name = name[0]
|
|
print(f' found model_cells: {name}')
|
|
model_cells.append(name)
|
|
|
|
print()
|
|
print('The following cell data are used in the plots:')
|
|
for cell in np.unique(data_cells):
|
|
print(cell)
|
|
print()
|
|
print('The following cell models are used in the plots:')
|
|
for cell in np.unique(model_cells):
|
|
print(cell)
|