import sys sys.path.insert(0, 'ephys') # for analysing data import numpy as np import matplotlib.pyplot as plt from pathlib import Path from spectral import diag_projection, peakedness from plotstyle import plot_style cell_name = '2020-10-27-ag-invivo-1' run1 = 0 run2 = 1 base_path = Path('ephys') data_path = base_path / 'data' results_path = base_path / 'results' def load_baseline(path, cell_name): d = path / f'{cell_name}-baseline.npz' data = np.load(d) ['eodf', 'isis', 'isih', 'lags', 'corrs', 'freqs', 'prr'] eodf = float(data['eodf']) rate = float(data['ratebase/Hz']) cv = float(data['cvbase']) isis = data['isis'] pdf = data['isih'] freqs = data['freqs'] prr = data['prr'] return eodf, rate, cv, isis, pdf, freqs, prr def load_noise(path, cell_name, run): data = np.load(path / f'{cell_name}-spectral-data-s{run:02d}.npz') contrast = data['contrast'] time = data['time'] stimulus = data['stimulus'] name = str(data['stimulus_name']) fcutoff = float(name.lower().replace('blwn', '').replace('inputarr_', '').replace('gwn', '').split('h')[0]) spikes = [] for k in range(1000): key = f'spikes_{k:03d}' if not key in data.keys(): break spikes.append(data[key]) return contrast, time, stimulus, spikes def load_spectra(path, cell_name, run=None): if run is None: data = np.load(cell_name) else: d = list(path.glob(f'{cell_name}-spectral*-s{run:02d}.npz')) data = np.load(d[0]) contrast = float(data['alpha']) fcutoff = float(data['fcutoff']) freqs = data['freqs'] pss = data['pss'] prs = data['prs'] prss = data['prss'] nsegs = int(data['n']) gain = np.abs(prs)/pss chi2 = np.abs(prss)*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1)) return fcutoff, contrast, freqs, gain, chi2 def plot_isih(ax, s, rate, cv, isis, pdf): ax.show_spines('b') ax.fill_between(1000*isis, pdf, facecolor=s.cell_color1) ax.set_xlim(0, 8) ax.set_xticks_delta(2) ax.set_xlabel('ISI', 'ms') ax.text(0, 1.08, 'P-unit:', transform=ax.transAxes, color=s.cell_color1, fontsize='large') ax.text(0.6, 1.08, f'$r={rate:.0f}$Hz, CV$_{{\\rm base}}$={cv:.2f}', transform=ax.transAxes) def plot_response_spectrum(ax, s, eodf, rate, freqs, prr): rate_i = np.argmax(prr[freqs < 0.7*eodf]) eod_i = np.argmax(prr[freqs > 500]) + np.argmax(freqs > 500) power_db = 10*np.log10(prr/np.max(prr)) ax.show_spines('b') mask = freqs < 890 ax.plot(freqs[mask], power_db[mask], **s.lsC1) ax.plot(freqs[eod_i], power_db[eod_i], **s.psA1c) ax.plot(freqs[rate_i], power_db[rate_i], **s.psA2c) ax.set_xlim(0, 900) ax.set_ylim(-25, 5) ax.set_xticks_delta(300) ax.set_xlabel('$f$', 'Hz') ax.text(freqs[eod_i], power_db[eod_i] + 2, '$f_{\\rm EOD}$', ha='center') ax.text(freqs[rate_i], power_db[rate_i] + 2, '$r$', ha='center') ax.yscalebar(1.05, 0, 10, 'dB', ha='right') def plot_response(ax, s, eodf, time1, stimulus1, contrast1, spikes1, contrast2, spikes2): t0 = 0.3 t1 = 0.4 #print(len(spikes1), len(spikes2)) maxtrials = 8 trials = np.arange(maxtrials) ax.show_spines('') ax.eventplot(spikes1[2:2+maxtrials], lineoffsets=trials - maxtrials + 1, linelength=0.8, linewidths=1, color=s.cell_color1) ax.eventplot(spikes2[2:2+maxtrials], lineoffsets=trials - 2*maxtrials, linelength=0.8, linewidths=1, color=s.cell_color2) am = 1 + contrast1*stimulus1 eod = np.sin(2*np.pi*eodf*time1) * am ax.plot(time1, 4*eod + 7, **s.lsEOD) ax.plot(time1, 4*am + 7, **s.lsAM) ax.set_xlim(t0, t1) ax.set_ylim(-2*maxtrials - 0.5, 14) ax.xscalebar(1, -0.05, 0.01, None, '10\\,ms', ha='right') ax.text(t1 + 0.003, -0.5*maxtrials, f'${100*contrast1:.0f}$\\,\\%', va='center', color=s.cell_color1) ax.text(t1 + 0.003, -1.55*maxtrials, f'${100*contrast2:.0f}$\\,\\%', va='center', color=s.cell_color2) def plot_gain(ax, s, contrast1, freqs1, gain1, contrast2, freqs2, gain2, fcutoff): ax.plot(freqs2, gain2, label=f'{100*contrast2:.0f}', **s.lsC2) ax.plot(freqs1, gain1, label=f'{100*contrast1:.0f}', **s.lsC1) ax.set_xlim(0, fcutoff) ax.set_ylim(0, 800) ax.set_xticks_delta(100) ax.set_xlabel('$f$', 'Hz') ax.set_ylabel(r'$|\chi_1|$', 'Hz') def plot_colorbar(ax, pc, dc=None): cax = ax.inset_axes([1.04, 0, 0.05, 1]) cax.set_spines_outward('lrbt', 0) cb = cax.get_figure().colorbar(pc, cax=cax, label=r'$|\chi_2|$ [kHz]') cb.outline.set_color('none') cb.outline.set_linewidth(0) if dc is not None: cax.set_yticks_delta(dc) def plot_chi2(ax, s, contrast, freqs, chi2, fcutoff, vmax): ax.set_aspect('equal') if vmax is None: vmax = np.quantile(1e-3*chi2, 0.99) pc = ax.pcolormesh(freqs, freqs, 1e-3*chi2, vmin=0, vmax=vmax, cmap='viridis', rasterized=True, zorder=10) ax.set_xlim(0, fcutoff) ax.set_ylim(0, fcutoff) df = 100 if fcutoff == 300 else 50 ax.set_xticks_delta(df) ax.set_yticks_delta(df) ax.set_xlabel('$f_1$', 'Hz') ax.set_ylabel('$f_2$', 'Hz') return pc def plot_diagonals(ax, s, fbase, contrast1, freqs1, chi21, contrast2, freqs2, chi22, fcutoff): diags = [] nlis = [] nlips = [] nlifs = [] for contrast, freqs, chi2 in [[contrast1, freqs1, chi21], [contrast2, freqs2, chi22]]: dfreqs, diag = diag_projection(freqs, chi2, 2*fcutoff) diags.append([dfreqs, diag]) nli, nlif = peakedness(dfreqs, diag, fbase, median=False) nlip = diag[np.argmin(np.abs(dfreqs - nlif))] nlis.append(nli) nlips.append(nlip) nlifs.append(nlif) print(f' SI at {100*contrast:.1f}% contrast: {nli:.2f}') ax.axvline(fbase, **s.lsGrid) ax.plot(diags[1][0], 1e-3*diags[1][1], **s.lsC2) ax.plot(diags[0][0], 1e-3*diags[0][1], **s.lsC1) ax.plot(nlifs[1], 1e-3*nlips[1], **s.psC2) ax.plot(nlifs[0], 1e-3*nlips[0], **s.psC1) ax.set_xlim(0, 2*fcutoff) ax.set_ylim(0, 4.2) ax.set_xticks_delta(300) ax.set_yticks_delta(1) ax.set_xlabel('$f_1 + f_2$', 'Hz') #ax.set_ylabel(r'$|\chi_2|$', 'kHz') ax.text(nlifs[1] - 50, 1e-3*nlips[1], f'{100*contrast2:.0f}\\%', ha='right') ax.text(nlifs[1] + 70, 1e-3*nlips[1], f'SI={nlis[1]:.1f}') ax.text(nlifs[0] - 50, 1e-3*nlips[0], f'{100*contrast1:.0f}\\%', ha='right') ax.text(nlifs[0] + 70, 1e-3*nlips[0], f'SI={nlis[0]:.1f}') ax.text(fbase, 4.3, '$r$', ha='center') if __name__ == '__main__': print('Example P-unit:', cell_name) eodf, rate, cv, isis, pdf, freqs, prr = load_baseline(results_path, cell_name) print(f' baseline firing rate: {rate:.0f}Hz') print(f' baseline firing CV : {cv:.2f}') contrast1, time1, stimulus1, spikes1 = load_noise(data_path, cell_name, run1) contrast2, time2, stimulus2, spikes2 = load_noise(data_path, cell_name, run2) fcutoff1, contrast1, freqs1, gain1, chi21 = load_spectra(results_path, cell_name, run1) fcutoff2, contrast2, freqs2, gain2, chi22 = load_spectra(results_path, cell_name, run2) s = plot_style() s.cell_color1 = s.punit_color1 s.cell_color2 = s.punit_color2 s.lsC1 = s.lsP1 s.lsC2 = s.lsP2 s.psC1 = s.psP1 s.psC2 = s.psP2 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, height_ratios=[3, 0, 3, 0.5, 3], cmsize=(s.plot_width, 0.8*s.plot_width)) fig.subplots_adjust(leftm=8, rightm=9, topm=2, bottomm=4, wspace=0.4, hspace=0.5) axi, axp, axr = ax1.subplots(1, 3, width_ratios=[2, 3, 0, 10]) axg, axc1, axc2, axd = ax2.subplots(1, 4, wspace=0.4) axg = axg.subplots(1, 1, width_ratios=[1, 0.1]) axd = axd.subplots(1, 1, width_ratios=[0.2, 1]) axs = ax3.subplots(1, 4, wspace=0.4) plot_isih(axi, s, rate, cv, isis, pdf) plot_response_spectrum(axp, s, eodf, rate, freqs, prr) plot_response(axr, s, eodf, time1, stimulus1, contrast1, spikes1, contrast2, spikes2) plot_gain(axg, s, contrast1, freqs1, gain1, contrast2, freqs2, gain2, fcutoff1) pc = plot_chi2(axc1, s, contrast2, freqs2, chi22, fcutoff2, 4) axc1.plot([0, fcutoff2], [0, fcutoff2], zorder=20, **s.lsDiag) axc1.set_title(f'$c$={100*contrast2:g}\\,\\%', fontsize='medium', color=s.cell_color2) pc = plot_chi2(axc2, s, contrast1, freqs1, chi21, fcutoff1, 4) axc2.set_title(f'$c$={100*contrast1:g}\\,\\%', fontsize='medium', color=s.cell_color1) axc2.plot([0, fcutoff1], [0, fcutoff1], zorder=20, **s.lsDiag) plot_colorbar(axc2, pc) plot_diagonals(axd, s, rate, contrast1, freqs1, chi21, contrast2, freqs2, chi22, fcutoff1) fig.common_yticks(axc1, axc2) fig.tag([axi, axp, axr], xoffs=-3, yoffs=-1) fig.tag([axg, axc1, axc2, axd], xoffs=-3, yoffs=2) print('Additional example cells:') example_cells = [ ['2021-06-18-ae-invivo-1', 3], # 98Hz, 1%, ok ['2012-03-30-ah', 2], # 177Hz, 2.5%, 2.0, nice ##['2012-07-03-ak', 0], # 120Hz, 2.5%, 1.8, broader ##['2012-12-20-ac', 0], # 213Hz, 2.5%, 2.1, ok #['2017-07-18-ai-invivo-1', 1], # 78Hz, 5%, 2.3, weak ##['2019-06-28-ae', 0], # 477Hz, 10%, 2.6, weak ##['2020-10-27-aa-invivo-1', 4], # 259Hz, 0.5%, 2.0, ok ##['2020-10-27-ae-invivo-1', 4], # 375Hz, 0.5%, 4.3, nice, additional low freq line ###['2020-10-27-ag-invivo-1', 2], # 405Hz, 5%, 3.9, strong, is already the example ##['2021-08-03-ab-invivo-1', 1], # 140Hz, 0.5%, ok ['2020-10-29-ag-invivo-1', 2], # 164Hz, 5%, 1.6, no diagonal ##['2010-08-31-ag', 1], # 269Hz, 5%, no diagonal ['2018-08-24-ak', 1], # 145Hz, 5%, no diagonal ##['2018-08-29-af', 1], # 383Hz, 5%, no diagonal ] for k, (cell, run) in enumerate(example_cells): eodf, rate, cv, _, _, _, _ = load_baseline(results_path, cell) fcutoff, contrast, freqs, gain, chi2 = load_spectra(results_path, cell, run) dfreqs, diag = diag_projection(freqs, chi2, 2*fcutoff) nli, nlif = peakedness(dfreqs, diag, rate, median=False) print(f' {cell:<22s}: run={run:2d}, fbase={rate:3.0f}Hz, CV={cv:.2f}, SI={nli:3.1f}') pc = plot_chi2(axs[k], s, contrast, freqs, chi2, fcutoff, 1.3) axs[k].set_title(f'$r={rate:.0f}$Hz, CV$_{{\\rm base}}$={cv:.2f}', fontsize='medium') axs[k].text(0.95, 0.9, f'SI($r$)={nli:.1f}', ha='right', zorder=50, color='white', fontsize='medium', transform=axs[k].transAxes) plot_colorbar(axs[-1], pc) fig.common_yticks(axs) fig.tag(axs, xoffs=-3, yoffs=2) fig.savefig()