import numpy as np from scipy.stats import linregress import matplotlib.pyplot as plt from pathlib import Path from plotstyle import plot_style, labels_params data_path = Path('data') sims_path = data_path / 'simulations' def sort_files(cell_name, all_files, n): files = [fn for fn in all_files if '-'.join(fn.stem.split('-')[2:-n]) == cell_name] if len(files) == 0: return None, 0 nums = [int(fn.stem.split('-')[-1]) for fn in files] idxs = np.argsort(nums) files = [files[i] for i in idxs] nums = [nums[i] for i in idxs] return files, nums def plot_chi2(ax, s, data_file): data = np.load(data_file) n = data['n'] alpha = data['alpha'] freqs = data['freqs'] pss = data['pss'] dt_fix = 1 # 0.0005 prss = np.abs(data['prss'])/dt_fix*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1)) ax.set_visible(True) ax.set_aspect('equal') i0 = np.argmin(freqs < -300) i0 = np.argmin(freqs < 0) i1 = np.argmax(freqs > 300) if i1 == 0: i1 = len(freqs) freqs = freqs[i0:i1] prss = prss[i0:i1, i0:i1] vmax = np.quantile(prss, 0.996) ten = 10**np.floor(np.log10(vmax)) for fac, delta in zip([1, 2, 3, 4, 6, 8, 10], [0.5, 1, 1, 2, 3, 4, 5]): if fac*ten >= vmax: vmax = fac*ten ten *= delta break pc = ax.pcolormesh(freqs, freqs, prss, vmin=0, vmax=vmax, rasterized=True) ax.set_title(f'$N=10^{np.log10(n):.0f}$', fontsize='medium') ax.set_xlim(0, 300) ax.set_ylim(0, 300) ax.set_xticks_delta(300) ax.set_minor_xticks(3) ax.set_yticks_delta(300) ax.set_minor_yticks(3) ax.set_xlabel('$f_1$', 'Hz') ax.set_ylabel('$f_2$', 'Hz') cax = ax.inset_axes([1.04, 0, 0.05, 1]) cax.set_spines_outward('lrbt', 0) cb = fig.colorbar(pc, cax=cax) cb.outline.set_color('none') cb.outline.set_linewidth(0) cax.set_yticks_delta(ten) def plot_overn(ax, s, files, nmax=1e6, title=False): ns = [] stats = [] for fname in files: data = np.load(fname) if not 'n' in data: return n = data['n'] if nmax is not None and n > nmax: continue alpha = data['alpha'] freqs = data['freqs'] pss = data['pss'] dt_fix = 1 # 0.0005 chi2 = np.abs(data['prss'])/dt_fix*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1)) ns.append(n) i0 = np.argmin(freqs < 0) i1 = np.argmax(freqs > 300) if i1 == 0: i1 = len(freqs) chi2 = chi2[i0:i1, i0:i1] stats.append(np.quantile(chi2, [0, 0.001, 0.05, 0.25, 0.5, 0.75, 0.95, 0.998, 1.0])) ns = np.array(ns) stats = np.array(stats) indx = np.argsort(ns) ns = ns[indx] stats = stats[indx] ax.set_visible(True) ax.plot(ns, stats[:, 7], '0.5', lw=1, zorder=50, label='99.8\\%') ax.fill_between(ns, stats[:, 2], stats[:, 6], fc='0.85', zorder=40, label='5--95\\%') ax.fill_between(ns, stats[:, 3], stats[:, 5], fc='0.5', zorder=45, label='25-75\\%') ax.plot(ns, stats[:, 4], zorder=50, label='median', **s.lsSpine) #ax.plot(ns, stats[:, 8], '0.0') if title: if 'noise_frac' in data: ax.set_title('$c$=0\\,\\%', fontsize='medium') else: ax.set_title(f'$c$={100*alpha:g}\\,\\%', fontsize='medium') ax.set_xlim(1e1, nmax) ax.set_xscale('log') ax.set_yscale('log') ax.set_yticks_log(numticks=3) if nmax > 1e6: ax.set_ylim(3e-1, 5e3) ax.set_minor_yticks_log(numticks=5) ax.set_xticks_log(numticks=4) ax.set_minor_xticks_log(numticks=8) else: ax.set_ylim(5e0, 1e4) ax.set_minor_yticks_log(numticks=5) ax.set_xticks_log(numticks=3) ax.set_minor_xticks_log(numticks=6) ax.set_xlabel('segments') ax.set_ylabel('$|\\chi_2|$ [Hz]') if alpha == 0.10: ax.legend(loc='upper left', bbox_to_anchor=(1.4, 1.3), markerfirst=False, title='$|\\chi_2|$ percentiles') def plot_chi2_overn(axs, s, cell_name): print(cell_name) files, nums = sort_files(cell_name, sims_path.glob(f'chi2-split-{cell_name}-*.npz'), 1) for k, n in enumerate([1e1, 1e2, 1e3, 1e6]): plot_chi2(axs[k], s, files[nums.index(int(n))]) plot_overn(axs[-1], s, files) if __name__ == '__main__': cells = ['2017-07-18-ai-invivo-1', # strong triangle '2012-12-13-ao-invivo-1', # triangle '2012-12-20-ac-invivo-1', # weak border triangle '2013-01-08-ab-invivo-1'] # no triangle s = plot_style() fig, axs = plt.subplots(6, 6, cmsize=(s.plot_width, 0.9*s.plot_width), width_ratios=[1, 1, 1, 1, 0, 1], height_ratios=[1, 1, 1, 1, 0, 1]) fig.subplots_adjust(leftm=8, rightm=0.5, topm=2, bottomm=4, wspace=1, hspace=0.8) for ax in axs.flat: ax.set_visible(False) for k in range(len(cells)): plot_chi2_overn(axs[k], s, cells[k]) cell_name = cells[0] files, nums = sort_files(cell_name, sims_path.glob(f'chi2-split-{cell_name}-*.npz'), 1) plot_overn(axs[-1, 0], s, files, 1e7, True) for k, alphastr in enumerate(['010', '030', '100']): files, nums = sort_files(cell_name, sims_path.glob(f'chi2-noisen-{cell_name}-{alphastr}-*.npz'), 2) plot_overn(axs[-1, k + 1], s, files, 1e7, True) for k in range(4): fig.common_yticks(axs[k, :4]) fig.common_xticks(axs[:4, k]) fig.common_xticks(axs[:4, -1]) fig.align_ylabels(axs[:4, -1], dist=12) fig.common_yticks(axs[-1, :4]) fig.tag(axs, xoffs=-2.5, yoffs=1.8) fig.savefig() print()