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Spike generation in electroreceptor afferents introduces
additional spectral response components by
weakly nonlinear interactions

Abstract

Spiking thresholds in neurons or rectification at synapses are essential for neuronal computations rendering
neuronal processing inherently nonlinear. Nevertheless, linear response theory has been instrumental for un-
derstanding, for example, the impact of noise or neuronal synchrony on signal transmission, or the emergence
of oscillatory activity, but is valid only at low stimulus amplitudes or large levels of intrinsic noise. At higher
signal-to-noise ratios, however, nonlinear response components become relevant. Theoretical results for leaky
integrate-and-fire neurons in the weakly nonlinear regime suggest strong responses at the sum of two input
frequencies if these frequencies or their sum match the neuron’s baseline firing rate. We here analyze nonlin-
ear responses in two types of primary electroreceptor afferents, the P-units of the active and the ampullary
cells of the passive electrosensory system of the wave-type electric fish Apteronotus leptorhynchus. In our
combined experimental and modeling approach we identify these predicted nonlinear responses in low-noise
P-units and, much stronger, in ampullary cells. Our results provide experimental evidence for nonlinear re-
sponses of spike generators in the weakly nonlinear regime. We conclude that such nonlinear responses occur
in any sensory neuron that operates in similar regimes particularly at near-threshold stimulus conditions.

Significance statement

The generation of action potentials involves a strong threshold nonlinearity. Nevertheless, the encoding of
stimuli with small amplitudes by neurons with sufficient intrinsic noise can be well described as a linear
system. As the stimulus amplitude is increased, new spectral components start to appear in the so called
weakly nonlinear regime. Theory predicts nonlinear interactions whenever one or the sum of two stimulus
frequencies matches the neuron’s baseline firing rate. Indeed, we find these interactions in a large set of
electrophysiological recordings from primary electroreceptive afferents of a weakly electric fish. The non-
linear response components could boost sensory responses to weak signals emitted, for example, by distant
conspecifics.

Introduction

We like to think about signal encoding in terms of linear relations with unique mapping of a given input value
to a certain output of the system under consideration. Indeed, such linear methods, for example the transfer
function or first-order susceptibility shown in fig. 1 A, have been widely and successfully applied to describe
and predict neuronal responses and are an invaluable tools to characterize neural systems (Eggermont et al.,
1983; Borst and Theunissen, 1999). Nonlinear mechanisms, on the other hand, are key on different levels
of neural processing. Deciding for one action over another is a nonlinear process on the systemic level. On
the cellular level, spiking neurons are inherently nonlinear. Whether an action potential is elicited depends
on the membrane potential to exceed a threshold (Hodgkin and Huxley, 1952; Koch et al., 1995). Because
of such nonlinearities, understanding and predicting neuronal responses to sensory stimuli is in general a
difficult task.

The transfer function that describes the linear properties of a system, is the first-order term of a Volterra
series. Higher-order terms successively approximate nonlinear features of a system (Rieke et al., 1999).
Second-order kernels have been used in the time domain to predict visual responses in catfish (Marmarelis
and Naka, 1972). In the frequency domain, second-order kernels are known as second-order response functions
or susceptibilities. Nonlinear interactions of two stimulus frequencies generate peaks in the response spectrum
at the sum and the difference of the two. Including higher-order terms of the Volterra series, the nonlinear
nature of mammalian visual systems (Victor et al., 1977; Schanze and Eckhorn, 1997), auditory responses in
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Figure 1: First- and second-order response functions of the leaky integrate-and-fire model. A Magnitude of the first-
order (linear) response function |x1(f)|, also known as the “gain” function, quantifies the response amplitude relative to
the stimulus amplitude, both measured at the same stimulus frequency. B Magnitude of the second-order (nonlinear)
response function |x2(f1, f2)| quantifies the response at the sum of two stimulus frequencies. Because frequencies can
also be negative, the sum is actually a difference in the upper-left and lower-right quadrants, since f2 + fi1 = fo — | f1| for
f1 < 0. For linear systems, the second-order response function is zero, because linear systems do not create new frequencies
and thus there is no response at the sum of the two frequencies. The plots show the analytical solutions from Lindner
and Schimansky-Geier (2001) and Voronenko and Lindner (2017) with ;4 = 1.1 and D = 0.001. Note that the leaky
integrate-and-fire model is formulated without dimensions, frequencies are given in multiples of the inverse membrane time
constant.

the Torus semicircularis of frogs (Aertsen and Johannesma, 1981), locking in chinchilla auditory nerve fibers
(Temchin et al., 2005), spider mechanoreceptors (French et al., 2001), and bursting responses in paddlefish
(Neiman and Russell, 2011a) have been demonstrated.

Noise in nonlinear systems, however, linearizes the system’s response properties (Yu and Lewis, 1989;
Chialvo et al., 1997). Also, in the limit to small stimuli, nonlinear systems can be well described by linear
response theory (Roddey et al., 2000; Doiron et al., 2004; de la Rocha et al., 2007; Sharafi et al., 2013). With
increasing stimulus amplitude, the contribution of the second-order kernel of the Volterra series becomes
more relevant. For these weakly nonlinear responses analytical expressions for the second-order susceptibility
have been derived for leaky-integrate-and-fire (LIF) (Voronenko and Lindner, 2017) and theta model neurons
(Franzen et al., 2023). In the suprathreshold regime, in which the LIF generates a baseline firing rate in
the absence of an external stimulus, the linear response function has a peak at the baseline firing rate and
its harmonics (fig. 1 A) and the second-order susceptibility shows very distinct ridges of elevated nonlinear
responses, exactly where one of two stimulus frequencies equals or both frequencies add up to the neuron’s
baseline firing rate (fig. 1B). In experimental data, such structures in the second-order susceptibility have
not been reported yet.

Here we search for such weakly nonlinear responses in electroreceptors of the two electrosensory systems of
the wave-type electric fish Apteronotus leptorhynchus, i.e. the tuberous (active) and the ampullary (passive)
electrosensory system. The p-type electroreceptor afferents of the active system (P-units) are driven by the
fish’s high-frequency, quasi-sinusoidal electric organ discharges (EOD) and encode disturbances of it (Bastian,
1981). The electroreceptors of the passive system are tuned to lower-frequency exogeneous electric fields such
as caused by muscle activity of prey (Kalmijn, 1974). As different animals have different EOD-frequencies,
being exposed to stimuli of multiple distinct frequencies is part of the animal’s everyday life (Benda, 2020;
Henninger et al., 2020) and weakly nonlinear interactions may occur in the electrosensory periphery. In
communication contexts (Walz et al., 2014; Henninger et al., 2018) the EODs of interacting fish superimpose
and lead to periodic amplitude modulations (AMs or beats) of the receiver’'s EOD. Nonlinear mechanisms
in P-units, enable encoding of AMs in their time-dependent firing rates (Bastian, 1981; Walz et al., 2014;
Middleton et al., 2006; Barayeu et al., 2023). When multiple animals interact, the EOD interferences induce
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second-order amplitude modulations referred to as envelopes (Yu et al., 2005; Fotowat et al., 2013; Stamper
et al., 2012) and saturation nonlinearities allow also for the encoding of these in the electrosensory periphery
(Savard et al., 2011). Field observations have shown that courting males were able to react to the extremely
weak signals of distant intruding males despite the strong foreground EOD of the nearby female (Henninger et
al., 2018). Weakly nonlinear interactions at particular combinations of signals can be of immediate relevance
in such settings as they could boost detectability of the faint signals (Schlungbaum and Lindner, 2023).

Materials and Methods

Experimental subjects and procedures

Within this project, we re-evaluated datasets that were recorded between 2010 and 2023. All experimental
protocols complied with national and European law and were approved by the respective Ethics Committees.
The final sample consisted of 172 P-units and 30 ampullary electroreceptor afferents recorded in 80 weakly
electric fish of both sexes of the species A. leptorhynchus. Fish were obtained from a commercial supplier
for tropical fish (Aquarium Glaser GmbH, Rodgau) and kept in tanks with a water temperature of 25 +1°C
and a conductivity of around 270 uS/cm under a 12h:12h light-dark cycle.

Before surgery, the animals were deeply anesthetized via bath application of a solution of MS222 (120 mg/1,
PharmaQ@), Fordingbridge, UK) buffered with Sodium Bicarbonate (120 mg/1). The posterior anterior lateral
line nerve (pALLN) was exposed by making a small cut into the skin covering the nerve. The cut was
placed dorsal of the operculum just before the nerve descends towards the anterior lateral line ganglion
(ALLNG). Those parts of the skin that were to be cut were locally anesthetized by cutaneous application
of liquid lidocaine hydrochloride (20mg/ml, bela-pharm GmbH). During the surgery, water supply was
ensured by a mouthpiece to maintain anesthesia with a solution of MS222 (100 mg/1) buffered with Sodium
Bicarbonate (100mg/1). After surgery, fish were immobilized by intramuscular injection of from 25 pl to 50 pl
of tubocurarine (5 mg/ml dissolved in fish saline; Sigma-Aldrich). Respiration was then switched to normal
tank water and the fish was transferred to the experimental tank.

Electrophysiological recordings

For the recordings fish were positioned centrally in the experimental tank, with the major parts of their
body submerged into the water. Those body parts that were above the water surface were covered with
paper tissue to avoid drying of the skin. Local analgesia was refreshed in intervals of two hours by cutaneous
application of Lidocaine (2 %; bela-pharm, Vechta) around the surgical wounds. Electrodes (borosilicate;
1.5 mm outer diameter; GB150F-8P; Science Products, Hofheim) were pulled to a resistance of 50-100 M
(model P-97; Sutter Instrument, Novato, CA) and filled with 1M KCI solution. Electrodes were fixed in a
microdrive (Luigs-Neumann, Ratingen) and lowered into the nerve. Recordings of electroreceptor afferents
were amplified and lowpass filtered at 10 kHz (SEC-05, npi-electronics, Tamm, operated in bridge mode). All
signals, neuronal recordings, recorded EOD, and the generated stimulus, were digitized with sampling rates
of 20 or 40kHz (PCI-6229, National Instruments, Austin, TX). RELACS (https://github.com/relacs/
relacs) running on a Linux computer was used for online spike and EOD detection, stimulus generation,
and calibration. Recorded data was then stored on the hard drive for offline analysis.

Identification of P-units and ampullary cells

Recordings were classified as P-units if baseline action potentials phase locked to the EOD with vectors
strengths between 0.7 and 0.95, a baseline firing rate larger than 30 Hz, a serial correlation of subsequent
interspike intervals below zero, a coefficient of variation of baseline interspike intervals below 1.5 und during
stimulation below 2. As ampullary cells we classified recordings with vector strengths below 0.15, baseline
firing rate above 10 Hz, baseline CV below 0.18, CV during stimulation below 1.0, and a response modulation
during stimulation below 80 Hz (Grewe et al., 2017). We here selected only those cells of which the neuron’s
baseline activity as well as the responses to band-limited white noise stimuli were recorded.
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Electric field recordings

For monitoring the EOD without the stimulus, two vertical carbon rods (11 cm long, 8 mm diameter) in a
head-tail configuration were placed isopotential to the stimulus. Their signal was differentially amplified with
a gain factor between 100 and 500 (depending on the recorded animal) and band-pass filtered (3 to 1500 Hz
pass-band, DPA2-FX; npi electronics, Tamm). For an estimate of the transdermal potential that drives the
electroreceptors, two silver wires spaced by 1cm were located next to the left gill of the fish and orthogonal
to the fish’s longitudinal body axis (amplification 100 to 500 times, band-pass filtered with 3 to 1500 Hz
pass-band, DPA2-FX; npi-electronics, Tamm). This local EOD measurement recorded the combination of
the fish’s own EOD and the applied stimulus.

Stimulation

Electric stimuli were attenuated (ATN-01M, npi-electronics, Tamm), isolated from ground (ISO-02V, npi-
electronics, Tamm) and delivered via two horizontal carbon rods (30 ¢cm length, 8 mm diameter) located
15 cm laterally to the fish. The fish were stimulated with band-limited white noise stimuli with a cut-off
frequency of 150 Hz (ampullary), 300 or 400 Hz (P-units). The stimulus intensity is given as a contrast,
i.e. the standard deviation of the noise stimulus relative to the fish’s EOD amplitude. The contrast varied
between 1 and 20 % (median 5 %) for P-units and 2.5 and 20 % (median 5 %) for ampullary cells. Only noise
stimuli with a duration of at least 2s (maximum of 50s, median 10s) and enough repetitions to results in at
least 100 FFT segments (see below, P-units: 100-1520, median 313, ampullary cells: 105 — 3648, median 722)
were included into the analysis. When ampullary cells were recorded, the white noise was directly applied
as the stimulus. To create random amplitude modulations (RAM) for P-unit recordings, the noise stimulus
was first multiplied with the EOD of the fish (MXS-01M; npi electronics).

Data analysis

Data analysis was done in Python 3 using the packages matplotlib (Hunter, 2007), numpy (Walt et al.,
2011), scipy (Virtanen et al., 2020), pandas (McKinney and others, 2010), nixio (Stoewer et al., 2014), and
thunderlab (https://github.com/bendalab/thunderlab).

Code accessibility The P-unit model parameters and spectral analysis algorithms are available at https:
//github.com/bendalab/punitmodel/tree/v1.

Baseline analysis The baseline firing rate r was calculated as the number of spikes divided by the duration
of the baseline recording (median 32s). The coefficient of variation (CV) of the interspike intervals (ISI)
is their standard deviation relative to their mean: CVpase = /{( ISI - ISI )2)/(ISI). If the baseline was
recorded several times in a recording, the measures from the longest recordlng were taken.

White noise analysis When stimulated with band-limited white noise stimuli, neuronal activity is modulated
around the average firing rate that is similar to the baseline firing rate and in that way encodes the time-
course of the stimulus. For an estimate of the time-dependent firing rate r(¢) we convolved each spike train
with normalized Gaussian kernels with standard deviation of 2 ms, if not mentioned otherwise, and averaged
the resulting single-trail firing rates over trials. The response modulation quantifies the variation of r(t)
computed as the standard deviation in time oy = /{(r(t) — (r());)2)s, where ( - ); denotes averaging over
time.

Spectral analysis To characterize the relation between the spiking response evoked by white-noise stimuli,
we estimated the first- and second-order susceptibilities in the frequency domain. For this we converted spike
times into binary vectors xp with At = 0.5ms wide bins that are set to 2kHz where a spike occurred and
zero otherwise. Fast Fourier transforms (FFT) S(w) and X (w) of the stimulus s (also down-sampled to a
sampling rate of 2kHz) and zy, respectively, were computed numerically according to

N-1
= Z e Wk (1)
k=0
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for N = 512 long segments of 7' = NAt = 256 ms duration with no overlap, resulting in a spectral resolution
of about 4 Hz. Note, that for a real Fourier integral a factor At is missing. For simplicity we use angular
frequencies w = 27 f instead of frequencies f.

In the experimental data the duration of the noise stimuli varied and they were presented once or repeat-
edly (frozen noise). For the analysis we discarded the responses within the initial 200 ms of stimulation in
each trial. To make the recordings comparable we always used the first 100 segments from as many trials as
needed for the following analysis.

In the simulations we generated for each trial a new realization of the noise stimulus. We discarded the
first 500 ms of the response and used the following 10 FFT segments for the analysis. This was repeated until
109 or 107 FFT segments were collected.

The power spectrum of the stimulus s(t) was estimated as

Sun() = SH(S(0)5" () 2

with S* being the complex conjugate of S and ( - ) denoting the average over the FFT segments. The
factor in front is At? from the missing integration factors of the two Fourier transforms, Eq. (1), divided by
T = NAt, needed to make this a proper power spectral density.

The power spectrum of the spike trains S,,(w) was estimated accordingly. Likewise, the cross-spectrum
Szs(w) between stimulus and evoked spike trains was estimated according to

At .
Sazs(w) = W(X(W)S (w)) (3)
The first-order susceptibility (transfer function)
_ Ses(w)
Xl(w) - Sss(w) (4)

was then computed from S, s(w) and Sss(w). We report x;(w) in Hz/%, i.e. firing rate per percent stimulus
contrast. Multiplying x1(w) with the contrast of a sinusoidal stimulus in percent results in the amplitude of
the evoked firing rate modulation in Hertz.

The second-order cross-spectrum

Sms(wl,wg) = %(X(wl + CUQ)S*(wl)S*(OJQ) (5)

quantifies nonlinear interactions that generate responses at the sum and difference (for negative wy or wsy)
evoked by two stimulus frequencies w; and ws. The second-order susceptibility
S xss (wl ) w2)
X2(wi,we) = s ~a 7 (6)
2555 (WI)SSS (WZ)

normalizes the second-order cross-spectrum by the spectral power at the two stimulus frequencies. We report
X2(w1,ws) in Hz/%2, i.e. firing rate per percent stimulus contrast squared. Throughout the manuscript
we only show the absolute values of the complex-valued second-order susceptibility matrix and ignore the
corresponding phases.

Susceptibility index We expected to see a sharp ridge in the second-order susceptibility at w; + ws = 7
(Voronenko and Lindner, 2017; Franzen et al., 2023). To characterize this in a single number we computed
a susceptibility index. First, we projected the absolute values of the second-order susceptibility matrix onto
the diagonal by averaging over anti-diagonal elements. In this projection D(f) we took the position of the
maximum

Jpeax = argmaxD(r — 50Hz < f <r+ 50 Hz) (7)
within 450 Hz of the neuron’s baseline firing rate r as the position of the expected peak. For an estimate of
the noise-floor surrounding this peak we averaged over 10 Hz wide windows 10 Hz to the left and right of the
peak:

Dot = (<D(fpeak —20Hz < f < fpeak — 10 HZ))f + <D(fpeak +10Hz < f < fpeak + 20 HZ))){) (8)

N | —
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Figure 2: Architecture of the P-unit model. Each row illustrates subsequent processing steps for three different stimulation
regimes: (i) baseline activity without external stimulus, only the fish’s self-generated EOD (the carrier, Eq. (10)) is present.
(i1) RAM stimulation, Eq. (12). The amplitude of the EOD carrier is modulated with a weak (2% contrast) band-limited
white-noise stimulus. (iii) Noise split, Egs. (18)—(20), where 90 % of the intrinsic noise is replaced by a RAM stimulus,
whose amplitude is scaled to maintain the mean firing rate and the CV of the ISls of the model’s baseline activity. As an
example, simulations of the model for cell “2012-07-03-ak” are shown. A The stimuli are thresholded, Eq. (13), by setting
all negative values to zero. B Subsequent low-pass filtering, Eq. (14), attenuates the carrier and carves out the AM signal.
C Intrinsic Gaussian white-noise is added to the signals shown in B. Note the reduced internal noise amplitude in the noise
split (iii) condition. D Spiking output of the LIF model, Egs. (15)—(17), in response to the sum of B and C. E Power
spectra of the LIF neuron’s spiking activity. Both, baseline activity (E;) and noise split (Eii), have the same peaks in the
response spectrum at r, feop —r, feop, and feop +r. With RAM stimulation (E;), the peak at the baseline firing rate,
r, is washed out.

The size of the peak relative to this reference is then the susceptibility index

D(fpeak)

I =
S Dref (9)

Values larger than one indicate a sharp ridge in the susceptibility matrix close to where the stimulus frequen-
cies add up to the baseline firing rate.

Leaky integrate-and-fire models for P-units

Modified leaky integrate-and-fire (LIF) models were constructed to reproduce the specific firing properties of
P-units (Chacron et al., 2001; Sinz et al., 2020; Barayeu et al., 2023). Its basic components (static nonlinearity,
low-pass filtering and spike generation) are equivalent to models of hair cells in auditory systems (Eggermont
et al., 1983). The sole driving input into the P-unit model during baseline, i.e. when no external stimulus
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was given, is the fish’s own EOD, modeled as a cosine wave
y(t) = yrop(t) = cos(2m fropt) (10)

with EOD frequency frpop and an amplitude of one.

To mimic the interaction with other fish, the EODs of a second or third fish with EOD frequencies f;
and fo, respectively, were added to the normalized EOD, Eq. (10), of the receiving fish according to their
contrasts, ¢; and co at the position of the receiving fish:

y(t) = cos(2m fpopt) + 1 cos(2m f1t) + co cos(27 fot) (11)

For two fish, ¢, = 0.

Random amplitude modulations (RAMs) were simulated by first generating the AM as a band-limited
white noise stimulus s(¢). For this, random real and imaginary numbers were drawn from Gaussian dis-
tributions for each frequency component in the range from 0 to 300 Hz in the Fourier domain (Billah and
Shinozuka, 1990; Skorjanc et al., 2023). By means of the inverse Fourier transform, the time course of the
RAM stimulus, s(t), was generated. The input to the model was then

y(t) = (1 + s(t)) cos(2m front) (12)

The contrast ¢ of the RAM is the standard deviation of the RAM relative to the amplitude of the receiving
fish.
First, the input y(t) is thresholded by setting negative values to zero:

ol ={ 1 20 (13)

(fig. 2A). This thresholds models the transfer function of the synapses between the primary receptor cells
and the afferent. Together with a low-pass filter

P - Vi wo)o (14)

T
the threshold operation is required for extracting the amplitude modulation from the input (Barayeu et al.,
2024). The low-pass filter models passive signal conduction in the afferent’s dendrite (fig. 2B) and 74 is the
membrane time constant of the dendrite. Dendritic low-pass filtering was also necessary to reproduce the
loose coupling of P-unit spikes to the EOD while maintaining high sensitivity at small amplitude modulations.
The dendritic voltage V() is then fed into a stochastic leaky integrate-and-fire (LIF) model with adap-

tation,
dVp,
™t
where 7, is the membrane time-constant, u is a fixed bias current, g is a scaling factor for Vg, A is an
inhibiting adaptation current, and /2D £(t) is a Gaussian white noise with strength D. Note, that all state
variables, membrane voltages V; and V,,, as well as the adaptation current A, are dimensionless.

The adaptation current A follows

=V +pu+BVa— A+ V2D E(t) (15)

dA
k—'} 16
i (16)
with adaptation time constant 74 (Benda and Herz, 2003; Benda et al., 2005, 2010).
Whenever the membrane voltage V,,,(t) crosses the spiking threshold 6 = 1, a spike was generated, V,, (t)
was reset to 0, the adaptation current was incremented by AA/74, and integration of V,(t) was paused for

the duration of a refractory period t,.5 (fig. 2D):

Vi = 0
> :
V(t) 2 6 { A o A+ AA/Ty (17)
The P-unit models were integrated by the Euler forward method with a time-step of At = 0.05ms. For
each trial of a simulation, V;,, was drawn from a uniform distribution between 0 and 1 and the initial value of



253

255

256

257

258

259

260

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

283

284

285

286

287

288

289

290

292

293

A was jittered by adding a random number drawn from a normal distribution with standard deviation of 2 %
of its initial value. Then the first 500 ms of any simulation were discarded to remove remaining transients.

The eight free parameters of the P-unit model 3, 7,,, i, D, Ta, A4, 74, and t,..5, were fitted to both the
baseline activity (baseline firing rate, CV of ISIs, serial correlation of ISIs at lag one, and vector strength
of spike coupling to EOD) and the responses to step increases and decreases in EOD amplitude (onset
and steady-state responses, effective adaptation time constant, Benda et al., 2005) of recorded P-units.
Model parameters of all 39 cells are summarized in file models.csv of our punitmodel repository at https:
//github.com/bendalab/punitmodel/tree/v1.

Noise split

Based on the Furutsu-Novikov theorem (Furutsu, 1963; Novikov, 1965; Lindner, 2022; Egerland, 2021), we
split the total noise, v2D £(t), of a LIF model, Eq. (15), into two parts. The first part is the intrinsic
noise term, v/2D anoise £(t), whose strength is reduced by a factor apeise = 0.1 (fig. 2 Cji). The second part
replaces the now missing intrinsic noise by a driving input signal s¢(t), a RAM stimulus with frequencies up
to 300 Hz (fig. 2 Aji). The LIF model with noise split then reads

y(t) = (1+s¢(t)) cos(2mfropt) (18)
Wt = Vat lyO)lo (19)
Tm d;/;n = 7Vm + 12 + ﬁVd —A + V 2D Opoise f(t) (20)

Both, the reduced intrinsic noise and the RAM stimulus, need to replace the original intrinsic noise. Because
the RAM stimulus is band-limited and undergoes some transformations before it is added to the reduced
intrinsic noise, it is not a priori clear, what the amplitude of the RAM should be. We bisected the amplitude
of s¢(t), until the CV of the resulting interspike intervals matched the one of the original model’s baseline
activity. The second-order cross-spectra, Eq. (5), were computed between the RAM stimulus s¢(t) and the
spike train z(t) it evoked. In this way, the effective signal-to-noise ratio can be increased while maintaining
the total noise in the system.

Results

We explored a large set of electrophysiological data from primary afferents of the active and passive elec-
trosensory system, P-units and ampullary cells (Grewe et al., 2017; Hladnik and Grewe, 2023), that were
recorded in the brown ghost knifefish Apteronotus leptorhynchus. We re-analyzed this dataset to search for
weakly nonlinear responses that have been predicted in previous theoretical work (Voronenko and Lindner,
2017). Additional simulations of LIF-based models of P-unit spiking help to interpret the experimental find-
ings in this theoretical framework. We start with demonstrating the basic concepts using example P-units
and respective models and then compare the population of recordings in both cell types.

Nonlinear responses in P-units stimulated with two frequencies

Without external stimulation, a P-unit is driven by the fish’s own EOD alone (with a specific EOD frequency
feop) and spontaneously fires action potentials at the baseline rate . Accordingly, the power spectrum of
the baseline activity has a peak at r (fig. 3A). In the communication context, this animal (the receiver) is
exposed to the EODs of one or many foreign fish. Superposition of the receiver’s EOD with an EOD of
another fish with frequency f; results in a beat, a periodic amplitude modulation of the receiver’s EOD. The
frequency of the beat is given by the difference frequency Af; = fi — feop between the two fish. P-units
encode this beat in their firing rate (Bastian, 1981) and consequently the power spectrum of the response has
a peak at the beat frequency (fig. 3B). A second peak at the first harmonic of the beat frequency is indicative
of a nonlinear process that here is associated with the clipping of the P-unit’s firing rate at zero (Barayeu et
al., 2023). Pairing the fish with another fish at a higher beat frequency Afy = fo — frop > Af; results in
a weaker response with a single peak in the response power spectrum, suggesting a linear response (fig. 3 C).
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Figure 3: Nonlinearity in an electrophysiologically recorded P-unit of A. leptorhynchus in a three-fish setting (cell identifier
2021-08-03-ac"). Receiver with EOD frequency frop = 664 Hz encounters fish with EOD frequencies f; = 631 Hz and
f2 = 797 Hz. Both foreign signals have the same strength relative to the own field amplitude (10 % contrast). Top row:
Sketch of signal processing in the nonlinear system (black box). Second row: Interference of the receiver EOD with the
EODs of other fish, bold line highlights the amplitude modulation. Third row: Respective spike trains of the recorded
P-unit. Fourth row: Firing rate, estimated by convolution of the spike trains with a Gaussian kernel (o = 1 ms). Bottom
row: Power spectrum of the firing rate. A Baseline condition: The cell is driven by the self-generated field alone. The
baseline firing rate r dominates the power spectrum of the firing rate (foase = 139Hz). B The receiver's EOD and a
foreign fish with an EOD frequency fi1 = 631 Hz are present. EOD interference induces an amplitude modulation, referred
to as beat. C The receiver and a fish with an EOD frequency f» = 797Hz are present. The resulting beat is faster as
the difference between the individual frequencies is larger. D All three fish with the EOD frequencies frop, fi and fa are
present. A second-order amplitude modulation occurs, commonly referred to as envelope. Nonlinear peaks occur at the
sum and difference of the two beat frequencies in the power spectrum of the firing rate.

The weaker response to this beat can be explained by the beat tuning of the cell (Walz et al., 2014). Note,
A fo has been deliberately chosen to match the recorded P-unit’s baseline firing rate.

When stimulating with both foreign signals simultaneously, additional peaks appear in the response power
spectrum at the sum A f; + A fo and the difference frequency A fo —Afy (fig. 3D). Thus, the cellular response
is not equal to the sum of the responses to the two beats presented separately. These additional peaks at
the sum and the difference of the two stimulus frequencies are a hallmark of nonlinear interactions that, by
definition, are absent in linear systems.

Linear and weakly nonlinear regimes

The stimuli used in fig. 3 had the same not-small amplitude. Whether this stimulus condition falls into the
weakly nonlinear regime as in Voronenko and Lindner (2017) is not clear. In order to illustrate how the
responses to two beat frequencies develop over a range of amplitudes we use a stochastic leaky-integrate-
and-fire (LIF) based P-unit model fitted to a specific electrophysiologically measured cell (Barayeu et al.,
2023).
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Figure 4: Linear and nonlinear responses of a model P-unit in a three-fish setting in dependence on stimulus amplitudes.
The model P-unit (identifier “2018-05-08-ad") was stimulated with two sine waves of equal amplitude (contrast) at difference
frequencies A fi = 40Hz and A fo = 228 Hz relative the receiver's EOD frequency. A f> was set to match the baseline firing
rate r of the P-unit. A—D Top: the stimulus, an amplitude modulation of the receiver's EOD resulting from the stimulation
with the two sine waves. The contrasts of both beats increase from A to D as indicated. Middle: Spike raster of the model
P-unit response. Bottom: power spectrum of the firing rate estimated from the spike raster. A At low stimulus contrasts
the response is linear. The only peaks in the response spectrum are at the two stimulating beat frequencies (green and
purple marker). B At moderately higher stimulus contrast, the peaks in the response spectrum at the two beat frequencies
are larger. C At intermediate stimulus contrasts, nonlinear responses start to appear at the sum and the difference of
the stimulus frequencies (orange and red marker). D At higher stimulus contrasts additional peaks appear in the power
spectrum. E Amplitude of the linear (at Af; and Af) and nonlinear (at Afs — Af; and Afy + Af2) responses of the
model P-unit as a function of beat contrast (thick lines). Thin lines indicate the initial linear and quadratic dependence
on stimulus amplitude for the linear and nonlinear responses, respectively. In the linear regime, below a stimulus contrast
of about 1.2% (left vertical line), the only peaks in the response spectrum are at the stimulus frequencies. In the weakly
nonlinear regime up to a contrast of about 3.5 % peaks arise at the sum and the difference of the two stimulus frequencies.
At stronger stimulation the amplitudes of these nonlinear responses deviate from the quadratic dependency on stimulus
contrast.
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At very low stimulus contrasts (in the example cell less than approximately 1.2 % relative to the receiver’s
EOD amplitude) the spectrum has small peaks only at the beat frequencies (fig. 4 A,B, green and purple).
The amplitudes of these peaks initially increase linearly with stimulus amplitude (fig. 4 E, thin lines), an
indication of the linear response at lowest stimulus amplitudes.

This linear regime is followed by the weakly nonlinear regime (in the example cell between approximately
1.2% and 3.5 % stimulus contrast). In addition to the peaks at the stimulus frequencies, peaks at the sum
and the difference of the stimulus frequencies appear in the response spectrum (fig. 4 C, orange and red). The
amplitudes of these two peaks initially increase quadratically with stimulus amplitude (fig. 4 E, thin lines).
Note, that we have chosen A fs to match the baseline firing rate fpqse of the neuron.

At higher stimulus amplitudes, the linear response and the weakly-nonlinear response begin to deviate
from their linear and quadratic dependency on amplitude (fig. 4E) and additional peaks appear in the
response spectrum (fig. 4 D). At high stimulus contrasts, additional nonlinearities in the system, in particular
clipping of the firing rate, shape the responses.

For this example, we chose very specific stimulus (beat) frequencies. In the following, however, we are
interested in how the nonlinear responses depend on different combinations of stimulus frequencies in the
weakly nonlinear regime. For the sake of simplicity we will drop the A notation even though P-unit stimuli
are beats.

Nonlinear signal transmission in P-units

P-units fire action potentials probabilistically phase-locked to the self-generated EOD (Bastian, 1981). Skip-
ping of EOD cycles leads to the characteristic multimodal ISI distribution with maxima at integer multiples
of the EOD period (fig. 5A). In this example, the baseline ISI distribution has a CVyage of 0.49, which is
at the center of the P-unit population (Hladnik and Grewe, 2023). Spectral analysis of the baseline activity
shows two major peaks: the first is located at the baseline firing rate r, the second is located at the discharge
frequency frop of the electric organ (fig. 5 B).

Noise stimuli, here random amplitude modulations (RAM) of the EOD (fig. 5 C, top trace, red line), have
been commonly used to characterize stimulus-driven responses of sensory neurons using transfer functions
(first-order susceptibility), spike-triggered averages, or stimulus-response coherences. Here, we additionally
estimate from existing recordings the second-order susceptibility to quantify nonlinear encoding. P-unit
spikes align more or less clearly with fluctuations in the RAM stimulus. A higher stimulus intensity, here
a higher contrast of the RAM relative to the EOD amplitude (see methods), entrains the P-unit response
more clearly (light and dark blue for low and high contrast stimuli, respectively, fig. 5 C). Linear encoding,
quantified by the first-order susceptibility or transfer function, Eq. (4), is similar for the two RAM contrasts
in this low-CV P-unit (fig. 5D), as expected for a linear system. The first-order susceptibility is low for low
frequencies, peaks in the range below 100 Hz and then falls off again (Benda et al., 2005).

The second-order susceptibility, Eq. (6), quantifies for each combination of two stimulus frequencies f; and
f2 the amplitude and phase of the stimulus-evoked response at the sum f;+ f2 (and also the difference, fig. 1 A).
Large values of the second-order susceptibility indicate stimulus-evoked peaks in the response spectrum at the
summed frequency that cannot be explained by linear response theory. Similar to the first-order susceptibility,
the second-order susceptibility can be estimated directly from the response evoked by a RAM stimulus that
stimulates the neuron with a whole range of frequencies simultaneously (figs. 5 E, F). For LIF and theta neuron
models driven in the supra-threshold regime, theory predicts nonlinear interactions between the two stimulus
frequencies, when the two frequencies f; and fy or their sum f; + fo exactly match the neuron’s baseline
firing rate r (Voronenko and Lindner, 2017; Franzen et al., 2023). Only then, additional stimulus-evoked
peaks appear in the spectrum of the spiking response that would show up in the second-order susceptibility
as a horizontal, a vertical, and an anti-diagonal line (fig. 1 B).

For the example P-unit, we observe a ridge of elevated second-order susceptibility for the low RAM contrast
at f1 + fo = r (yellowish anti-diagonal, fig. 5E). This structure is less prominent for the stronger stimulus
(fig. 5F). Further, the overall level of the second-order susceptibility is reduced with increasing stimulus
strength. To quantify the structural changes in the susceptibility matrices we projected the susceptibility
values onto the diagonal (white dashed line) by averaging over the anti-diagonals (fig. 5G). At low RAM
contrast this projection indeed has a distinct peak close to the neuron’s baseline firing rate (fig. 5 G, dot on
top line). For the higher RAM contrast this peak is much smaller and the overall level of the second-order
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Figure 5: Linear and nonlinear stimulus encoding in example P-units. A Interspike interval (ISI) distribution of a cell's
baseline activity, i.e. the cell is driven only by the unperturbed own electric field (cell identifier “2020-10-27-ag”). This
cell has a rather high baseline firing rate » = 405Hz and an intermediate CVpse = 0.49 of its interspike intervals. B
Power spectral density of the cell's baseline response with marked peaks at the cell’'s baseline firing rate r and the fish's
EOD frequency frop. C Random amplitude modulation (RAM) stimulus (top, red, with cutoff frequency of 300 Hz) and
evoked responses (spike raster, bottom) of the same P-unit for two different stimulus contrasts (right). The stimulus
contrast quantifies the standard deviation of the RAM relative to the fish's EOD amplitude. D Gain of the transfer function
(first-order susceptibility), Eq. (4), computed from the responses to 10 % (light blue) and 20 % contrast (dark blue) RAM
stimulation of 5s duration. E Absolute value of the second-order susceptibility, Eq. (6), for both the low and high stimulus
contrast. At the lower stimulus contrast an anti-diagonal where the sum of the two stimulus frequencies equals the neuron's
baseline frequency clearly sticks out of the noise floor. F At the higher contrast, the anti-diagonal is much weaker. G
Second-order susceptibilities projected onto the diagonal (averages over all anti-diagonals of the matrices shown in E, F).
The anti-diagonals from E and F show up as a peak close to the cell’s baseline firing rate 7. The susceptibility index, SI(r)
Eq. (9), quantifies the height of this peak relative to the values in the vicinity. H ISI distributions (top) and second-order
susceptibilities (bottom) of two more example P-units (“2021-06-18-ae”, “2017-07-18-ai") showing an anti-diagonal, but
not the full expected triangular structure. | Most P-units, however, have a flat second-order susceptibility and consequently
their SI(r) values are close to one (cell identifiers “2018-08-24-ak”, “2018-08-14-ac”).
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susceptibility is reduced (fig. 5 G). The reason behind this reduction is that a RAM with a higher contrast is
not only a stimulus with an increased amplitude, but also increases the total noise in the system. Increased
noise is known to linearize signal transmission (Longtin, 1993; Chialvo et al., 1997; Roddey et al., 2000;
Voronenko and Lindner, 2017) and thus the second-order susceptibility is expected to decrease.

Overall we observed in 17 % of the 159 P-units ridges in the second-order susceptibility where the stimulus
frequencies add up to the unit’s baseline firing rate. Two more examples are shown in fig. 5 H. However, we
never observed the full triangular structure expected from theory (fig. 1B). In all other P-units, we did not
observe any structure in the second-order susceptibility (fig. 51).

Ampullary afferents exhibit strong nonlinear interactions

Electric fish possess an additional electrosensory system, the passive or ampullary electrosensory system,
that responds to low-frequency exogenous electric stimuli. The population of ampullary afferents is much less
heterogeneous, and known for the much lower CVs of their baseline ISIs (0.06 < CVy,se < 0.22, Grewe et al.,
2017). Ampullary cells do not phase-lock to the high-frequency EOD and the ISIs have an unimodal distri-
bution (fig. 6 A). As a consequence of the high regularity of their baseline spiking activity, the corresponding
power spectrum shows distinct peaks at the baseline firing rate r» and its harmonics. Since the cells do not
respond to the self-generated EOD, there is no sharp peak at fgop (fig. 6 B). When driven by a band-limited
white noise stimulus (note: for ampullary afferents this is not an AM stimulus, fig. 6 C), ampullary afferents
exhibit very pronounced ridges in the second-order susceptibility, where fi + f5 is equal to r or its harmonics
(yellow anti-diagonals in fig. 6 E-H), implying strong nonlinear response components at these frequency com-
binations (fig. 6 G, top). With higher stimulus contrasts these bands get weaker (fig. 6 F), the projection onto
the diagonal loses its distinct peak at r, and its overall level is reduced (fig. 6 G, bottom). Some ampullary
afferents (27 % of 30 afferents), however, do not show any such structure in their second-order susceptibility
(fig. 61).

Model-based estimation of the second-order susceptibility

In the example recordings shown above (figs. 5 and 6), we only observe nonlinear responses where the
sum of the two stimulus frequencies matches the neuron’s baseline firing rate, but not where either og the
frequencies alone matches the baseline rate. In the following, we investigate this discrepancy to the theoretical
expectations (Voronenko and Lindner, 2017; Franzen et al., 2023).

One simple reason could be the lack of data, i.e. the estimation of the second-order susceptibility is not
good enough. FElectrophysiological recordings are limited in time, and therefore only a limited number of
trials, here repeated presentations of the same frozen RAM stimulus, are available. In our data set we have
1 to 199 trials (median: 10) of RAM stimuli with a duration ranging from 2 to 50s (median: 10s), total
stimulation durations per cell range between 30 and 400s. Using a temporal resolution of 0.5 ms and FFT
segments of 512 samples this yields 105 to 1520 available FFT segments for a specific RAM stimulus. As a
consequence, the cross-spectra, Eq. (5), are insufficiently averaged and the full structure of the second-order
susceptibility might be hidden in finite-data noise. This experimental limitation can be overcome by using
a computational model for the P-unit, a stochastic leaky integrate-and-fire model with adaptation current,
dendritic preprocessing, and parameters fitted to the experimentally recorded P-unit (fig. 2) (Barayeu et
al., 2023). The model faithfully reproduces the second-order susceptibility of the P-unit estimated from the
same low number of FFT (fast fourier transform) segments as in the experiment (N = 100, compare faint
anti-diagonal in the bottom left corner of the second-order susceptibility in A; and B; in fig. 7).

In model simulations we can increase the number of FFT segments beyond what would be experimentally
possible, here to one million (fig. 7 Bj;). Then, the estimate of the second-order susceptibility indeed improves.
It gets less noisy, the diagonal at fy fo = r is emphasized, and the vertical and horizontal ridges at f; = r
and fo = r are revealed. Increasing the number of FFT segments also reduces the order of magnitude of the
susceptibility estimate until close to one million the estimate levels out at a low values (fig. 7 By, ).

At a lower stimulus contrast of 1% (fig. 7C), however, one million FFT segments are still not sufficient
for the estimate to converge (fig. 7C;,). Still only a faint anti-diagonal is visible (fig. 7 C;;;).

Using a broadband stimulus increases the effective input-noise level. This may linearize signal transmis-
sion and suppress potential nonlinear responses (Longtin, 1993; Chialvo et al., 1997; Roddey et al., 2000;
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Figure 6: Linear and nonlinear stimulus encoding in example ampullary afferents. A Interspike interval (ISI) distribution
of the cell’s baseline activity (cell identifier “2012-05-15-ac™). The very low CV of the ISls indicates almost perfect periodic
spiking. B Power spectral density of baseline activity with peaks at the cell’s baseline firing rate and its harmonics. Ampullary
afferents do not respond to the fish's EOD frequency, feop — a sharp peak at fegop is missing. C Band-limited white
noise stimulus (top, red, with a cutoff frequency of 150 Hz) added to the fish's self-generated electric field (no amplitude
modulation!) and spike raster of the evoked responses (bottom) for two stimulus contrasts as indicated (right). D Gain of
the transfer function, Eq. (4), of the responses to stimulation with 5% (light green) and 10 % contrast (dark green) of 10s
duration. E, F Absolute value of the second-order susceptibility, Eq. (6), for both stimulus contrasts as indicated. Both
show a clear anti-diagonal where the two stimulus frequencies add up to the afferent’s baseline firing rate. G Projections
of the second-order susceptibilities in E, F onto the diagonal. H ISl distributions (top) and second-order susceptibilities
(bottom) of three more example afferents with clear anti-diagonals (“2010-11-26-an”, “2010-11-08-aa”, “2011-02-18-ab").
I Some ampullary afferents do not show any structure in their second-order susceptibility (“2014-01-16-aj").
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Figure 7: Estimation of second-order susceptibilities. A |x2(f1, f2)| (right) estimated from N = 100 256 ms long FFT
segments of an electrophysiological recording of another P-unit (cell “2017-07-18-ai", » = 78 Hz, CVpase = 0.22) driven with
a RAM stimulus with contrast 5% (left). B; Standard condition of model simulations with intrinsic noise (bottom) and a
RAM stimulus (top). Bii |x2(f1, f2)| estimated from simulations of the cell's LIF model counterpart (cell “2017-07-18-ai")
based on the same RAM contrast and number of N = 100 FFT segments. As in the electrophysiological recording only
a weak anti-diagonal is visible. Bj; Same as B; but using 10° FFT segments. Now, the expected triangular structure is
revealed. B;, Convergence of the |x2(f1, f2)| estimate as a function of FFT segments. C At a lower stimulus contrast of
1% the estimate did not converge yet even for 10° FFT segments. The triangular structure is not revealed yet. D; Same as
in Bj but in the noise split condition: there is no external RAM signal (red) driving the model. Instead, a large part (90 %)
of the total intrinsic noise is treated as a signal and is presented as an equivalent amplitude modulation (s¢(¢), orange,
10.6 % contrast), while the intrinsic noise is reduced to 10 % of its original strength (bottom, see methods for details). D;
100 FFT segments are still not sufficient for estimating |x2(f1, f2)|. Dii Simulating one million segments reveals the full
expected triangular structure of the second-order susceptibility. Dj, In the noise-split condition, the |x2(f1, f2)| estimate
converges already at about 10* FFT segments.
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Voronenko and Lindner, 2017). Assuming that the intrinsic noise level in this P-unit is small enough, the
full expected structure of the second-order susceptibility should appear in the limit of weak AMs. As we
just have seen, this cannot be done experimentally. In the model, however, we know the time course of the
intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via
the Furutsu-Novikov theorem (Furutsu, 1963; Novikov, 1965). This theorem, in its simplest form, states
that the cross-spectrum S, (w) of a Gaussian noise 7(t) driving a nonlinear system and the system’s output
x(t) is proportional to the linear susceptibility according to Sy, (w) = x(w)Sy,(w). Here x(w) characterizes
the linear response to an infinitely weak signal s(¢) in the presence of the background noise 7n(t). Likewise,
the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-
spectra (see methods, equations (5) and (6)) (Egerland, 2021). In line with an alternative derivation of
the Furutsu-Novikov theorem (Lindner, 2022), we can split the total noise and consider a fraction of it as
a stimulus. This allows us to calculate the susceptibility from the cross-spectrum between the output and
this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace
the intrinsic noise by an approximately equivalent RAM stimulus s¢(¢) and a weak remaining intrinsic noise
V2D apeise () with apeise = 0.1 (see methods, equations (18), (20), (19), fig. 7D;). We tuned the amplitude
of the RAM stimulus s¢(t) such that the output firing rate and variability (CV of interspike intervals) are
the same as in the baseline activity (i.e. full intrinsic noise v/2D £(t) in the voltage equation but no RAM)
and compute the cross-spectra between the RAM part of the noise s¢(¢) and the output spike train. This
procedure has two consequences: (i) by means of the cross-spectrum between the output and s¢(¢), which is
a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved
and thus the estimate converges already at about ten thousand FFT segments (fig. 7Dy, ); (ii) the total noise
in the system has been reduced (by what was before the external RAM stimulus s(t)), which makes the
system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order
susceptibility for a sufficient number of FFT segments (fig. 7 D;;), but not for a number of segments compa-
rable to the experiment (fig. 7Dj). In addition to the strong response at f1 + fo = 7, we now also observe
pronounced nonlinear responses at f; = r and fo = r (vertical and horizontal lines, fig. 7 D;;).

Weakly nonlinear interactions in many model cells

In the previous section we have shown one example cell for which we find in the corresponding model the
expected strong ridges in the second-order susceptibility (fig. 7 Bj;i,Diii). Using our 39 P-unit models, we now
can explore how many P-unit model neurons show such a triangular structure.

By just looking at the second-order susceptibilities estimated using the noise-split method (first column
of fig. 8) we can readily identify strong triangular patterns in 11 of the 39 model cells (28 %, see fig. 8 A;j&B;
for two examples). In another 5 cells (13 %) the triangle is much weaker and sits on top of a smooth bump of
elevated second-order susceptibility (fig. 8 C; shows an example). The remaining 23 model cells (59 %) show
no triangle (see fig. 8 D; for an example).

This categorization is supported by the susceptibility index, SI(r), Eq. (9), which quantifies the height of
the ridge where the stimulus frequencies add up to the neuron’s baseline firing rate relative to the background.
Values above one indicate an elevated ridge. The absence of such a ridge results in values close to one. Indeed,
the cells showing only a weak triangle (orange) arise out of values around one and the cells showing strong
triangles (red) have consistently SI(r) values exceeding 1.8 (fig. 8 E;).

The SI(r) correlates with the CVs of the cell’s baseline interspike intervals (r = —0.60, p < 0.001).
The lower the cell’s CVp,ge, the higher the SI(r) value and thus the stronger the triangular structure of its
second-order susceptibility. The model cells with the most distinct triangular pattern in their second-order
susceptibility are the ones with the lowest CVs, hinting at low intrinsic noise levels.

Weakly nonlinear interactions vanish for higher stimulus contrasts

As pointed out above, the weakly nonlinear regime can only be observed for sufficiently weak stimuli. In
the model cells we estimated second-order susceptibilities for RAM stimuli with a contrast of 1, 3, and 10 %.
The estimates for 1% contrast (fig. 8 E;) were quite similar to the estimates from the noise-split method,
corresponding to a stimulus contrast of 0% (r = 0.97, p < 0.001). Thus, RAM stimuli with 1% contrast are
sufficiently small to not destroy weakly nonlinear interactions by their linearizing effect. At this low contrast,
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Figure 8: Dependence of second order susceptibility on stimulus contrast. A Second-order susceptibilities estimated for
increasing stimulus contrasts of ¢ = 0, 1,3 and 10 % as indicated (IV = 107 FFT segments for ¢ = 1%, N = 10° segments
for all other contrasts). ¢ = 0% refers to the noise-split configuration (limit to vanishing external RAM signal, see fig. 7 D).
Shown are simulations of the P-unit model cell “2017-07-18-ai") with a baseline firing rate of 82 Hz and CVpase = 0.23.
The cell shows a clear triangular pattern in its second-order susceptibility even up to a contrast of 10%. Note, that for
¢ = 1% (Di), the estimate did not converge yet. B Cell “2012-12-13-a0" (baseline firing rate of 146 Hz, CV= 0.23) also
has strong interactions at its baseline firing rate that survive up to a stimulus contrast of 3%. C Model cell “2012-12-20-ac”
(baseline firing rate of 212 Hz, CV= 0.26) shows a weak triangular structure in the second-order susceptibility that vanishes
for stimulus contrasts larger than 1%. D Cell “2013-01-08-ab” (baseline firing rate of 218 Hz, CV= 0.55) does not show
any triangular pattern in its second-order susceptibility. Nevertheless, interactions between low stimulus frequencies become
substantial at higher contrasts. E The presence of an elevated second-order susceptibility where the stimulus frequency
add up to the neuron’s baseline frequency, can be identified by the susceptibility index (SI(r), Eq. (9)) greater than one
(horizontal black line). The SI(r) (density to the right) is plotted as a function of the model neuron’s baseline CV for all
39 model cells. Model cells have been visually categorized based on the strong (11 cells) or weak (5 cells) presence of a
triangular pattern in their second-order susceptibility estimated in the noise-split configuration (legend). The cells from
A-D are marked by black circles. Pearson’s correlation coefficients r, the corresponding significance level p and regression
line (dashed gray line) are indicated. The higher the stimulus contrast, the less cells show weakly nonlinear interactions as
expressed by the triangular structure in the second-order susceptibility.
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Figure 9: Inferring the triangular structure of the second-order susceptibility from limited data. A Reliably estimating
the structure of the second-order susceptibility requires a high number of FFT segments N in the order of one or even
ten millions. As an example, susceptibilities of the model cell "2012-12-21-ak-invivo-1" (baseline firing rate of 157 Hz,
CV=0.15) are shown for the noise-split configuration (¢ = 0%) and RAM stimulus contrasts of ¢ = 1, 3, and 10% as
indicated. For contrasts below 10 % this cell shows a nice triangular pattern in its susceptibilities, quite similar to the
introductory example of a LIF in fig. 1. B However, with limited data of N = 100 trials the susceptibility estimates are
noisy and show much less structure, except for the anti-diagonal at the cell's baseline firing rate. The SI(r) quantifies the
height of this ridge where the two stimulus frequencies add up to the neuron’s baseline firing rate. C Correlations between
the estimates of SI(r) based on 100 FFT segments (density to the right) with the converged ones based on one or ten
million segments at a given stimulus contrast for all n = 39 model cells. The black circle marks the model cell shown in
A and B. The black diagonal line is the identity line and the dashed line is a linear regression. The correlation coefficient
and corresponding significance level are indicated in the top left corner. The thin vertical line is a threshold at 1.2, the
thin horizontal line a threshold at 1.8. The number of cells within each of the resulting four quadrants denote the false
positives (top left), true positives (top right), true negatives (bottom left), and false negatives (bottom right) for predicting
a triangular structure in the converged susceptibility estimate from the estimates based on only 100 segments.

51 % of the model cells have an SI(r) value greater than 1.2.

At a RAM contrast of 3% the SI(r) values become smaller (fig. 8 Ej;). Only 7 cells (18 %) have SI(r)
values exceeding 1.2. Finally, at 10 % the SI(r) values of all cells drop below 1.2, except for three cells (8 %,
fig. 8E;y). The cell shown in fig. 8 A is one of them. At 10 % contrast the SI(r) values are no longer correlated
with the ones in the noise-split configuration (r = 0.32, p = 0.05). To summarize, the regime of distinct
nonlinear interactions at frequencies matching the baseline firing rate extends in this set of P-unit model cells
to stimulus contrasts ranging from a few percents to about 10 %.

Weakly nonlinear interactions can be deduced from limited data

Estimating second-order susceptibilities reliably requires large numbers (millions) of FFT segments (fig. 7).
FElectrophysiological measurements, however, suffer from limited recording durations and estimating weakly
nonlinear interactions from just a few hundred segments appears futile. To what extend are such limited-data
estimates still informative?
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The second-order susceptibility matrices that are based on only 100 segments look flat and noisy, lacking
the triangular structure (fig. 9B). The anti-diagonal ridge, however, seems to be present whenever the con-
verged estimate shows a clear triangular structure (compare fig. 9B and fig. 9A). Comparing SI(r) values
based on 100 FFT segments to the ones based on one or ten million segments for all 39 model cells (fig. 9 C)
supports this impression. They correlate quite well at contrasts of 1% and 3% (r = 0.9, p < 0.001). At a
contrast of 10 % this correlation is weaker (r = 0.38, p < 0.05), because there are only three cells left with
SI(r) values greater than 1.2. Despite the good correlations, care has to be taken to set a threshold on the
SI(r) values for deciding whether a triangular structure would emerge for a much higher number of segments.
Because at low number of segments the estimates are noisier, there could be false positives for a too low
threshold. Setting the threshold to 1.8 avoids false positives for the price of a few false negatives.

Overall, observing SI(r) values greater than about 1.8, even for a number of FFT segments as low as one
hundred, seems to be a reliable indication for a triangular structure in the second-order susceptibility at the
corresponding stimulus contrast. Small stimulus contrasts of 1% are less informative, because of their bad
signal-to-noise ratio. Intermediate stimulus contrasts around 3 % seem to be optimal, because there, most
cells still have a triangular structure in their susceptibility and the signal-to-noise ratio is better. At RAM
stimulus contrasts of 10 % or higher the signal-to-noise ratio is even better, but only few cells remain with
weak triangularly shaped susceptibilities that might be missed as a false positives.

Low CVs and weak responses predict weakly nonlinear responses

Now we are prepared to evaluate our pool of 39 P-unit model cells, 172 P-units, and 30 ampullary afferents
recorded in 80 specimen of Apteronotus leptorhynchus. For direct comparison across cells we condensed the
structure of the second-order susceptibilities into SI(r) values, Eq. (9). Both, model and experimental SI(r)
estimates, Eq. (9), are based on 100 FFT segments.

In the P-unit models, each model cell contributed with three RAM stimulus presentations with contrasts
of 1, 3, and 10 %, resulting in n = 117 data points. 19 (16 %) had SI(r) values larger than 1.8, indicating the
expected ridges at the baseline firing rate in their second-order susceptibility. The lower the cell’s baseline
CV, i.e. the less intrinsic noise, the higher the SI(r) (fig. 10 A)).

The effective stimulus strength also plays a role in predicting the SI(r) values. We quantify the effect
of stimulus strength on a cell’s response by the response modulation — the standard deviation of a cell’s
firing rate in response to a RAM stimulus. The lower the response modulation, i.e. the weaker the effective
stimulus, the higher the S(r) (fig. 10A;). Although there is a tendency of low stimulus contrasts to evoke
lower response modulations, response modulations evoked by each of the three contrasts overlap substantially,
emphasizing the strong heterogeneity of the P-units’ sensitivity (Grewe et al., 2017). Cells with high SI(r)
values are the ones with baseline firing rate below 200 Hz (fig. 10 A;).

In comparison to the experimentally measured P-unit recordings, the model cells are skewed to lower
baseline CVs (Mann-Whitney U = 13986, p = 3 x 107?), because the models are not able to reproduce
bursting, which we observe in many P-units and which leads to high CVs. Also the response modulation of
the models is skewed to lower values (Mann-Whitney U = 15312, p = 7 x 10™7), because in the measured
cells, response modulation is positively correlated with baseline CV (Pearson R = 0.45, p = 1 x 10719), i.e.
bursting cells are more sensitive. Median baseline firing rate in the models is by 53 Hz smaller than in the
experimental data (Mann-Whitney U = 17034, p = 0.0002).

In the experimentally measured P-units, each of the 172 cells contributes on average with two RAM
stimulus presentations, presented at contrasts ranging from 1 to 20% to the 376 samples. Despite the
mentioned differences between the P-unit models and the measured data, the SI(r) values do not differ
between models and data (median of 1.3, Mann-Whitney U = 19702, p = 0.09) and also 16 % of the samples
from all presented stimulus contrasts exceed the threshold of 1.8. The SI(r) values of the P-unit population
correlate weakly with the CV of the baseline ISIs that range from 0.18 to 1.35 (median 0.49). Cells with
lower baseline CVs tend to have more pronounced ridges in their second-order susceptibilities than those with
higher baseline CVs (fig. 10B;).

Samples with weak responses to a stimulus, due to low sensitivity or a weak stimulus, have higher SI(r)
values in comparison to strongly responding cells, most of them having flat second-order susceptibilities
(fig. 10 Bj;). P-units with low or high baseline firing rates can have large SI(r) (fig. 10 Bj). How pronounced
nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise
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Figure 10: Nonlinear responses in P-units and ampullary afferents. The second-order susceptibility is condensed into the
susceptibility index, SI(r) Eq. (9), that quantifies the relative amplitude of the ridge where the two stimulus frequencies add
up to the cell's baseline firing rate r (see fig. 5G). In both the models and the experimental data, the SI(r) was estimated
based on 100 FFT segments. The Sl(r) is plotted against the cells’ CV of its baseline interspike intervals (left column),
the response modulation (standard deviation of firing rate evoked by the band-limited white-noise stimulus) — a measure
of effective stimulus strength (center column), and the cell's baseline firing rate (right column). Pearson’s correlation
coefficient R, the corresponding significance level p and the number of samples n are indicated. Kernel-density estimates of
the distributions of the displayed quantities are plotted on top and right. Data points are color coded by stimulus contrasts,
which are listed together with the corresponding number of samples in the legend to the right. The horizontal dashed
line marks a threshold for SI(r) values at 1.8 and the percentages to the right denote the fractions of samples above and
below this threshold. A The SI(r) of all 39 model P-units measured with RAM stimuli with a cutoff frequency of 300 Hz.
The black square marks the cell from fig. 7 C, the circles the four cells shown in fig. 8 A-D, and the triangle the cell from
fig. 9 A-B. B Electrophysiological data from 172 P-units. Each cell contributes on average with 2 (min. 1, max. 10) RAM
stimulus presentations to the n = 376 data points. The RAMs had cutoff frequencies of 300 Hz (352 samples) and 400 Hz
(24 samples). The two black triangles mark the responses of the example P-unit from fig. 5 E,F, the circles the other four
examples from fig. 5H, and the triangle the unit from fig. 7 A. C Recordings from 30 ampullary afferents, each contributing
on average 3 (min. 1, max. 7) RAM stimulus presentations to n = 89 data points. Stimuli had a cutoff frequency of
150 Hz. The two black triangles mark the responses of the example ampullary afferent from fig. 6 E,F, and the circles the
other four examples from fig. 6 H.
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level), and the response strength during stimulation (effective output noise).

The population of ampullary cells is more homogeneous, with generally lower baseline CVs than P-units
(Mann-Whitney U = 33464, p = 9 x 107%?). Accordingly, SI(r) values of ampullary cells (median 2.3) are
indeed higher than in P-units (median 1.3, Mann-Whitney U = 6450, p = 2 x 1071?). 52 samples (58 %)
with SI(r) values greater than 1.8 would have a triangular structure in their second-order susceptibilities.
Ampullary cells also show a negative correlation with baseline CV, despite their narrow distribution of CVs
ranging from 0.03 to 0.15 (median 0.09) (fig. 10 C;). Again, sensitive cells with stronger response modulations
are at the bottom of the SI(r) distribution with values close to one (fig. 10C;). Similar to P-units, the
baseline firing rate does not predict SI(r) values (fig. 10 Cj).

Discussion

Theoretical work (Voronenko and Lindner, 2017; Franzen et al., 2023) derived analytical expressions for
weakly-nonlinear responses of spike generating LIF and theta model neurons driven by two sine waves with
distinct frequencies. We here investigated such nonlinear responses in two types of electroreceptor afferents
that differ in their intrinsic noise levels (Grewe et al., 2017) using band-limited white-noise stimuli to estimate
second-order susceptibilities. Following Voronenko and Lindner (2017) we expected to observe distinct ridges
in the second-order susceptibility where either of the stimulus frequencies alone or their sum matches the
baseline firing rate. We find traces of these nonlinear responses in the majority of ampullary afferents. In P-
units, however, only a minority of the recorded cells, i.e. those characterized by low intrinsic noise levels and
low output noise, show signs of such nonlinear responses. Complementary model simulations demonstrate in
the limit of high numbers of FFT segments, that the estimates from the electrophysiological data are indeed
indicative of the theoretically expected triangular structure of supra-threshold weakly nonlinear responses.
With this, we provide evidence for weakly-nonlinear responses of a spike generator at low intrinsic noise levels
or low stimulus amplitudes in real sensory neurons.

Intrinsic noise limits nonlinear responses

The weakly nonlinear regime with its triangular pattern of elevated second-order susceptibility resides between
the linear and a stochastic mode-locking regime. Too strong intrinsic noise linearizes the system and wipes
out the structure of the second-order susceptibility (Voronenko and Lindner, 2017, fig. 1B). The CV of the
baseline interspike interval is a proxy for the intrinsic noise in the cells (Vilela and Lindner, 2009, note
however the effect of coherence resonance for excitable systems close to a bifurcation, Pikovsky and Kurths,
1997; Lindner et al., 2004). In both cell types, we observe a negative correlation between the second-order
susceptibility at fi + fo = r and the baseline CV (fig. 10), indicating that it is the level of intrinsic noise that
shapes nonlinear responses. Still, only 18 % of the P-units analyzed in this study show relevant nonlinear
responses. On the other hand, the majority (74 %) of the ampullary cells show nonlinear responses as they
have generally lower CVs (median of 0.09).

These findings are in line with previous theoretical and experimental studies showing the linearizing
effects of noise in other nonlinear systems (Roddey et al., 2000; Chialvo et al., 1997). Increased intrinsic
noise has been demonstrated to increase the CV and to reduce nonlinear phase-locking in vestibular afferents
(Schneider et al., 2011). Reduced noise, on the other hand, has been associated with stronger nonlinearity
in pyramidal cells of the ELL (Chacron, 2006). Only in cells with sufficiently low levels of intrinsic noise,
weakly nonlinear responses can be observed.

Linearization by white-noise stimulation

Not only the intrinsic noise but also the stimulation with external white-noise linearizes the cells. This applies
to both, the stimulation with AMs in P-units (fig. 10 B;j) and direct stimulation in ampullary cells (fig. 10 Cj).
The stronger the effective stimulus, the less pronounced are the ridges in the second-order susceptibility (see
fig. 5 E&F for a P-unit example and fig. 6 E&F for an ampullary cell). This linearizing effect of noise stimuli
limits the weakly nonlinear regime to small stimulus amplitudes. At higher stimulus amplitudes, however,
other nonlinearities of the system eventually show up in the second-order susceptibility.
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In order to characterize weakly nonlinear responses of the cells in the limit to vanishing stimulus ampli-
tudes we utilized the Furutsu-Novikov theorem (Novikov, 1965; Furutsu, 1963). Following Lindner (2022),
a substantial part of the intrinsic noise of a P-unit model (Barayeu et al., 2023) is treated as signal. Per-
forming this noise-split trick we can estimate the weakly nonlinear response without the linearizing effect of
an additional external white noise stimulus. 41 % of the model cells then show the full nonlinear structure
(fig. 8E;) known from analytical derivations and simulations of basic LIF and theta models driven with pairs
of sine-wave stimuli (Voronenko and Lindner, 2017; Franzen et al., 2023). Previous studies on second-order
nonlinearities have not observed the weakly nonlinear regime, probably because of the linearizing effects of
strong noise stimuli (Victor et al., 1977; Schanze and Eckhorn, 1997; Neiman and Russell, 2011a).

Characterizing nonlinear coding from limited experimental data

Estimating the Volterra series from limited experimental data is usually restricted to the first two or three
orders, which might not be sufficient for a proper prediction of the neuronal response (French et al., 2001).
As we have demonstrated, a proper estimation of just the second-order susceptibility in the weakly nonlinear
regime is challenging in electrophysiological experiments (fig. 9). Our minimum of 100 FFT segments cor-
responds to just 26s of stimulation and thus is not a challenge. However, the estimates of the second-order
susceptibilities start to converge only beyond 10000 FFT segments, corresponding to 43 min of stimulation.
Often, however, more than one million segments (corresponding to 71 hours of recording), were needed,
which is clearly out of reach. We have demonstrated that even in non-converged estimates based on short
recordings, the presence of a anti-diagonal ridge is sufficient to predict a triangular pattern in a converged
estimate.

Making assumptions about the nonlinearities in a system also reduces the amount of data needed for pa-
rameter estimation. In particular, models combining linear filtering with static nonlinearities (Chichilnisky,
2001) have been successful in capturing functionally relevant neuronal computations in visual (Gollisch and
Meister, 2009) as well as auditory systems (Clemens and Ronacher, 2013). Linear methods based on back-
ward models for estimating the stimulus from neuronal responses, have been extensively used to quantify
information transmission in neural systems (Theunissen et al., 1996; Borst and Theunissen, 1999; Wessel et
al., 1996; Machens et al., 2001), because backward models do not need to generate action potentials that
involve strong nonlinearities (Rieke et al., 1999).

Nonlinear encoding in ampullary cells

The afferents of the passive electrosensory system, the ampullary cells, exhibit strong second-order suscep-
tibilities (fig. 10). Ampullary cells more or less directly translate external low-frequency electric fields into
afferent spikes, much like in the standard LIF and theta models used by Lindner and colleagues (Voronenko
and Lindner, 2017; Franzen et al., 2023). Indeed, we observe in the ampullary cells similar second-order
nonlinearities as in LIF models.

Ampullary stimuli originate from the muscle potentials induced by prey movement (Kalmijn, 1974; En-
gelmann et al., 2010; Neiman and Russell, 2011b). For a single prey items such as Daphnia, these potentials
are often periodic but the simultaneous activity of a swarm of prey resembles Gaussian white noise (Neiman
and Russell, 2011b). Linear and nonlinear encoding in ampullary cells has been studied in great detail in the
paddlefish (Neiman and Russell, 2011b). The power spectrum of the baseline response shows two main peaks:
One peak at the baseline firing frequency, a second one at the oscillation frequency of primary receptor cells
in the epithelium, plus interactions of both. Linear encoding in the paddlefish shows a gap at the epithelial
oscillation frequency, instead, nonlinear responses are very pronounced there.

Ampullary stimulus encoding is somewhat different in A. leptorhynchus. The power spectrum of the
spontaneous response is dominated by only the baseline firing rate and its harmonics, a second oscillator is
not visible. The baseline firing frequency, however, is outside the linear coding range (Grewe et al., 2017)
while it is within the linear coding range in paddlefish (Neiman and Russell, 2011b). Interestingly, the
nonlinear response in the paddlefish ampullary cells increases with stimulus intensity while it disappears in
our case (fig. 10 C;) indicating that paddlefish data have been recorded above the weakly-nonlinear regime.

The population of ampullary cells is very homogeneous with respect to the baseline rate (131429 Hz) and
stimulus encoding properties (Grewe et al., 2017). This implies that, if the stimulus contains the appropriate
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frequency components that sum up to the baseline rate, the resulting nonlinear response appears at the
baseline rate that is similar in the full population of ampullary cells and that is outside the linear coding
range. Postsynaptic cells integrating ampullary input might be able to extract such nonlinear responses.
How such nonlinear effects might influence prey detection should be addressed in future studies.

Nonlinear encoding in P-units

In contrast to the ampullary cells, P-units respond to the amplitude modulation of the self-generated EOD.
Extracting the AM requires a (threshold) nonlinearity (Middleton et al., 2006; Stamper et al., 2012; Savard
et al., 2011; Barayeu et al., 2023). This nonlinearity, however, does not show up in our estimates of the
susceptibilities, because in our analysis we directly relate the AM waveform to the recorded cellular responses.
Encoding the time-course of the AM, however, has been shown to be linear over a wide range of AM amplitudes
and frequencies (Xu et al., 1996; Benda et al., 2005; Gussin et al., 2007; Grewe et al., 2017; Savard et al.,
2011). In contrast, we here have demonstrated nonlinear interactions originating from the spike generator
for broad-band noise stimuli with small amplitudes and for stimulation with two distinct frequencies. Both
settings have not been studied yet.

Noise stimuli have the advantage that a range of frequencies can be measured with a single stimulus
presentation and they have been successfully applied to characterize sensory coding in many systems (French
and Butz, 1973; Marmarelis et al., 1999; Borst and Theunissen, 1999; Chacron et al., 2005; Grewe et al., 2017).
The natural stimuli encoded by P-units are, however, periodic amplitude modulations of the self-generated
electric field which arise from the superposition of the own and foreign EODs. Such interactions usually
occur between low numbers of close-by fish and thus the AMs are a mixture of a few distinct frequencies with
substantial amplitudes (Stamper et al., 2010; Fotowat et al., 2013; Henninger et al., 2020). How informative
are the second-order susceptibilities observed under noise stimulation for the encoding of distinct frequencies?
Broadband noise stimuli introduce additional noise that linearizes the dynamics of the system. In contrast,
pure sine wave stimulation is spectrally focused and drives the system on the background of the intrinsic
noise. This explains why we can observe nonlinear interactions between sine wave stimuli with distinct
frequencies and substantial power (fig. 3) although these interactions vanish when stimulating with noise
stimuli of similar contrast (fig. 8).

The encoding of secondary AMs or social envelopes that arise from relative movement or the interaction of
more than two animals (Stamper et al., 2012) requires an another nonlinearity in addition to the one needed
for extracting the AM. Initially, this nonlinearity was attributed to downstream processing (Middleton et al.,
2006, 2007). Later studies showed that already the electroreceptors can encode such information whenever
the firing rate saturates at zero or the maximum rate at the EOD frequency (Savard et al., 2011). Based on
our work, we predict that P-units with low CVs encode the social envelopes even under weak stimulation,
whenever the resulting beat frequencies match or add up to the baseline firing rate. Then difference frequencies
show up in the response spectrum that characterize the slow envelope.

The weakly nonlinear interactions in low-CV P-units could facilitate the detectability of faint signals
during three-animal interactions as found in courtship contexts in the wild (Henninger et al., 2018). The
detection of a faint, distant intruder male could be improved by the presence of a nearby strong female
stimulus, because of the nonlinear interaction terms (Schlungbaum and Lindner, 2023). This boosting effect
is, however, very specific with respect to the stimulus frequencies and a given P-unit’s baseline frequency.
The population of P-units is very heterogeneous in their baseline firing rates and CVs (50-450 Hz and 0.1-1.4,
respectively, fig. 10 B, Grewe et al., 2017; Hladnik and Grewe, 2023). The range of baseline firing rates thus
covers substantial parts of the beat frequencies that may occur during animal interactions (Henninger et al.,
2018, 2020), while the number of P-units showing weakly nonlinear responses is small. Whether and how
this information is specifically maintained and read out by pyramidal cells in the electrosensory lateral line
lobe (ELL) in the hindbrain onto which P-units converge (Krahe and Maler, 2014; Maler, 2009) is an open
question.

Conclusions

We have demonstrated pronounced nonlinear responses in primary electrosensory afferents at weak stimulus
amplitudes and sufficiently low intrinsic noise levels. The observed nonlinearities match the expectations from
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previous theoretical studies (Voronenko and Lindner, 2017; Franzen et al., 2023). The resulting nonlinear
components introduce spectral components not present in the original stimulus, that may provide an edge
in the context of signal detection problems at stimulus amplitudes close to threshold (Schlungbaum and
Lindner, 2023). Electrosensory afferents share an evolutionary history with hair cells (Baker, 2019) and share
many response properties with mammalian auditory nerve fibers (Barayeu et al., 2023; Joris et al., 2004).
Thus, we expect weakly nonlinear responses for near-threshold stimulation in auditory nerve fibers as well.
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