import numpy as np import matplotlib.pyplot as plt from pathlib import Path from spectral import diag_projection, peak_size from plotstyle import plot_style from plotstyle import plot_chi2 from punitexamplecell import load_baseline, load_noise, load_spectra from punitexamplecell import plot_response_spectrum, plot_response from punitexamplecell import plot_gain, plot_diagonals, plot_isih_small example_cell = [['2012-05-15-ac', 3], ['2012-05-15-ac', 1]] example_cells = [ ['2010-11-26-an', 0], ['2010-11-08-aa', 1], ['2011-02-18-ab', 1], ['2014-01-16-aj', 5], ] data_path = Path('data') / 'cells' def plot_isih(ax, s, rate, cv, isis, pdf): ax.show_spines('b') ax.fill_between(1000*isis, pdf, facecolor=s.cell_color1) ax.set_xlim(0, 12) ax.set_xticks_delta(4) ax.set_xlabel('ISI', 'ms') ax.text(0.95, 1.08, f'CV$_{{\\rm base}}$={cv:.2f}, $r={rate:.0f}$Hz', transform=ax.transAxes) if __name__ == '__main__': """ # find a nice example cell: from thunderlab.tabledata import TableData data = TableData('data/Apteronotus_leptorhynchus-Ampullary-data.csv') data = data[(data['fcutoff'] > 140) & (data['fcutoff'] < 160), :] data = data[(data['sinorm_nmax'] > 5) & (data['sinorm_nmax'] < 50), :] data = data[(data['contrast'] > 0.04) & (data['contrast'] < 0.06), :] data = data[(data['respmod2'] > 0) & (data['respmod2'] < 100), :] data = data[(data['cvbase'] > 0) & (data['cvbase'] < 0.2), :] data = data[(data['ratebase'] > 50) & (data['ratebase'] < 180), :] for k in range(data.rows()): print(f'{data[k, "cell"]:<22s} s{data[k, "stimindex"]:02.0f}: ' f'{100*data[k, "contrast"]:3g}%, r={data[k, "ratebase"]:3.0f}Hz, ' f'CV={data[k, "cvbase"]:4.2f}, ' f'rmod={data[k, "respmod2"]:3.0f}Hz, ' f'SI={data[k, "sinorm_nmax"]:5.2f}') print() #exit() """ #mode = 'all' mode = '100' cell_name = example_cell[0][0] print('Example Ampullary cell:') eodf, rate, cv, isis, pdf, freqs, prr = load_baseline(data_path, cell_name) print(f' {cell_name:<22s}: fbase={rate:3.0f}Hz, CV={cv:.2f}') contrast1, time1, stimulus1, spikes1 = load_noise(data_path, *example_cell[0]) contrast2, time2, stimulus2, spikes2 = load_noise(data_path, *example_cell[1]) fcutoff1, contrast1, freqs1, gain1, chi21 = load_spectra(data_path, mode, *example_cell[0]) fcutoff2, contrast2, freqs2, gain2, chi22 = load_spectra(data_path, mode, *example_cell[1]) print(f' contrast1: {100*contrast1:4.1f}% contrast2: {100*contrast2:4.1f}%') print(f' fcutoff1 : {fcutoff1:3.0f}Hz fcutoff2 : {fcutoff2:3.0f}Hz') print(f' duration1: {time1[-1]:4.1f}s duration2: {time2[-1]:4.1f}s') s = plot_style() s.cell_color1 = s.ampul_color1 s.cell_color2 = s.ampul_color2 s.lsC1 = s.lsA1 s.lsC2 = s.lsA2 s.psC1 = s.psA1 s.psC2 = s.psA2 fig, (ax1, ax2, ax3) = \ plt.subplots(3, 1, height_ratios=[3, 0, 3, 0.3, 4.7], cmsize=(s.plot_width, 0.85*s.plot_width)) fig.subplots_adjust(leftm=8, rightm=2, topm=2, bottomm=3.5, wspace=0.4, hspace=0.42) axi, axp, axr = ax1.subplots(1, 3, width_ratios=[2, 3, 0, 10, 0.2]) axg, axc1, axc2, axd = ax2.subplots(1, 4, wspace=0.2, width_ratios=[3.5, 0.5, 4, 4, 0.8, 3.5]) axs = ax3.subplots(2, 4, wspace=0.4, hspace=0.35, width_ratios=[1, 0.1, 1, 1, 1, 0.1], height_ratios=[1, 4]) axi.text(0, 1.08, 'Ampullary:', transform=axi.transAxes, color=s.cell_color1, fontsize='large') plot_isih(axi, s, rate, cv, isis, pdf) plot_response_spectrum(axp, s, eodf, rate, freqs, prr) plot_response(axr, s, eodf, time1, stimulus1, contrast1, spikes1, contrast2, spikes2, am=False) plot_gain(axg, s, contrast1, freqs1, gain1, contrast2, freqs2, gain2, fcutoff1, ymax=12, dy=4) axg.axvline(rate, **s.lsGrid) axg.text(rate, 12.5, '$r$', ha='center') axc = plot_chi2(axc1, s, freqs2, chi22, fcutoff2, None, 12) axc.remove() axc1.set_title(f'$c$={100*contrast2:g}\\,\\%', fontsize='medium', color=s.cell_color2) plot_chi2(axc2, s, freqs1, chi21, fcutoff1, None, 12) axc2.set_title(f'$c$={100*contrast1:g}\\,\\%', fontsize='medium', color=s.cell_color1) plot_diagonals(axd, s, rate, contrast1, freqs1, chi21, contrast2, freqs2, chi22, fcutoff1, ymax=17, toffs=1) fig.common_yticks(axc1, axc2) fig.tag([axi, axp, axr], xoffs=-3, yoffs=0) fig.tag([axg, axc1, axc2, axd], xoffs=-3, yoffs=2) print() print('Additional example cells:') axs[0, 0].text(0, 1.6, 'Ampullary cells:', transform=axs[0, 0].transAxes, color=s.cell_color1, fontsize='large') for k, (cell, run) in enumerate(example_cells): eodf, rate, cv, isis, pdf, _, _ = load_baseline(data_path, cell) fcutoff, contrast, freqs, gain, chi2 = load_spectra(data_path, mode, cell, run) print(f' {cell:<22s}: run={run:2d}, contrast={100*contrast:3.2g}%, ' f'fbase={rate:3.0f}Hz, CV={cv:.2f}') plot_isih_small(axs[0, k], s, contrast, rate, cv, isis, pdf) vmax = 15 if k > 0 else 3 axc = plot_chi2(axs[1, k], s, freqs, chi2, fcutoff, rate, vmax) if k % 3 != 0: axc.remove() if k == 0: axc.set_ylabel('') fig.common_yticks(axs[1, :]) fig.tag([axs[0, :3]], xoffs=-3, yoffs=1) fig.tag(axs[0, 3:]) fig.savefig() print()