finished data overview

This commit is contained in:
Jan Benda 2025-06-01 23:09:09 +02:00
parent 6e0098a273
commit f2ee764f78
4 changed files with 232 additions and 88 deletions

View File

@ -54,6 +54,8 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2011-05-09-ac;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;good;651;8717;43.5205;200.352;0.356288;0.898526;1;-0.292144;0.0330479;0.000573658;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;20;196.908;0.388944;56.1839;31.7092;15.2219;250;2243.03;62.5;0.189958;760;246.094;1.40617;18623.2;1.68493;26208.7;100;191.406;1.34796;26113.4;1.14722;12981.8 2011-05-09-ac;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;good;651;8717;43.5205;200.352;0.356288;0.898526;1;-0.292144;0.0330479;0.000573658;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;20;196.908;0.388944;56.1839;31.7092;15.2219;250;2243.03;62.5;0.189958;760;246.094;1.40617;18623.2;1.68493;26208.7;100;191.406;1.34796;26113.4;1.14722;12981.8
2011-05-09-ad;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;fair;652;284;1.895;150.921;0.405586;0.937424;1;-0.452188;0.185827;0;0;0;0;0.025;gwn300Hz10s0.3.dat;300;10;18;136.667;0.543337;94.4466;65.4348;35.514;62.5;7754.78;62.5;0.568056;684;171.875;1.2615;57214.4;1.61038;104614;100;167.969;1.23137;65339.3;1.11747;36554.4 2011-05-09-ad;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;fair;652;284;1.895;150.921;0.405586;0.937424;1;-0.452188;0.185827;0;0;0;0;0.025;gwn300Hz10s0.3.dat;300;10;18;136.667;0.543337;94.4466;65.4348;35.514;62.5;7754.78;62.5;0.568056;684;171.875;1.2615;57214.4;1.61038;104614;100;167.969;1.23137;65339.3;1.11747;36554.4
2011-05-09-ad;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;fair;652;284;1.895;150.921;0.405586;0.937424;1;-0.452188;0.185827;0;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;22;143.989;0.715416;133.971;98.8531;59.8686;42.9688;5104.07;35.1562;0.667093;836;101.562;1.0411;3507.66;1.77169;38702.4;100;171.875;1.28011;20880.7;1.24452;18749.2 2011-05-09-ad;Apteronotus leptorhynchus;14;5.1;P-unit;Nerve;fair;652;284;1.895;150.921;0.405586;0.937424;1;-0.452188;0.185827;0;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;22;143.989;0.715416;133.971;98.8531;59.8686;42.9688;5104.07;35.1562;0.667093;836;101.562;1.0411;3507.66;1.77169;38702.4;100;171.875;1.28011;20880.7;1.24452;18749.2
2011-06-09-aa;Apteronotus leptorhynchus;14;29.1;P-unit;ELL;fair;895;13474;48.6916;276.734;0.753887;0.729525;1;-0.625913;0.0270078;0.443405;0.562236;0.0027933;0;0.025;gwn300Hz10s0.3.dat;300;10;20;264.867;0.793139;84.9788;48.5737;18.7644;109.375;7560.26;35.1562;0.195563;760;246.094;1.34811;38691.5;1.12185;16275.2;100;250;1.18622;47798.7;0.948119;-16661.1
2011-06-09-aa;Apteronotus leptorhynchus;14;29.1;P-unit;ELL;fair;895;13474;48.6916;276.734;0.753887;0.729525;1;-0.625913;0.0270078;0.443405;0.562236;0.0027933;1;0.05;gwn300Hz10s0.3.dat;300;10;17;256.17;0.822416;123.468;75.0721;32.4169;109.375;5830.27;35.1562;0.400585;646;273.438;1.14148;5458.53;1.04858;2040.57;100;273.438;1.37656;25485.3;1.08586;7366.38
2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;0;0.025;gwn300Hz10s0.3.dat;300;10;32;205.899;0.809146;148.75;103.912;55.8889;85.9375;11126.3;27.3438;0.625053;1216;160.156;1.22908;61088.9;2.27593;183750;100;167.969;1.16806;61789.7;1.19911;71311.3 2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;0;0.025;gwn300Hz10s0.3.dat;300;10;32;205.899;0.809146;148.75;103.912;55.8889;85.9375;11126.3;27.3438;0.625053;1216;160.156;1.22908;61088.9;2.27593;183750;100;167.969;1.16806;61789.7;1.19911;71311.3
2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;1;0.05;gwn300Hz10s0.3.dat;300;10;21;218.936;0.979172;208.051;152.699;90.9066;42.9688;7354.12;27.3438;0.765185;798;171.875;1.18795;18584.9;2.22361;64640.5;100;171.875;1.20545;22145.5;1.47301;41724.8 2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;1;0.05;gwn300Hz10s0.3.dat;300;10;21;218.936;0.979172;208.051;152.699;90.9066;42.9688;7354.12;27.3438;0.765185;798;171.875;1.18795;18584.9;2.22361;64640.5;100;171.875;1.20545;22145.5;1.47301;41724.8
2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;2;0.1;gwn300Hz10s0.3.dat;300;10;21;232.293;1.15178;241.867;185.66;120.766;42.9688;4332.07;27.3438;0.799893;798;152.344;1.08885;2472.21;2.03615;15417.9;100;152.344;1.20105;6339.73;1.59797;14172.3 2011-09-21-ag;Apteronotus leptorhynchus;12;3.7;P-unit;Nerve;good;820;7871;39.6317;198.616;0.656076;0.804212;1;-0.523876;0.0346371;0.280305;0.405972;0.00304878;2;0.1;gwn300Hz10s0.3.dat;300;10;21;232.293;1.15178;241.867;185.66;120.766;42.9688;4332.07;27.3438;0.799893;798;152.344;1.08885;2472.21;2.03615;15417.9;100;152.344;1.20105;6339.73;1.59797;14172.3
@ -163,6 +165,11 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;6;0.025;gwn300Hz50s0.3.dat;300;2;109;150.127;0.501016;84.5377;59.426;31.2727;85.9375;7533;7.8125;0.630868;763;128.906;1.43404;192674;3.48745;454049;100;148.438;1.36388;174396;1.82993;296458 2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;6;0.025;gwn300Hz50s0.3.dat;300;2;109;150.127;0.501016;84.5377;59.426;31.2727;85.9375;7533;7.8125;0.630868;763;128.906;1.43404;192674;3.48745;454049;100;148.438;1.36388;174396;1.82993;296458
2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;7;0.025;gwn300Hz50s0.3.dat;300;10;19;152.846;0.537061;81.0585;56.2449;30.4843;66.4062;6240.78;31.25;0.423078;722;97.6562;1.15027;27937.3;1.76619;92772.5;100;97.6562;1.08942;24205.5;1.08805;23866 2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;7;0.025;gwn300Hz50s0.3.dat;300;10;19;152.846;0.537061;81.0585;56.2449;30.4843;66.4062;6240.78;31.25;0.423078;722;97.6562;1.15027;27937.3;1.76619;92772.5;100;97.6562;1.08942;24205.5;1.08805;23866
2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;9;0.1;gwn300Hz50s0.3.dat;300;10;21;171.098;0.883342;161.665;124.731;81.6404;42.9688;3044.61;31.25;0.733596;798;97.6562;1.25881;5562.16;2.68272;16969.3;100;97.6562;1.4731;10809.1;1.81886;15152.2 2014-01-16-ak;Apteronotus leptorhynchus;16.5;11.4;P-unit;Nerve;good;803;4833;32.8965;146.026;0.388509;0.831993;1;-0.597945;0.0464992;0.000206954;0;0;9;0.1;gwn300Hz50s0.3.dat;300;10;21;171.098;0.883342;161.665;124.731;81.6404;42.9688;3044.61;31.25;0.733596;798;97.6562;1.25881;5562.16;2.68272;16969.3;100;97.6562;1.4731;10809.1;1.81886;15152.2
2017-07-18-ai-invivo-1;Apteronotus leptorhynchus;20;22.2;P-unit;Brain;fair;818;2861;36.5828;78.2019;0.219804;0.773615;1;-0.41238;0.0581656;0;0;0;1;0.05;gwn300Hz50s0.3.dat;300;5;11;78.7121;0.229273;40.1621;23.3562;10.258;109.375;1115.66;7.8125;0.106593;198;78.125;1.95326;32481.4;1.88599;31266;100;74.2188;2.18499;47720.4;1.8792;41167.4
2017-07-18-ai-invivo-1;Apteronotus leptorhynchus;20;22.2;P-unit;Brain;fair;818;2861;36.5828;78.2019;0.219804;0.773615;1;-0.41238;0.0581656;0;0;0;2;0.05;gwn300Hz50s0.3.dat;300;5;11;77.7462;0.23126;41.0699;24.2334;10.4088;74.2188;865.595;19.5312;0.110018;198;74.2188;2.49523;44799;2.20323;40828.2;100;74.2188;2.74471;79599.1;2.56253;76355.6
2017-07-18-aj-invivo-1;Apteronotus leptorhynchus;20;22.2;P-unit;Brain;good;819;7759;32.8963;235.86;0.511048;0.878734;1;-0.543585;0.0357745;0.188451;0.35834;0.0030525;0;0.05;gwn300Hz50s0.3.dat;300;5;11;236.383;0.613059;117.494;74.0283;38.8355;105.469;5049.65;74.2188;0.539207;198;265.625;1.74037;44236.8;1.59641;38848.9;100;265.625;1.63188;45139.2;1.35823;30746.6
2017-07-18-aj-invivo-1;Apteronotus leptorhynchus;20;22.2;P-unit;Brain;good;819;7759;32.8963;235.86;0.511048;0.878734;1;-0.543585;0.0357745;0.188451;0.35834;0.0030525;2;0.05;gwn300Hz50s0.3.dat;300;5;11;195.417;0.510959;98.5897;61.8963;32.8746;101.562;3616.45;74.2188;0.527782;198;234.375;1.47955;30665.7;1.48993;31111.3;100;226.562;1.39227;31925.5;1.39603;32144.8
2017-08-11-ac-invivo-1;Apteronotus leptorhynchus;21;28;P-unit;Brain;good;825.008;3520;23.1886;151.846;0.595287;0.796437;1;-0.761438;0.0537663;0.120205;0.361466;0.00303027;1;0.05;gwn300Hz50s0.3.dat;300;30;9;161.853;0.771081;144.085;100.247;51.8778;62.5;5251.75;35.1562;0.624437;1044;121.094;1.30406;17424.8;2.96927;49563.5;100;113.281;1.21317;17045.8;1.5764;35470.6
2018-01-17-al;Apteronotus leptorhynchus;17.7;11.2;P-unit;Nerve;good;623;216;2.192;99.1812;0.438175;0.849832;1;-0.772001;0.207688;0.00465116;0;0;0;0.1;gwn300Hz10s0.3.dat;300;10;9;108.379;0.641427;106.892;79.2617;48.9961;42.9688;2009.31;27.3438;0.686444;342;82.0312;1.4171;6968.37;1.94005;11471.6;100;62.5;1.40851;7675.6;1.51149;8955.72 2018-01-17-al;Apteronotus leptorhynchus;17.7;11.2;P-unit;Nerve;good;623;216;2.192;99.1812;0.438175;0.849832;1;-0.772001;0.207688;0.00465116;0;0;0;0.1;gwn300Hz10s0.3.dat;300;10;9;108.379;0.641427;106.892;79.2617;48.9961;42.9688;2009.31;27.3438;0.686444;342;82.0312;1.4171;6968.37;1.94005;11471.6;100;62.5;1.40851;7675.6;1.51149;8955.72
2018-01-17-al;Apteronotus leptorhynchus;17.7;11.2;P-unit;Nerve;good;623;216;2.192;99.1812;0.438175;0.849832;1;-0.772001;0.207688;0.00465116;0;0;1;0.2;gwn300Hz10s0.3.dat;300;10;13;122.017;0.834812;142.706;107.964;70.3411;42.9688;1338.7;27.3438;0.743495;494;54.6875;1.30733;1990.68;2.4074;4950.52;100;54.6875;1.37534;2115.26;1.57162;2819.09 2018-01-17-al;Apteronotus leptorhynchus;17.7;11.2;P-unit;Nerve;good;623;216;2.192;99.1812;0.438175;0.849832;1;-0.772001;0.207688;0.00465116;0;0;1;0.2;gwn300Hz10s0.3.dat;300;10;13;122.017;0.834812;142.706;107.964;70.3411;42.9688;1338.7;27.3438;0.743495;494;54.6875;1.30733;1990.68;2.4074;4950.52;100;54.6875;1.37534;2115.26;1.57162;2819.09
2018-05-08-ac-invivo-1;Apteronotus leptorhynchus;15;11.6;P-unit;Nerve;good;655.007;2821;28.3956;99.3248;0.542125;0.807556;1;-0.455803;0.0581188;0.173759;0.173759;0.00229005;2;0.1;gwn300Hz50s0.3.dat;300;30;1;97.047;0.500584;144.277;87.9959;44.773;74.2188;1686.54;35.1562;0.575777;116;93.75;1.33043;4244.55;1.36008;4524.56;100;113.281;1.32736;4381.27;1.31167;4221.19 2018-05-08-ac-invivo-1;Apteronotus leptorhynchus;15;11.6;P-unit;Nerve;good;655.007;2821;28.3956;99.3248;0.542125;0.807556;1;-0.455803;0.0581188;0.173759;0.173759;0.00229005;2;0.1;gwn300Hz50s0.3.dat;300;30;1;97.047;0.500584;144.277;87.9959;44.773;74.2188;1686.54;35.1562;0.575777;116;93.75;1.33043;4244.55;1.36008;4524.56;100;113.281;1.32736;4381.27;1.31167;4221.19
@ -273,6 +280,7 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2018-09-11-ac;Apteronotus leptorhynchus;15;6.3;P-unit;Nerve;fair;853;9672;20.6031;469.444;0.362399;0.910264;1;-0.195644;0.0317853;0.339675;0;0;0;0.1;gwn300Hz10s0.3.dat;300;10;5;429.939;0.711532;221.853;140.947;77.7643;160.156;3840.58;62.5;0.724463;190;472.656;1.35906;7212.35;1.03028;802.239;100;507.812;1.22669;7248.95;1.30398;9144.24 2018-09-11-ac;Apteronotus leptorhynchus;15;6.3;P-unit;Nerve;fair;853;9672;20.6031;469.444;0.362399;0.910264;1;-0.195644;0.0317853;0.339675;0;0;0;0.1;gwn300Hz10s0.3.dat;300;10;5;429.939;0.711532;221.853;140.947;77.7643;160.156;3840.58;62.5;0.724463;190;472.656;1.35906;7212.35;1.03028;802.239;100;507.812;1.22669;7248.95;1.30398;9144.24
2018-09-11-ac;Apteronotus leptorhynchus;15;6.3;P-unit;Nerve;fair;853;9672;20.6031;469.444;0.362399;0.910264;1;-0.195644;0.0317853;0.339675;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;5;437.592;0.598379;182.422;108.442;55.2673;187.5;6781.8;39.0625;0.676537;190;496.094;1.30047;29131.6;1.25644;25733.9;100;496.094;1.28865;34556.1;1.30514;36068.5 2018-09-11-ac;Apteronotus leptorhynchus;15;6.3;P-unit;Nerve;fair;853;9672;20.6031;469.444;0.362399;0.910264;1;-0.195644;0.0317853;0.339675;0;0;1;0.05;gwn300Hz10s0.3.dat;300;10;5;437.592;0.598379;182.422;108.442;55.2673;187.5;6781.8;39.0625;0.676537;190;496.094;1.30047;29131.6;1.25644;25733.9;100;496.094;1.28865;34556.1;1.30514;36068.5
2018-11-14-am-invivo-1;Apteronotus leptorhynchus;17;12;P-unit;Nerve;good;656;6872;43.8272;156.885;1.23574;0.826627;1;-0.347898;0.0383464;0.668025;0.706156;0.00381098;0;0.1;gwn300Hz50s0.3.dat;300;2;17;173.399;1.37363;176.117;153.047;108.257;42.9688;4744.85;7.8125;0.647836;119;109.375;1.6796;17158.7;3.34867;29743.2;100;109.375;1.71234;18721.7;3.29195;31332.9 2018-11-14-am-invivo-1;Apteronotus leptorhynchus;17;12;P-unit;Nerve;good;656;6872;43.8272;156.885;1.23574;0.826627;1;-0.347898;0.0383464;0.668025;0.706156;0.00381098;0;0.1;gwn300Hz50s0.3.dat;300;2;17;173.399;1.37363;176.117;153.047;108.257;42.9688;4744.85;7.8125;0.647836;119;109.375;1.6796;17158.7;3.34867;29743.2;100;109.375;1.71234;18721.7;3.29195;31332.9
2019-06-28-ae;Apteronotus leptorhynchus;19.5;13.3;P-unit;Brain;fair;772;10203;21.3806;477.299;0.533461;0.92693;1;-0.410122;0.0309234;0.628308;0.628308;0.00194301;0;0.1;gwn300Hz10s0.3.dat;300;9.99995;4;453.548;0.821653;253.968;180.163;107.09;62.5;4576.51;62.5;0.827763;152;449.219;2.58589;34339.8;2.18027;30311.3;100;449.219;3.11362;49951;2.72419;46572.6
2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;0;0.2;gwn300Hz10s0.3.dat;300;4.99998;10;225.564;0.8844;200.877;144.965;94.3593;35.1562;1625.41;62.5;0.680734;180;320.312;1.5039;3060.48;1.27973;1996.6;100;281.25;1.26366;1870.14;1.10909;881.567 2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;0;0.2;gwn300Hz10s0.3.dat;300;4.99998;10;225.564;0.8844;200.877;144.965;94.3593;35.1562;1625.41;62.5;0.680734;180;320.312;1.5039;3060.48;1.27973;1996.6;100;281.25;1.26366;1870.14;1.10909;881.567
2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;1;0.1;gwn300Hz10s0.3.dat;300;4.99998;10;311.418;0.983937;246.282;182.803;115.02;70.3125;4543.84;62.5;0.81405;180;292.969;1.36124;9344.45;1.18762;5562.72;100;281.25;1.27848;7705.18;1.08503;2771.99 2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;1;0.1;gwn300Hz10s0.3.dat;300;4.99998;10;311.418;0.983937;246.282;182.803;115.02;70.3125;4543.84;62.5;0.81405;180;292.969;1.36124;9344.45;1.18762;5562.72;100;281.25;1.27848;7705.18;1.08503;2771.99
2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;2;0.05;gwn300Hz10s0.3.dat;300;4.99998;10;327.939;0.963415;242.706;176.148;102.179;62.5;9465.03;74.2188;0.796408;180;292.969;1.34773;32187.9;1.07587;8797.52;100;281.25;1.22086;22779.9;0.980054;-2562.82 2020-10-20-ad-invivo-1;Apteronotus leptorhynchus;18.5;13;P-unit;Nerve;good;750;11028;33.4404;329.774;0.718599;0.875273;1;-0.327633;0.0293275;0.487984;0.692936;0.00333333;2;0.05;gwn300Hz10s0.3.dat;300;4.99998;10;327.939;0.963415;242.706;176.148;102.179;62.5;9465.03;74.2188;0.796408;180;292.969;1.34773;32187.9;1.07587;8797.52;100;281.25;1.22086;22779.9;0.980054;-2562.82
@ -340,6 +348,9 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;7;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;211.433;0.748173;27.567;18.4996;9.48383;74.2188;5665.97;74.2188;0.0186418;1280;183.594;1.26816;135528;1.11496;66085.6;100;171.875;1.55169;755746;1.1887;337437 2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;7;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;211.433;0.748173;27.567;18.4996;9.48383;74.2188;5665.97;74.2188;0.0186418;1280;183.594;1.26816;135528;1.11496;66085.6;100;171.875;1.55169;755746;1.1887;337437
2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;9;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;205.487;0.713511;26.3069;17.1856;8.79308;93.75;5505.25;74.2188;0.0179161;1280;175.781;1.53858;265363;1.34903;196134;100;167.969;1.44784;695760;1.21226;393853 2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;9;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;205.487;0.713511;26.3069;17.1856;8.79308;93.75;5505.25;74.2188;0.0179161;1280;175.781;1.53858;265363;1.34903;196134;100;167.969;1.44784;695760;1.21226;393853
2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;10;0.1;gwn300Hz10s0.3.dat;300;2.99998;128;184.544;0.738135;114.253;78.2308;36.396;70.3125;2759.54;74.2188;0.429559;1280;183.594;1.83928;16302.4;2.72269;22604.8;100;160.156;1.36423;10306.1;1.48905;12678 2021-11-08-ab-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Nerve;fair;569;13601;67.1191;202.647;0.766746;0.871713;1;-0.538159;0.0267509;0.524412;0.524412;0.0026362;10;0.1;gwn300Hz10s0.3.dat;300;2.99998;128;184.544;0.738135;114.253;78.2308;36.396;70.3125;2759.54;74.2188;0.429559;1280;183.594;1.83928;16302.4;2.72269;22604.8;100;160.156;1.36423;10306.1;1.48905;12678
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0205372;0.589366;0.589366;0.00291262;4;0.1;gwn300Hz10s0.3.dat;300;2.99998;128;208.035;0.849265;106.233;84.9637;49.4727;70.3125;2713.98;15.625;0.613851;1280;152.344;1.30333;3026.06;1.72795;5477.53;100;152.344;1.2192;3425.18;0.997097;-55.466
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0205372;0.589366;0.589366;0.00291262;7;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;199.636;0.795489;23.7668;17.2737;9.68446;82.0312;5367.22;7.8125;0.0200051;1280;152.344;1.29197;122565;1.16064;75066.2;100;179.688;1.28896;412697;1.07346;125973
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0205372;0.589366;0.589366;0.00291262;9;0.1;gwn300Hz10s0.3.dat;300;2.99998;128;208.632;0.852708;108.014;86.1085;49.9415;70.3125;2692.54;15.625;0.590848;1280;152.344;1.29325;3134.46;1.71048;5741.72;100;160.156;1.34654;5846.13;1.16633;3239.57
2022-01-05-aa-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;558;1272;12.4685;102.103;0.197405;0.782115;1;-0.285104;0.0889127;0.000786782;0;0;0;0.2;InputArr_400hz_30s.dat;400;30;4;105.361;0.777905;102.089;82.7035;63.4736;19.5312;1239.37;19.5312;0.6499;464;54.6875;1.83966;2119.66;2.20867;2541.42;100;54.6875;1.54132;1784.5;1.23771;975.842 2022-01-05-aa-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;558;1272;12.4685;102.103;0.197405;0.782115;1;-0.285104;0.0889127;0.000786782;0;0;0;0.2;InputArr_400hz_30s.dat;400;30;4;105.361;0.777905;102.089;82.7035;63.4736;19.5312;1239.37;19.5312;0.6499;464;54.6875;1.83966;2119.66;2.20867;2541.42;100;54.6875;1.54132;1784.5;1.23771;975.842
2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0601174;0.383655;0.440757;0.00457038;0;0.2;InputArr_400hz_30s.dat;400;30;5;120.517;0.916766;135.742;105.305;65.2115;46.875;1465.99;19.5312;0.636699;580;70.3125;1.41944;2488.12;4.01395;6322.44;100;70.3125;1.47935;3549.8;2.35257;6298.54 2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0601174;0.383655;0.440757;0.00457038;0;0.2;InputArr_400hz_30s.dat;400;30;5;120.517;0.916766;135.742;105.305;65.2115;46.875;1465.99;19.5312;0.636699;580;70.3125;1.41944;2488.12;4.01395;6322.44;100;70.3125;1.47935;3549.8;2.35257;6298.54
2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0601174;0.383655;0.440757;0.00457038;1;0.2;InputArr_400hz_30s.dat;400;30;5;108.342;1.08766;126.749;104.683;69.9059;35.1562;1617.31;19.5312;0.55982;580;78.125;1.2457;1248.01;3.39563;4463.96;100;74.2188;1.41027;2714.48;2.28488;5247.11 2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0601174;0.383655;0.440757;0.00457038;1;0.2;InputArr_400hz_30s.dat;400;30;5;108.342;1.08766;126.749;104.683;69.9059;35.1562;1617.31;19.5312;0.55982;580;78.125;1.2457;1248.01;3.39563;4463.96;100;74.2188;1.41027;2714.48;2.28488;5247.11

1 cell species size/cm weight/g celltype structure quality eodf/Hz nspikesbase durationbase/s ratebase/Hz cvbase vsbase vsmode serialcorr1 serialcorrnull burstfrac burstfracthresh burstthresh/s stimindex contrast stimulus fcutoff/Hz duration/s trials ratestim/Hz cvstim respmod1/Hz respmod2/Hz respmod4/Hz transferfpeak/Hz transferpeak/Hz coherefpeak/Hz coherepeak nsegs sifpeak/Hz sinorm sirel/Hz simediannorm simedianrel/Hz nsegs_nmax sifpeak_nmax/Hz sinorm_nmax sirel_nmax simediannorm_nmax simedianrel_nmax
54 2011-05-09-ac Apteronotus leptorhynchus 14 5.1 P-unit Nerve good 651 8717 43.5205 200.352 0.356288 0.898526 1 -0.292144 0.0330479 0.000573658 0 0 1 0.05 gwn300Hz10s0.3.dat 300 10 20 196.908 0.388944 56.1839 31.7092 15.2219 250 2243.03 62.5 0.189958 760 246.094 1.40617 18623.2 1.68493 26208.7 100 191.406 1.34796 26113.4 1.14722 12981.8
55 2011-05-09-ad Apteronotus leptorhynchus 14 5.1 P-unit Nerve fair 652 284 1.895 150.921 0.405586 0.937424 1 -0.452188 0.185827 0 0 0 0 0.025 gwn300Hz10s0.3.dat 300 10 18 136.667 0.543337 94.4466 65.4348 35.514 62.5 7754.78 62.5 0.568056 684 171.875 1.2615 57214.4 1.61038 104614 100 167.969 1.23137 65339.3 1.11747 36554.4
56 2011-05-09-ad Apteronotus leptorhynchus 14 5.1 P-unit Nerve fair 652 284 1.895 150.921 0.405586 0.937424 1 -0.452188 0.185827 0 0 0 1 0.05 gwn300Hz10s0.3.dat 300 10 22 143.989 0.715416 133.971 98.8531 59.8686 42.9688 5104.07 35.1562 0.667093 836 101.562 1.0411 3507.66 1.77169 38702.4 100 171.875 1.28011 20880.7 1.24452 18749.2
57 2011-06-09-aa Apteronotus leptorhynchus 14 29.1 P-unit ELL fair 895 13474 48.6916 276.734 0.753887 0.729525 1 -0.625913 0.0270078 0.443405 0.562236 0.0027933 0 0.025 gwn300Hz10s0.3.dat 300 10 20 264.867 0.793139 84.9788 48.5737 18.7644 109.375 7560.26 35.1562 0.195563 760 246.094 1.34811 38691.5 1.12185 16275.2 100 250 1.18622 47798.7 0.948119 -16661.1
58 2011-06-09-aa Apteronotus leptorhynchus 14 29.1 P-unit ELL fair 895 13474 48.6916 276.734 0.753887 0.729525 1 -0.625913 0.0270078 0.443405 0.562236 0.0027933 1 0.05 gwn300Hz10s0.3.dat 300 10 17 256.17 0.822416 123.468 75.0721 32.4169 109.375 5830.27 35.1562 0.400585 646 273.438 1.14148 5458.53 1.04858 2040.57 100 273.438 1.37656 25485.3 1.08586 7366.38
59 2011-09-21-ag Apteronotus leptorhynchus 12 3.7 P-unit Nerve good 820 7871 39.6317 198.616 0.656076 0.804212 1 -0.523876 0.0346371 0.280305 0.405972 0.00304878 0 0.025 gwn300Hz10s0.3.dat 300 10 32 205.899 0.809146 148.75 103.912 55.8889 85.9375 11126.3 27.3438 0.625053 1216 160.156 1.22908 61088.9 2.27593 183750 100 167.969 1.16806 61789.7 1.19911 71311.3
60 2011-09-21-ag Apteronotus leptorhynchus 12 3.7 P-unit Nerve good 820 7871 39.6317 198.616 0.656076 0.804212 1 -0.523876 0.0346371 0.280305 0.405972 0.00304878 1 0.05 gwn300Hz10s0.3.dat 300 10 21 218.936 0.979172 208.051 152.699 90.9066 42.9688 7354.12 27.3438 0.765185 798 171.875 1.18795 18584.9 2.22361 64640.5 100 171.875 1.20545 22145.5 1.47301 41724.8
61 2011-09-21-ag Apteronotus leptorhynchus 12 3.7 P-unit Nerve good 820 7871 39.6317 198.616 0.656076 0.804212 1 -0.523876 0.0346371 0.280305 0.405972 0.00304878 2 0.1 gwn300Hz10s0.3.dat 300 10 21 232.293 1.15178 241.867 185.66 120.766 42.9688 4332.07 27.3438 0.799893 798 152.344 1.08885 2472.21 2.03615 15417.9 100 152.344 1.20105 6339.73 1.59797 14172.3
165 2014-01-16-ak Apteronotus leptorhynchus 16.5 11.4 P-unit Nerve good 803 4833 32.8965 146.026 0.388509 0.831993 1 -0.597945 0.0464992 0.000206954 0 0 6 0.025 gwn300Hz50s0.3.dat 300 2 109 150.127 0.501016 84.5377 59.426 31.2727 85.9375 7533 7.8125 0.630868 763 128.906 1.43404 192674 3.48745 454049 100 148.438 1.36388 174396 1.82993 296458
166 2014-01-16-ak Apteronotus leptorhynchus 16.5 11.4 P-unit Nerve good 803 4833 32.8965 146.026 0.388509 0.831993 1 -0.597945 0.0464992 0.000206954 0 0 7 0.025 gwn300Hz50s0.3.dat 300 10 19 152.846 0.537061 81.0585 56.2449 30.4843 66.4062 6240.78 31.25 0.423078 722 97.6562 1.15027 27937.3 1.76619 92772.5 100 97.6562 1.08942 24205.5 1.08805 23866
167 2014-01-16-ak Apteronotus leptorhynchus 16.5 11.4 P-unit Nerve good 803 4833 32.8965 146.026 0.388509 0.831993 1 -0.597945 0.0464992 0.000206954 0 0 9 0.1 gwn300Hz50s0.3.dat 300 10 21 171.098 0.883342 161.665 124.731 81.6404 42.9688 3044.61 31.25 0.733596 798 97.6562 1.25881 5562.16 2.68272 16969.3 100 97.6562 1.4731 10809.1 1.81886 15152.2
168 2017-07-18-ai-invivo-1 Apteronotus leptorhynchus 20 22.2 P-unit Brain fair 818 2861 36.5828 78.2019 0.219804 0.773615 1 -0.41238 0.0581656 0 0 0 1 0.05 gwn300Hz50s0.3.dat 300 5 11 78.7121 0.229273 40.1621 23.3562 10.258 109.375 1115.66 7.8125 0.106593 198 78.125 1.95326 32481.4 1.88599 31266 100 74.2188 2.18499 47720.4 1.8792 41167.4
169 2017-07-18-ai-invivo-1 Apteronotus leptorhynchus 20 22.2 P-unit Brain fair 818 2861 36.5828 78.2019 0.219804 0.773615 1 -0.41238 0.0581656 0 0 0 2 0.05 gwn300Hz50s0.3.dat 300 5 11 77.7462 0.23126 41.0699 24.2334 10.4088 74.2188 865.595 19.5312 0.110018 198 74.2188 2.49523 44799 2.20323 40828.2 100 74.2188 2.74471 79599.1 2.56253 76355.6
170 2017-07-18-aj-invivo-1 Apteronotus leptorhynchus 20 22.2 P-unit Brain good 819 7759 32.8963 235.86 0.511048 0.878734 1 -0.543585 0.0357745 0.188451 0.35834 0.0030525 0 0.05 gwn300Hz50s0.3.dat 300 5 11 236.383 0.613059 117.494 74.0283 38.8355 105.469 5049.65 74.2188 0.539207 198 265.625 1.74037 44236.8 1.59641 38848.9 100 265.625 1.63188 45139.2 1.35823 30746.6
171 2017-07-18-aj-invivo-1 Apteronotus leptorhynchus 20 22.2 P-unit Brain good 819 7759 32.8963 235.86 0.511048 0.878734 1 -0.543585 0.0357745 0.188451 0.35834 0.0030525 2 0.05 gwn300Hz50s0.3.dat 300 5 11 195.417 0.510959 98.5897 61.8963 32.8746 101.562 3616.45 74.2188 0.527782 198 234.375 1.47955 30665.7 1.48993 31111.3 100 226.562 1.39227 31925.5 1.39603 32144.8
172 2017-08-11-ac-invivo-1 Apteronotus leptorhynchus 21 28 P-unit Brain good 825.008 3520 23.1886 151.846 0.595287 0.796437 1 -0.761438 0.0537663 0.120205 0.361466 0.00303027 1 0.05 gwn300Hz50s0.3.dat 300 30 9 161.853 0.771081 144.085 100.247 51.8778 62.5 5251.75 35.1562 0.624437 1044 121.094 1.30406 17424.8 2.96927 49563.5 100 113.281 1.21317 17045.8 1.5764 35470.6
173 2018-01-17-al Apteronotus leptorhynchus 17.7 11.2 P-unit Nerve good 623 216 2.192 99.1812 0.438175 0.849832 1 -0.772001 0.207688 0.00465116 0 0 0 0.1 gwn300Hz10s0.3.dat 300 10 9 108.379 0.641427 106.892 79.2617 48.9961 42.9688 2009.31 27.3438 0.686444 342 82.0312 1.4171 6968.37 1.94005 11471.6 100 62.5 1.40851 7675.6 1.51149 8955.72
174 2018-01-17-al Apteronotus leptorhynchus 17.7 11.2 P-unit Nerve good 623 216 2.192 99.1812 0.438175 0.849832 1 -0.772001 0.207688 0.00465116 0 0 1 0.2 gwn300Hz10s0.3.dat 300 10 13 122.017 0.834812 142.706 107.964 70.3411 42.9688 1338.7 27.3438 0.743495 494 54.6875 1.30733 1990.68 2.4074 4950.52 100 54.6875 1.37534 2115.26 1.57162 2819.09
175 2018-05-08-ac-invivo-1 Apteronotus leptorhynchus 15 11.6 P-unit Nerve good 655.007 2821 28.3956 99.3248 0.542125 0.807556 1 -0.455803 0.0581188 0.173759 0.173759 0.00229005 2 0.1 gwn300Hz50s0.3.dat 300 30 1 97.047 0.500584 144.277 87.9959 44.773 74.2188 1686.54 35.1562 0.575777 116 93.75 1.33043 4244.55 1.36008 4524.56 100 113.281 1.32736 4381.27 1.31167 4221.19
280 2018-09-11-ac Apteronotus leptorhynchus 15 6.3 P-unit Nerve fair 853 9672 20.6031 469.444 0.362399 0.910264 1 -0.195644 0.0317853 0.339675 0 0 0 0.1 gwn300Hz10s0.3.dat 300 10 5 429.939 0.711532 221.853 140.947 77.7643 160.156 3840.58 62.5 0.724463 190 472.656 1.35906 7212.35 1.03028 802.239 100 507.812 1.22669 7248.95 1.30398 9144.24
281 2018-09-11-ac Apteronotus leptorhynchus 15 6.3 P-unit Nerve fair 853 9672 20.6031 469.444 0.362399 0.910264 1 -0.195644 0.0317853 0.339675 0 0 1 0.05 gwn300Hz10s0.3.dat 300 10 5 437.592 0.598379 182.422 108.442 55.2673 187.5 6781.8 39.0625 0.676537 190 496.094 1.30047 29131.6 1.25644 25733.9 100 496.094 1.28865 34556.1 1.30514 36068.5
282 2018-11-14-am-invivo-1 Apteronotus leptorhynchus 17 12 P-unit Nerve good 656 6872 43.8272 156.885 1.23574 0.826627 1 -0.347898 0.0383464 0.668025 0.706156 0.00381098 0 0.1 gwn300Hz50s0.3.dat 300 2 17 173.399 1.37363 176.117 153.047 108.257 42.9688 4744.85 7.8125 0.647836 119 109.375 1.6796 17158.7 3.34867 29743.2 100 109.375 1.71234 18721.7 3.29195 31332.9
283 2019-06-28-ae Apteronotus leptorhynchus 19.5 13.3 P-unit Brain fair 772 10203 21.3806 477.299 0.533461 0.92693 1 -0.410122 0.0309234 0.628308 0.628308 0.00194301 0 0.1 gwn300Hz10s0.3.dat 300 9.99995 4 453.548 0.821653 253.968 180.163 107.09 62.5 4576.51 62.5 0.827763 152 449.219 2.58589 34339.8 2.18027 30311.3 100 449.219 3.11362 49951 2.72419 46572.6
284 2020-10-20-ad-invivo-1 Apteronotus leptorhynchus 18.5 13 P-unit Nerve good 750 11028 33.4404 329.774 0.718599 0.875273 1 -0.327633 0.0293275 0.487984 0.692936 0.00333333 0 0.2 gwn300Hz10s0.3.dat 300 4.99998 10 225.564 0.8844 200.877 144.965 94.3593 35.1562 1625.41 62.5 0.680734 180 320.312 1.5039 3060.48 1.27973 1996.6 100 281.25 1.26366 1870.14 1.10909 881.567
285 2020-10-20-ad-invivo-1 Apteronotus leptorhynchus 18.5 13 P-unit Nerve good 750 11028 33.4404 329.774 0.718599 0.875273 1 -0.327633 0.0293275 0.487984 0.692936 0.00333333 1 0.1 gwn300Hz10s0.3.dat 300 4.99998 10 311.418 0.983937 246.282 182.803 115.02 70.3125 4543.84 62.5 0.81405 180 292.969 1.36124 9344.45 1.18762 5562.72 100 281.25 1.27848 7705.18 1.08503 2771.99
286 2020-10-20-ad-invivo-1 Apteronotus leptorhynchus 18.5 13 P-unit Nerve good 750 11028 33.4404 329.774 0.718599 0.875273 1 -0.327633 0.0293275 0.487984 0.692936 0.00333333 2 0.05 gwn300Hz10s0.3.dat 300 4.99998 10 327.939 0.963415 242.706 176.148 102.179 62.5 9465.03 74.2188 0.796408 180 292.969 1.34773 32187.9 1.07587 8797.52 100 281.25 1.22086 22779.9 0.980054 -2562.82
348 2021-11-08-ab-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Nerve fair 569 13601 67.1191 202.647 0.766746 0.871713 1 -0.538159 0.0267509 0.524412 0.524412 0.0026362 7 0.01 gwn300Hz10s0.3.dat 300 2.99998 128 211.433 0.748173 27.567 18.4996 9.48383 74.2188 5665.97 74.2188 0.0186418 1280 183.594 1.26816 135528 1.11496 66085.6 100 171.875 1.55169 755746 1.1887 337437
349 2021-11-08-ab-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Nerve fair 569 13601 67.1191 202.647 0.766746 0.871713 1 -0.538159 0.0267509 0.524412 0.524412 0.0026362 9 0.01 gwn300Hz10s0.3.dat 300 2.99998 128 205.487 0.713511 26.3069 17.1856 8.79308 93.75 5505.25 74.2188 0.0179161 1280 175.781 1.53858 265363 1.34903 196134 100 167.969 1.44784 695760 1.21226 393853
350 2021-11-08-ab-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Nerve fair 569 13601 67.1191 202.647 0.766746 0.871713 1 -0.538159 0.0267509 0.524412 0.524412 0.0026362 10 0.1 gwn300Hz10s0.3.dat 300 2.99998 128 184.544 0.738135 114.253 78.2308 36.396 70.3125 2759.54 74.2188 0.429559 1280 183.594 1.83928 16302.4 2.72269 22604.8 100 160.156 1.36423 10306.1 1.48905 12678
351 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0205372 0.589366 0.589366 0.00291262 4 0.1 gwn300Hz10s0.3.dat 300 2.99998 128 208.035 0.849265 106.233 84.9637 49.4727 70.3125 2713.98 15.625 0.613851 1280 152.344 1.30333 3026.06 1.72795 5477.53 100 152.344 1.2192 3425.18 0.997097 -55.466
352 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0205372 0.589366 0.589366 0.00291262 7 0.01 gwn300Hz10s0.3.dat 300 2.99998 128 199.636 0.795489 23.7668 17.2737 9.68446 82.0312 5367.22 7.8125 0.0200051 1280 152.344 1.29197 122565 1.16064 75066.2 100 179.688 1.28896 412697 1.07346 125973
353 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0205372 0.589366 0.589366 0.00291262 9 0.1 gwn300Hz10s0.3.dat 300 2.99998 128 208.632 0.852708 108.014 86.1085 49.9415 70.3125 2692.54 15.625 0.590848 1280 152.344 1.29325 3134.46 1.71048 5741.72 100 160.156 1.34654 5846.13 1.16633 3239.57
354 2022-01-05-aa-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 558 1272 12.4685 102.103 0.197405 0.782115 1 -0.285104 0.0889127 0.000786782 0 0 0 0.2 InputArr_400hz_30s.dat 400 30 4 105.361 0.777905 102.089 82.7035 63.4736 19.5312 1239.37 19.5312 0.6499 464 54.6875 1.83966 2119.66 2.20867 2541.42 100 54.6875 1.54132 1784.5 1.23771 975.842
355 2022-01-05-ab-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 547 2803 24.508 114.486 0.727618 0.841286 1 -0.792328 0.0601174 0.383655 0.440757 0.00457038 0 0.2 InputArr_400hz_30s.dat 400 30 5 120.517 0.916766 135.742 105.305 65.2115 46.875 1465.99 19.5312 0.636699 580 70.3125 1.41944 2488.12 4.01395 6322.44 100 70.3125 1.47935 3549.8 2.35257 6298.54
356 2022-01-05-ab-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 547 2803 24.508 114.486 0.727618 0.841286 1 -0.792328 0.0601174 0.383655 0.440757 0.00457038 1 0.2 InputArr_400hz_30s.dat 400 30 5 108.342 1.08766 126.749 104.683 69.9059 35.1562 1617.31 19.5312 0.55982 580 78.125 1.2457 1248.01 3.39563 4463.96 100 74.2188 1.41027 2714.48 2.28488 5247.11

View File

@ -92,7 +92,7 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
cb.outline.set_linewidth(0) cb.outline.set_linewidth(0)
# pdf x-axis: # pdf x-axis:
kde = gaussian_kde(xdata, 0.02*xmax/np.std(xdata, ddof=1)) kde = gaussian_kde(xdata, 0.02*xmax/np.std(xdata, ddof=1))
xx = np.linspace(0, ax.get_xlim()[1], 400) xx = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 400)
pdf = kde(xx) pdf = kde(xx)
xax = ax.inset_axes([0, 1.05, 1, 0.2]) xax = ax.inset_axes([0, 1.05, 1, 0.2])
xax.show_spines('') xax.show_spines('')
@ -102,7 +102,7 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
xax.set_ylim(0, xpdfmax) xax.set_ylim(0, xpdfmax)
# pdf y-axis: # pdf y-axis:
kde = gaussian_kde(ydata, 0.02*ymax/np.std(ydata, ddof=1)) kde = gaussian_kde(ydata, 0.02*ymax/np.std(ydata, ddof=1))
xx = np.linspace(0, ax.get_ylim()[1], 400) xx = np.linspace(ax.get_ylim()[0], ax.get_ylim()[1], 400)
pdf = kde(xx) pdf = kde(xx)
yax = ax.inset_axes([1.05, 0, 0.2, 1]) yax = ax.inset_axes([1.05, 0, 0.2, 1])
yax.show_spines('') yax.show_spines('')
@ -124,10 +124,106 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
if 'cvbase' in xcol: if 'cvbase' in xcol:
ax.text(1, 0.64, f'$n={data.rows()}$', ha='right', ax.text(1, 0.64, f'$n={data.rows()}$', ha='right',
transform=ax.transAxes, fontsize='small') transform=ax.transAxes, fontsize='small')
print(f' correlation {xcol:<8s} - {ycol}: r={r:5.2f}, p={p:.2g}') print(f' correlation {xcol:<8s} - {ycol}: r={r:5.2f}, p={p:.2e}')
return cax return cax
def plot_corr_contrast(ax, data, xcol, ycol, xpdfmax, color,
si_thresh, example=[], split_example=[], examples=[]):
xdata = data[xcol]
ydata = data[ycol]
ax.axhline(si_thresh, color='k', ls=':', lw=0.5)
xmax = ax.get_xlim()[1]
ymax = ax.get_ylim()[1]
mask = (xdata < xmax) & (ydata < ymax)
if 'stimindex' in data:
for cell, run in example + split_example + examples:
mask &= ~((data['cell'] == cell) & (data['stimindex'] == run))
else: # simulations
for cell, alpha in example + split_example + examples:
mask &= ~((data['cell'] == cell) & (data['contrast'] == alpha))
contrasts = [[r'1\,\%', 0, 0.015, s.psC1],
[r'3\,\%', 0.015, 0.035, s.psC3],
[r'5\,\%', 0.035, 0.07, s.psC5],
[r'10\,\%', 0.07, 0.15, s.psC10],
[r'20\,\%', 0.15, 0.25, s.psC20]]
for l, c0, c1, sc in contrasts:
cmask = (data['contrast'] > c0) & (data['contrast'] < c1)
label = f'{l} ({np.sum(cmask)})'
cmask = cmask & mask
#if np.sum(cmask) > 0:
# ax.plot(xdata[cmask], ydata[cmask], label=l, clip_on=False,
# alpha=0.6, zorder=np.random.randint(0, 50), **sc)
for i in np.where(cmask)[0]:
ax.plot(xdata[i], ydata[i], label=label, clip_on=False,
alpha=0.7, zorder=np.random.randint(0, 50), **sc)
label = None
elw = 0.3
for l, c0, c1, sc in contrasts:
cmask = (data['contrast'] >= c0) & (data['contrast'] < c1)
if 'stimindex' in data:
for cell, run in example:
mask = cmask & (data['cell'] == cell) & (data['stimindex'] == run)
ax.plot(xdata[mask], ydata[mask], zorder=50, ms=4, marker='^',
color=sc['color'], mew=elw, mec='black', clip_on=False)
for cell, run in split_example:
mask = cmask & (data['cell'] == cell) & (data['stimindex'] == run)
ax.plot(xdata[mask], ydata[mask], zorder=51, ms=4, marker='s',
color=sc['color'], mew=elw, mec='black', clip_on=False)
for cell, run in examples:
mask = cmask & (data['cell'] == cell) & (data['stimindex'] == run)
ax.plot(xdata[mask], ydata[mask], zorder=52, ms=4, marker='o',
color=sc['color'], mew=elw, mec='black', clip_on=False)
else: # simulations
for cell, alpha in example:
mask = cmask & (data['cell'] == cell) & (data['contrast'] == alpha)
ax.plot(xdata[mask], ydata[mask], zorder=50, ms=4, marker='^',
color=sc['color'], mew=elw, mec='black', clip_on=False)
for cell, alpha in split_example:
mask = cmask & (data['cell'] == cell) & (data['contrast'] == alpha)
ax.plot(xdata[mask], ydata[mask], zorder=51, ms=4, marker='s',
color=sc['color'], mew=elw, mec='black', clip_on=False)
for cell, alpha in examples:
mask = cmask & (data['cell'] == cell) & (data['contrast'] == alpha)
ax.plot(xdata[mask], ydata[mask], zorder=52, ms=4, marker='o',
color=sc['color'], mew=elw, mec='black', clip_on=False)
# pdf x-axis:
kde = gaussian_kde(xdata, 0.02*xmax/np.std(xdata, ddof=1))
xx = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 400)
pdf = kde(xx)
xax = ax.inset_axes([0, 1.05, 1, 0.2])
xax.show_spines('')
xax.fill_between(xx, pdf, facecolor=color, edgecolor='none')
#xax.plot(xx, np.zeros(len(xx)), clip_on=False, color=color, lw=0.5)
xax.set_ylim(bottom=0)
xax.set_ylim(0, xpdfmax)
# pdf y-axis:
kde = gaussian_kde(ydata, 0.02*ymax/np.std(ydata, ddof=1))
xx = np.linspace(ax.get_ylim()[0], ax.get_ylim()[1], 400)
pdf = kde(xx)
yax = ax.inset_axes([1.05, 0, 0.17, 1])
yax.show_spines('')
yax.fill_betweenx(xx, pdf, facecolor=color, edgecolor='none')
#yax.plot(np.zeros(len(xx)), xx, clip_on=False, color=color, lw=0.5)
yax.set_xlim(left=0)
# threshold:
if 'cvbase' in xcol:
ax.text(xmax, 0.4*ymax, f'{100*np.sum(ydata > si_thresh)/len(data):.0f}\\%',
ha='right', va='bottom', fontsize='small')
ax.text(xmax, 0.3, f'{100*np.sum(ydata < si_thresh)/len(data):.0f}\\%',
ha='right', va='center', fontsize='small')
# statistics:
r, p = pearsonr(xdata, ydata)
ax.text(1, 0.9, f'$R={r:.2f}$', ha='right',
transform=ax.transAxes, fontsize='small')
ax.text(1, 0.77, f'{significance_str(p)}', ha='right',
transform=ax.transAxes, fontsize='small')
if 'cvbase' in xcol:
ax.text(1, 0.64, f'$n={data.rows()}$', ha='right',
transform=ax.transAxes, fontsize='small')
print(f' correlation {xcol:<8s} - {ycol}: r={r:5.2f}, p={p:.2e}')
def si_stats(title, data, sicol, si_thresh, nsegscol): def si_stats(title, data, sicol, si_thresh, nsegscol):
print(title) print(title)
sidata = data[sicol] sidata = data[sicol]
@ -176,7 +272,7 @@ def si_stats(title, data, sicol, si_thresh, nsegscol):
if xcol not in data or ycol not in data: if xcol not in data or ycol not in data:
continue continue
r, p = pearsonr(data[xcol], data[ycol]) r, p = pearsonr(data[xcol], data[ycol])
print(f' correlation {xcol:<11s} - {ycol:<11s}: r={r:5.2f}, p={p:.5f}') print(f' correlation {xcol:<11s} - {ycol:<11s}: r={r:5.2f}, p={p:.2e}')
def plot_cvbase_si_punit(ax, data, ycol, si_thresh, color): def plot_cvbase_si_punit(ax, data, ycol, si_thresh, color):
@ -187,9 +283,11 @@ def plot_cvbase_si_punit(ax, data, ycol, si_thresh, color):
ax.set_ylim(0, 6.5) ax.set_ylim(0, 6.5)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples examples = punit_examples if 'stimindex' in data else model_examples
cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 250, 3, #cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 250, 3,
'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('Response mod.', 'Hz') #cax.set_ylabel('Response mod.', 'Hz')
plot_corr_contrast(ax, data, 'cvbase', ycol, 3, color,
si_thresh, *examples)
def plot_cvstim_si_punit(ax, data, ycol, si_thresh, color): def plot_cvstim_si_punit(ax, data, ycol, si_thresh, color):
@ -203,15 +301,17 @@ def plot_cvstim_si_punit(ax, data, ycol, si_thresh, color):
#cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 250, 2, #cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 250, 2,
# 'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('Response mod.', 'Hz') #cax.set_ylabel('Response mod.', 'Hz')
cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 1.5, 2, #cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 1.5, 2,
'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
#cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 50, 450, 2, #cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 50, 450, 2,
# 'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('$r$', 'Hz') #cax.set_ylabel('$r$', 'Hz')
#cax = plot_corr(ax, data, 'cvstim', ycol, 'serialcorr1', -0.6, 0, 2, #cax = plot_corr(ax, data, 'cvstim', ycol, 'serialcorr1', -0.6, 0, 2,
# 'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('$\\rho_1$') #cax.set_ylabel('$\\rho_1$')
plot_corr_contrast(ax, data, 'cvstim', ycol, 2, color,
si_thresh, *examples)
def plot_rmod_si_punit(ax, data, ycol, si_thresh, color): def plot_rmod_si_punit(ax, data, ycol, si_thresh, color):
@ -222,9 +322,11 @@ def plot_rmod_si_punit(ax, data, ycol, si_thresh, color):
ax.set_ylim(0, 6.5) ax.set_ylim(0, 6.5)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples examples = punit_examples if 'stimindex' in data else model_examples
cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 1.5, 0.016, #cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 1.5, 0.016,
'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
plot_corr_contrast(ax, data, 'respmod2', ycol, 0.016, color,
si_thresh, *examples)
def plot_rate_si_punit(ax, data, ycol, si_thresh, color): def plot_rate_si_punit(ax, data, ycol, si_thresh, color):
@ -235,9 +337,13 @@ def plot_rate_si_punit(ax, data, ycol, si_thresh, color):
ax.set_ylim(0, 6.5) ax.set_ylim(0, 6.5)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples examples = punit_examples if 'stimindex' in data else model_examples
cax = plot_corr(ax, data, 'ratebase', ycol, 'cvbase', 0, 1.5, 0.016, #cax = plot_corr(ax, data, 'ratebase', ycol, 'cvbase', 0, 1.5, 0.016,
'coolwarm', color, si_thresh, *examples) # 'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
plot_corr_contrast(ax, data, 'ratebase', ycol, 0.016, color,
si_thresh, *examples)
ax.legend(title='contrast', loc='upper right', bbox_to_anchor=(1.9, 1),
markerfirst=False, handletextpad=0.5)
def plot_cvbase_si_ampul(ax, data, ycol, si_thresh, color): def plot_cvbase_si_ampul(ax, data, ycol, si_thresh, color):
@ -247,9 +353,11 @@ def plot_cvbase_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_ylabel('SI($r$)') ax.set_ylabel('SI($r$)')
ax.set_ylim(0, 10) ax.set_ylim(0, 10)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 80, 20, #cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 80, 20,
'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('Response mod.', 'Hz') #cax.set_ylabel('Response mod.', 'Hz')
plot_corr_contrast(ax, data, 'cvbase', ycol, 20, color,
si_thresh, *ampul_examples)
def plot_cvstim_si_ampul(ax, data, ycol, si_thresh, color): def plot_cvstim_si_ampul(ax, data, ycol, si_thresh, color):
@ -262,14 +370,16 @@ def plot_cvstim_si_ampul(ax, data, ycol, si_thresh, color):
#cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 80, 6, #cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 80, 6,
# 'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
#cax.set_ylabel('Response mod.', 'Hz') #cax.set_ylabel('Response mod.', 'Hz')
cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 0.2, 6, #cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 0.2, 6,
'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
cax.set_yticks_delta(0.1) #cax.set_yticks_delta(0.1)
#cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 90, 180, 6, #cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 90, 180, 6,
# 'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
#cax.set_ylabel('$r$', 'Hz') #cax.set_ylabel('$r$', 'Hz')
#cax.set_yticks_delta(30) #cax.set_yticks_delta(30)
plot_corr_contrast(ax, data, 'cvstim', ycol, 6, color,
si_thresh, *ampul_examples)
def plot_rmod_si_ampul(ax, data, ycol, si_thresh, color): def plot_rmod_si_ampul(ax, data, ycol, si_thresh, color):
@ -279,10 +389,12 @@ def plot_rmod_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_ylabel('SI($r$)') ax.set_ylabel('SI($r$)')
ax.set_ylim(0, 10) ax.set_ylim(0, 10)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 0.2, 0.06, #cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 0.2, 0.06,
'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
cax.set_yticks_delta(0.1) #cax.set_yticks_delta(0.1)
plot_corr_contrast(ax, data, 'respmod2', ycol, 0.06, color,
si_thresh, *ampul_examples)
def plot_rate_si_ampul(ax, data, ycol, si_thresh, color): def plot_rate_si_ampul(ax, data, ycol, si_thresh, color):
@ -292,10 +404,14 @@ def plot_rate_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_ylabel('SI($r$)') ax.set_ylabel('SI($r$)')
ax.set_ylim(0, 10) ax.set_ylim(0, 10)
ax.set_yticks_delta(2) ax.set_yticks_delta(2)
cax = plot_corr(ax, data, 'ratebase', ycol, 'cvbase', 0, 0.2, 0.06, #cax = plot_corr(ax, data, 'ratebase', ycol, 'cvbase', 0, 0.2, 0.06,
'coolwarm', color, si_thresh, *ampul_examples) # 'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('CV$_{\\rm base}$') #cax.set_ylabel('CV$_{\\rm base}$')
cax.set_yticks_delta(0.1) #cax.set_yticks_delta(0.1)
plot_corr_contrast(ax, data, 'ratebase', ycol, 0.06, color,
si_thresh, *ampul_examples)
ax.legend(title='contrast', loc='upper right', bbox_to_anchor=(1.95, 1),
markerfirst=False, handletextpad=0.5)
if __name__ == '__main__': if __name__ == '__main__':
@ -327,6 +443,14 @@ if __name__ == '__main__':
print(f' CV model: min={np.min(cvmodel):4.2f} max={np.max(cvmodel):4.2f} median={np.median(cvmodel):4.2f}') print(f' CV model: min={np.min(cvmodel):4.2f} max={np.max(cvmodel):4.2f} median={np.median(cvmodel):4.2f}')
print(f' CV data: min={np.min(cvdata):4.2f} max={np.max(cvdata):.2f} median={np.median(cvdata):4.2f}') print(f' CV data: min={np.min(cvdata):4.2f} max={np.max(cvdata):.2f} median={np.median(cvdata):4.2f}')
print() print()
ratemodel = punit_model['ratebase']
ratedata = punit_data['ratebase']
u, p = mannwhitneyu(ratemodel, ratedata)
print('Baseline rate differs between P-unit models and data:')
print(f' U={u:g}, p={p:.2g}')
print(f' baseline rate model: min={np.min(ratemodel):3.0f}Hz max={np.max(ratemodel):3.0f}Hz median={np.median(ratemodel):3.0f}Hz')
print(f' baseline rate data: min={np.min(ratedata):3.0f}Hz max={np.max(ratedata):3.0f}Hz median={np.median(ratedata):3.0f}Hz')
print()
rmmodel = punit_model['respmod2'] rmmodel = punit_model['respmod2']
rmdata = punit_data['respmod2'] rmdata = punit_data['respmod2']
u, p = mannwhitneyu(rmmodel, rmdata) u, p = mannwhitneyu(rmmodel, rmdata)
@ -343,12 +467,28 @@ if __name__ == '__main__':
print(f' SI model: min={np.min(simodel):4.1f} max={np.max(simodel):4.1f} median={np.median(simodel):4.1f}') print(f' SI model: min={np.min(simodel):4.1f} max={np.max(simodel):4.1f} median={np.median(simodel):4.1f}')
print(f' SI data: min={np.min(sidata):4.1f} max={np.max(sidata):4.1f} median={np.median(sidata):4.1f}') print(f' SI data: min={np.min(sidata):4.1f} max={np.max(sidata):4.1f} median={np.median(sidata):4.1f}')
print() print()
sipunit = punit_data['sinorm' + si]
siampul = ampul_data['sinorm' + si]
u, p = mannwhitneyu(sipunit, siampul)
print('SI differs between P-units and Ampullaries:')
print(f' U={u:g}, p={p:.2g}')
print(f' SI P-units: min={np.min(sipunit):4.1f} max={np.max(sipunit):4.1f} median={np.median(sipunit):4.1f}')
print(f' SI Ampullary: min={np.min(siampul):4.1f} max={np.max(siampul):4.1f} median={np.median(siampul):4.1f}')
print()
cvpunit = punit_data['cvbase']
cvampul = ampul_data['cvbase']
u, p = mannwhitneyu(cvpunit, cvampul)
print('CV differs between P-units and Ampullaries:')
print(f' U={u:g}, p={p:.2g}')
print(f' CV P-units: min={np.min(cvpunit):4.2f} max={np.max(cvpunit):4.2f} median={np.median(cvpunit):4.2f}')
print(f' CV Ampullary: min={np.min(cvampul):4.2f} max={np.max(cvampul):.2f} median={np.median(cvampul):4.2f}')
print()
s = plot_style() s = plot_style()
fig, axs = plt.subplots(3, 3, cmsize=(s.plot_width, 0.75*s.plot_width), fig, axs = plt.subplots(3, 3, cmsize=(s.plot_width, 0.75*s.plot_width),
height_ratios=[1, 0, 1, 0.3, 1]) height_ratios=[1, 0, 1, 0.3, 1])
fig.subplots_adjust(leftm=6.5, rightm=13.5, topm=4.5, bottomm=4, fig.subplots_adjust(leftm=6.5, rightm=18, topm=4.5, bottomm=4,
wspace=1.1, hspace=0.6) wspace=0.6, hspace=0.6)
si_stats('P-unit model:', punit_model, 'dsinorm100', si_thresh, si_stats('P-unit model:', punit_model, 'dsinorm100', si_thresh,
'nsegs100') 'nsegs100')

View File

@ -540,12 +540,10 @@ Estimating second-order susceptibilities reliably requires large numbers (millio
The second-order susceptibility matrices that are based on only 100 segments look flat and noisy, lacking the triangular structure (\subfigref{fig:modelsusceptlown}{B}). The anti-diagonal ridge, however, where the sum of the stimulus frequencies matches the neuron's baseline firing rate, seems to be present whenever the converged estimate shows a clear triangular structure (compare \subfigref{fig:modelsusceptlown}{B} and \subfigref{fig:modelsusceptlown}{A}). The SI($r$) characterizes the height of the ridge in the second-oder susceptibility plane at the neuron's baseline firing rate $r$. Comparing SI($r$) values based on 100 FFT segements to the ones based on one or ten million segments for all 39 model cells (\subfigrefb{fig:modelsusceptlown}{C}) supports this impression. They correlate quite well at contrasts of 1\,\% and 3\,\% ($r=0.9$, $p\ll 0.001$). At a contrast of 10\,\% this correlation is weaker ($r=0.38$, $p<0.05$), because there are only three cells left with SI($r$) values greater than 1.2. Despite the good correlations, care has to be taken to set a threshold on the SI($r$) values for deciding whether a triangular structure would emerge for a much higher number of segments. Because at low number of segments the estimates are noisier, there could be false positives for a too low threshold. Setting the threshold to 1.8 avoids false positives for the price of a few false negatives. The second-order susceptibility matrices that are based on only 100 segments look flat and noisy, lacking the triangular structure (\subfigref{fig:modelsusceptlown}{B}). The anti-diagonal ridge, however, where the sum of the stimulus frequencies matches the neuron's baseline firing rate, seems to be present whenever the converged estimate shows a clear triangular structure (compare \subfigref{fig:modelsusceptlown}{B} and \subfigref{fig:modelsusceptlown}{A}). The SI($r$) characterizes the height of the ridge in the second-oder susceptibility plane at the neuron's baseline firing rate $r$. Comparing SI($r$) values based on 100 FFT segements to the ones based on one or ten million segments for all 39 model cells (\subfigrefb{fig:modelsusceptlown}{C}) supports this impression. They correlate quite well at contrasts of 1\,\% and 3\,\% ($r=0.9$, $p\ll 0.001$). At a contrast of 10\,\% this correlation is weaker ($r=0.38$, $p<0.05$), because there are only three cells left with SI($r$) values greater than 1.2. Despite the good correlations, care has to be taken to set a threshold on the SI($r$) values for deciding whether a triangular structure would emerge for a much higher number of segments. Because at low number of segments the estimates are noisier, there could be false positives for a too low threshold. Setting the threshold to 1.8 avoids false positives for the price of a few false negatives.
Overall, observing SI($r$) values greater than about 1.8, even for a number of FFT segments as low as one hundred, seems to be a reliable indication for a triangular structure in the second-order susceptibility at the corresponding stimulus contrast. Small stimulus contrasts of 1\,\% are less informative, because of their bad signal-to-noise ratio. \notejb{Explain what we can read off from n=100} Intermediate stimulus contrasts around 3\,\% seem to be optimal, because there, most cells still have a triangular structure in their susceptibility and the signal-to-noise ratio is better. At RAM stimulus contrasts of 10\,\% or higher the signal-to-noise ratio is even better, but only few cells remain with weak triangularly shaped susceptibilities that might be missed as a false positives. Overall, observing SI($r$) values greater than about 1.8, even for a number of FFT segments as low as one hundred, seems to be a reliable indication for a triangular structure in the second-order susceptibility at the corresponding stimulus contrast. Small stimulus contrasts of 1\,\% are less informative, because of their bad signal-to-noise ratio. Intermediate stimulus contrasts around 3\,\% seem to be optimal, because there, most cells still have a triangular structure in their susceptibility and the signal-to-noise ratio is better. At RAM stimulus contrasts of 10\,\% or higher the signal-to-noise ratio is even better, but only few cells remain with weak triangularly shaped susceptibilities that might be missed as a false positives.
\begin{figure*}[tp] \begin{figure*}[tp]
\includegraphics[width=\columnwidth]{dataoverview} \includegraphics[width=\columnwidth]{dataoverview}
\notejb{use color code for contrasts}
\notejb{add inset wih distribution of contrasts}
\caption{\label{fig:dataoverview} Nonlinear responses in P-units and \caption{\label{fig:dataoverview} Nonlinear responses in P-units and
ampullary afferents. The second-order susceptibility is condensed ampullary afferents. The second-order susceptibility is condensed
into the susceptibility index, SI($r$) \eqnref{eq:nli_equation}, into the susceptibility index, SI($r$) \eqnref{eq:nli_equation},
@ -553,65 +551,56 @@ Overall, observing SI($r$) values greater than about 1.8, even for a number of F
stimulus frequencies add up to the cell's baseline firing rate $r$ stimulus frequencies add up to the cell's baseline firing rate $r$
(see \subfigrefb{fig:punit}{G}). In both the models and the (see \subfigrefb{fig:punit}{G}). In both the models and the
experimental data, the SI($r$) was estimated based on 100 FFT experimental data, the SI($r$) was estimated based on 100 FFT
segments \notejb{dt and nfft}. The SI($r$) is plotted against the segments. The SI($r$) is plotted against the cells' CV of its
cells' CV of its baseline interspike intervals (left column), the baseline interspike intervals (left column), the response
response modulation (standard deviation of firing rate evoked modulation (standard deviation of firing rate evoked by the
by the band-limited white-noise stimulus) --- a measure of band-limited white-noise stimulus) --- a measure of effective
effective stimulus strength (center column), and the CV of the stimulus strength (center column), and the cell's baseline firing
interspike intervals during stimulation with the white-noise rate (right column). Pearson's correlation coefficient $R$, the
stimulus (right column). Pearson's correlation coefficient $R$ and corresponding significance level $p$ and the number of samples $n$
the number of data points $n$ are indicated; all correlations are are indicated. Kernel-density estimates of the distributions of
significant at a level below $p=0.0006$. Kernel-density estimates the displayed quantities are plotted on top and right. Data points
of the distributions of the displayed quantities are plotted on are color coded by stimulus contrasts, which are listed together
top and right. Data points are color coded by CV$_{\text{base}}$ with the corresponding number of samples in the legend to the
or response modulation as indicated by the color bars. The right. The horizontal dashed line marks a threshold for SI($r$)
horizontal dashed line marks a threshold for SI($r$) values at 1.8 values at 1.8 and the percentages to the right denote the
and the percentages to the right denote the fractions above and fractions of samples above and below this threshold. \figitem{A}
below this threshold. \figitem{A} The SI($r$) of all 39 model The SI($r$) of all 39 model P-units (table~\ref{modelparams})
P-units (table~\ref{modelparams}) measured at contrasts of 1, 3, measured with RAM stimuli with a cutoff frequency of 300\,Hz. The
and 10\,\% of RAM stimuli with a cutoff frequency of 300\,Hz. The
black square marks the cell from \subfigrefb{fig:noisesplit}{C}, black square marks the cell from \subfigrefb{fig:noisesplit}{C},
the circles the four cells shown in the circles the four cells shown in
\subfigref{fig:modelsusceptcontrasts}{A--D}, and the triangle the \subfigref{fig:modelsusceptcontrasts}{A--D}, and the triangle the
cell from \subfigref{fig:modelsusceptlown}{A--B}. cell from \subfigref{fig:modelsusceptlown}{A--B}. \figitem{B}
\figitem{B} Electrophysiological data from 172 P-units. Each cell contributes
Electrophysiological data from 159 P-units. Each cell contributes on average with 2 (min. 1, max. 10) RAM stimulus presentations to
on average with 2 (min. 1, max. 6) RAM stimulus presentations to the $n=376$ data points. The RAMs had cutoff frequencies of
the $n=329$ data points. The RAMs with cutoff frequency of 300\,Hz 300\,Hz (352 samples) and 400\,Hz (24 samples). The two black
were presented at contrasts ranging from 2.5\,\% to 20\,\% triangles mark the responses of the example P-unit from
(average 8\,\%). The two black triangles mark the responses of the \subfigrefb{fig:punit}{E,F}, the circles the other four examples
example P-unit from \subfigrefb{fig:punit}{E,F}, the circles the from \subfigrefb{fig:punit}{H}, and the triangle the unit from
other four examples from \subfigrefb{fig:punit}{H}, and the \subfigrefb{fig:noisesplit}{A}. \figitem{C} Recordings from 30
triangle the unit from \subfigrefb{fig:noisesplit}{A}. ampullary afferents, each contributing on average 3 (min. 1,
\figitem{C} Recordings from 30 ampullary afferents, each max. 7) RAM stimulus presentations to $n=89$ data points. Stimuli
contributing on average 3 (min. 1, max. 7) RAM stimulus had a cutoff frequency of 150\,Hz. The two black triangles mark
presentations to $n=89$ data points. Stimuli had a cutoff the responses of the example ampullary afferent from
frequency of 150\,Hz and their contrasts ranged from 2.5\,\% to
20\,\% (average 7\,\%). The two black triangles mark the
responses of the example ampullary afferent from
\subfigrefb{fig:ampullary}{E,F}, and the circles the other four \subfigrefb{fig:ampullary}{E,F}, and the circles the other four
examples from \subfigrefb{fig:ampullary}{H}.} examples from \subfigrefb{fig:ampullary}{H}.}
\end{figure*} \end{figure*}
\subsection{Low CVs and weak stimuli are associated with distinct nonlinearity in recorded electroreceptive neurons} \subsection{Low CVs and weak responses predict weakly nonlinear responses}
Now we are prepared to evaluate our pool of 39 P-unit model cells, 166 P-units, and 30 ampullary afferents recorded in 76 specimen of \textit{Apteronotus leptorhynchus}. For comparison across cells we condensed the structure of the second-order susceptibilities into SI($r$) values, \eqnref{eq:nli_equation}. Now we are prepared to evaluate our pool of 39 P-unit model cells, 172 P-units, and 30 ampullary afferents recorded in 80 specimen of \textit{Apteronotus leptorhynchus}. For comparison across cells we condensed the structure of the second-order susceptibilities into SI($r$) values, \eqnref{eq:nli_equation}. In order to make the data comparable, both model and experimental SI($r$) estimates, \eqnref{eq:nli_equation}, are based on 100 FFT segments.
In the P-unit models, each model cell contributed with three RAM stimulus presentations with contrasts of 1, 3, and 10\,\%, resulting in $n=117$ data points. 19 (16\,\%) had SI($r$) values larger than 1.8, indicating the expected ridges at the baseline firing rate in their second-order susceptiility . The lower the cell's baseline CV, i.e. the less intrinsic noise, the higher the SI($r$) (\figrefb{fig:dataoverview}\,\panel[i]{A}). Also, the lower the response modulation, i.e. the weaker the effective stimulus, the higher the S($r$) (\figrefb{fig:dataoverview}\,\panel[ii]{A}). Cells with high SI($r$) values are the ones with baseline firing rate below 200\,Hz (\figrefb{fig:dataoverview}\,\panel[iii]{A}). In comparison to the experimentally measured P-unit recordings, the model cells are skewed to lower baseline CVs (Mann-Whitney $U=12924$, $p=1.3\times 10^{-7}$), because the models are not able to reproduce bursting, which we observe in many P-units and which leads to high CVs. Also the response modulation of the models is skewed to lower values (Mann-Whitney $U=12846$, $p=9.1\times 10^{-8}$), because in the measured cells, response modulation is positively correlated with baseline CV \notejb{(XXX)}, i.e. bursting cells are more sensitive. \notejb{check baseline firing rate differences.} In the P-unit models, each model cell contributed with three RAM stimulus presentations with contrasts of 1, 3, and 10\,\%, resulting in $n=117$ data points. 19 (16\,\%) had SI($r$) values larger than 1.8, indicating the expected ridges at the baseline firing rate in their second-order susceptiility. The lower the cell's baseline CV, i.e. the less intrinsic noise, the higher the SI($r$) (\figrefb{fig:dataoverview}\,\panel[i]{A}).
The effective stimulus strength also plays a role in predicting the SI($r$) values. We quantify the effect of stimulus strength on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. The lower the response modulation, i.e. the weaker the effective stimulus, the higher the S($r$) (\figrefb{fig:dataoverview}\,\panel[ii]{A}). Although there is a tendency of low stimulus contrasts to evoke lower response modulations, response modulations evoked by each of the three contrasts overlap substantially, emphasizing the strong heterogeneity of the P-units' sensitivity \citep{Grewe2017}. Cells with high SI($r$) values are the ones with baseline firing rate below 200\,Hz (\figrefb{fig:dataoverview}\,\panel[iii]{A}).
\notejb{We need to know which contrasts} In comparison to the experimentally measured P-unit recordings, the model cells are skewed to lower baseline CVs (Mann-Whitney $U=13986$, $p=3\times 10^{-9}$), because the models are not able to reproduce bursting, which we observe in many P-units and which leads to high CVs. Also the response modulation of the models is skewed to lower values (Mann-Whitney $U=15312$, $p=7\times 10^{-7}$), because in the measured cells, response modulation is positively correlated with baseline CV (Pearson $R=0.45$, $p=1\times 10^{-19}$), i.e. bursting cells are more sensitive. Median baseline firing rate in the models is by 53\,Hz smaller than in the experimental data (Mann-Whitney $U=17034$, $p=0.0002$).
In the experimentally measured P-units, each of the $172$ units contributes on average with two RAM stimulus presentations, presented at contrasts ranging from 1 to 20\,\% to the 376 samples. Despite the mentioned differences between the P-unit models and the measured data, the SI($r$) values do not differ between models and data (median of 1.3, Mann-Whitney $U=19702$, $p=0.09$) and also 16\,\% of the samples from all presented stimulus contrasts exceed the threshold of 1.8. The SI($r$) values of the P-unit population correlate weakly with the CV of the baseline ISIs that range from 0.18 to 1.35 (median 0.49). Cells with lower baseline CVs tend to have more pronounced ridges in their second-order susceptibilites than those with higher baseline CVs (\figrefb{fig:dataoverview}\,\panel[i]{B}).
Three P-units stand out with \nli{} values exceeding two, but additional \notejb{XXX} cells have \nli{} values greater than 1.8. Based on our insights from the P-unit models these would have the expected triangular structure in their susceptibilities when estimated with a sufficiently high number of segments. However, we can only speculate how many of the cells with lower \nli{} values are false negatives. \notejb{because also many have been measured at too strong contrasts}. Samples with weak responses to a stimulus, be it an insensitive P-unit or a weak stimulus, have higher SI($r$) values and thus a more pronounced ridge in the second-order susceptibility in comparison to strongly responding cells, most of them having flat second-order susceptibilities (\figrefb{fig:dataoverview}\,\panel[ii]{B}). P-units with low or high baseline firing rates can have large SI($r$) (\figrefb{fig:dataoverview}\,\panel[iii]{B}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and the response strength during stimulation (effective output noise).
The \nli{} values of the P-unit population correlate weakly with the CV of the baseline ISIs. Cells with lower baseline CVs tend to have more pronounced peaks in their projections than those that have high baseline CVs (\subfigrefb{fig:dataoverview}{A}). This negative correlation is more pronounced against the CV measured during stimulation (\subfigrefb{fig:dataoverview}{C}).
The effective stimulus strength also plays an important role. We quantify the effect of stimulus strength on a cell's response by the response modulation --- the standard deviation of a cell's firing rate in response to a RAM stimulus. P-units are heterogeneous in their sensitivity, their response modulations to the same stimulus contrast vary a lot \citep{Grewe2017}. Cells with weak responses to a stimulus, be it an insensitive cell or a weak stimulus, have higher \nli{} values and thus a more pronounced ridge in the second-order susceptibility at \fsumb{} in comparison to strongly responding cells that basically have flat second-order susceptibilities (\subfigrefb{fig:dataoverview}{E}). How pronounced nonlinear response components are in P-units thus depends on the baseline CV (a proxy for the internal noise level), and both the CV and response strength during stimulation (effective output noise).
%(Pearson's $r=-0.35$, $p<0.001$)221 P-units and 47 (Pearson's $r=-0.16$, $p<0.01$)
%In a P-unit population where each cell is represented not by several contrasts but by the lowest recorded contrast, \nli{} significantly correlates with the CV during baseline ($r=-0.17$, $p=0.01$), the response modulation ($r=-0.35$, $p<0.001$) and \fbase{} ($r=-0.32$, $p<0.001$).%, $\n{}=221$*, $\n{}=221$******, $\n{}=221$
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units. Accordingly, \nli{} values of ampullary cells are indeed much higher than in P-units by about a factor of ten. \notejb{XXX (percent)} ampullary cells with values greater than 1.8 would have a triangular structure in their second-order susceptibilities. Ampullary cells also show a negative correlation with baseline CV. Again, sensitive cells with strong response modulations are at the bottom of the distribution and have \nli{} values close to one (\subfigrefb{fig:dataoverview}{B, D}). The weaker the response modulation, because of less sensitive cells or weaker stimulus amplitudes, the stronger the nonlinear component of a cell's response (\subfigrefb{fig:dataoverview}{F}).
%(Pearson's $r=-0.35$, $p < 0.01$) (Pearson's $r=-0.59$, $p < 0.0001$)
The population of ampullary cells is generally more homogeneous, with lower baseline CVs than P-units (Mann-Whitney $U=33464$, $p=9\times 10^{-49}$). Accordingly, SI($r$) values of ampullary cells (median 2.3) are indeed higher than in P-units (median 1.3, Mann-Whitney $U=6450$, $p=2\times 10^{-19}$). 52 samples (58\,\%) with SI($r$) values greater than 1.8 would have a triangular structure in their second-order susceptibilities. Ampullary cells also show a negative correlation with baseline CV, despite their narrow distribution of CVs ranging from 0.03 to 0.15 (median 0.09) (\figrefb{fig:dataoverview}\,\panel[i]{C}). Again, sensitive cells with stronger response modulations are at the bottom of the SI($r$) distribution with values close to one (\figrefb{fig:dataoverview}\,\panel[ii]{C}). As in P-units, baseline firing rate does not predict SI($r$) values (\figrefb{fig:dataoverview}\,\panel[iii]{C}).
\begin{figure*}[t] \begin{figure*}[t]
\includegraphics[width=\columnwidth]{model_full.pdf} \includegraphics[width=\columnwidth]{model_full.pdf}

View File

@ -8,10 +8,8 @@ from plottools.colors import lighter, darker
def significance_str(p): def significance_str(p):
if p > 0.05: if p > 0.01:
return f'$p={p:.2f}$' return f'$p={p:.2f}$'
elif p > 0.01:
return '$p<0.05$'
elif p > 0.001: elif p > 0.001:
return '$p<0.01$' return '$p<0.01$'
elif p > 0.0001: elif p > 0.0001:
@ -129,9 +127,15 @@ def plot_style():
pt.make_line_styles(ns, 'ls', 'Median', '', palette['black'], '-', lwthick) pt.make_line_styles(ns, 'ls', 'Median', '', palette['black'], '-', lwthick)
pt.make_line_styles(ns, 'ls', 'Max', '', palette['black'], '-', lwmid) pt.make_line_styles(ns, 'ls', 'Max', '', palette['black'], '-', lwmid)
ns.lsStim = dict(color='gray', lw=ns.lwmid) ns.psC1 = dict(color=palette['red'], marker='o', linestyle='none', markersize=3, mec='none', mew=0)
ns.lsRaster = dict(color='black', lw=ns.lwthin) ns.psC3 = dict(color=palette['orange'], marker='o', linestyle='none', markersize=3, mec='none', mew=0)
ns.lsPower = dict(color='gray', lw=ns.lwmid) ns.psC5 = dict(color=palette['yellow'], marker='o', linestyle='none', markersize=3, mec='none', mew=0)
ns.psC10 = dict(color=palette['lightgreen'], marker='o', linestyle='none', markersize=3, mec='none', mew=0)
ns.psC20 = dict(color=palette['blue'], marker='o', linestyle='none', markersize=3, mec='none', mew=0)
ns.lsStim = dict(color=palette['gray'], lw=ns.lwmid)
ns.lsRaster = dict(color=palette['black'], lw=ns.lwthin)
ns.lsPower = dict(color=palette['gray'], lw=ns.lwmid)
ns.lsF0 = dict(color='blue', lw=ns.lwthick) ns.lsF0 = dict(color='blue', lw=ns.lwthick)
ns.lsF01 = dict(color='green', lw=ns.lwthick) ns.lsF01 = dict(color='green', lw=ns.lwthick)
ns.lsF02 = dict(color='purple', lw=ns.lwthick) ns.lsF02 = dict(color='purple', lw=ns.lwthick)