updated discussion

This commit is contained in:
Jan Benda 2025-06-02 00:18:15 +02:00
parent 281d05d6f7
commit c62ae40f2f

View File

@ -512,7 +512,7 @@ Using a broadband stimulus increases the effective input-noise level. This may l
\begin{figure}[p]
\includegraphics[width=\columnwidth]{modelsusceptcontrasts}
\caption{\label{fig:modelsusceptcontrasts}Dependence of second order susceptibility on stimulus contrast. \figitem{A} Second-order susceptibilities estimated for increasing stimulus contrasts of $c=0, 1, 3$ and $10$\,\% as indicated ($N=10^7$ FFT segments for $c=1$\,\%, $N=10^6$ segments for all other contrasts). $c=0$\,\% refers to the noise-split configuration (limit to vanishing external RAM signal, see \subfigrefb{fig:noisesplit}{D}). Shown are simulations of the P-unit model cell ``2017-07-18-ai'' (table~\ref{modelparams}) with a baseline firing rate of $82$\,Hz and CV$_{\text{base}}=0.23$. The cell shows a clear triangular pattern in its second-order susceptibility even up to a contrast of $10$\,\%. Note, that for $c=1$\,\% (\panel[ii]{D}), the estimate did not converge yet. \figitem{B} Cell ``2012-12-13-ao'' (baseline firing rate of $146$\,Hz, CV$=0.23$) also has strong interactions at its baseline firing rate that survive up to a stimulus contrast of $3$\,\%. \figitem{C} Model cell ``2012-12-20-ac'' (baseline firing rate of $212$\,Hz, CV$=0.26$) shows a weak triangular structure in the second-order susceptibility that vanishes for stimulus contrasts larger than $1$\,\%. \figitem{D} Cell ``2013-01-08-ab'' (baseline firing rate of $218$\,Hz, CV$=0.55$) does not show any triangular pattern in its second-order susceptibility. Nevertheless, interactions between low stimulus frequencies become substantial at higher contrasts. \figitem{E} The presence of an elevated second-order susceptibility where the stimulus frequency add up to the neuron's baseline frequency, can be identified by the susceptibility index (SI($r$), \eqnref{eq:nli_equation2}) greater than one (horizontal black line). The SI($r$) (density to the right) is plotted as a function of the model neuron's baseline CV for all $39$ model cells (table~\ref{modelparams}). Model cells have been visually categorized based on the presence of a triangular pattern in their second-order susceptibility estimated in the noise-split configuration (legend). The cells from \panel{A--D} are marked by black circles. Pearson's correlation coefficients $r$, the corresponding significance level $p$ and regression line (dashed gray line) are indicated. The higher the stimulus contrast, the less cells show weakly nonlinear interactions as expressed by the triangular structure in the second-order susceptibility.}
\caption{\label{fig:modelsusceptcontrasts}Dependence of second order susceptibility on stimulus contrast. \figitem{A} Second-order susceptibilities estimated for increasing stimulus contrasts of $c=0, 1, 3$ and $10$\,\% as indicated ($N=10^7$ FFT segments for $c=1$\,\%, $N=10^6$ segments for all other contrasts). $c=0$\,\% refers to the noise-split configuration (limit to vanishing external RAM signal, see \subfigrefb{fig:noisesplit}{D}). Shown are simulations of the P-unit model cell ``2017-07-18-ai'' (table~\ref{modelparams}) with a baseline firing rate of $82$\,Hz and CV$_{\text{base}}=0.23$. The cell shows a clear triangular pattern in its second-order susceptibility even up to a contrast of $10$\,\%. Note, that for $c=1$\,\% (\panel[ii]{D}), the estimate did not converge yet. \figitem{B} Cell ``2012-12-13-ao'' (baseline firing rate of $146$\,Hz, CV$=0.23$) also has strong interactions at its baseline firing rate that survive up to a stimulus contrast of $3$\,\%. \figitem{C} Model cell ``2012-12-20-ac'' (baseline firing rate of $212$\,Hz, CV$=0.26$) shows a weak triangular structure in the second-order susceptibility that vanishes for stimulus contrasts larger than $1$\,\%. \figitem{D} Cell ``2013-01-08-ab'' (baseline firing rate of $218$\,Hz, CV$=0.55$) does not show any triangular pattern in its second-order susceptibility. Nevertheless, interactions between low stimulus frequencies become substantial at higher contrasts. \figitem{E} The presence of an elevated second-order susceptibility where the stimulus frequency add up to the neuron's baseline frequency, can be identified by the susceptibility index (SI($r$), \eqnref{eq:nli_equation2}) greater than one (horizontal black line). The SI($r$) (density to the right) is plotted as a function of the model neuron's baseline CV for all $39$ model cells (table~\ref{modelparams}). Model cells have been visually categorized based on the strong (11 cells) or weak (5 cells) presence of a triangular pattern in their second-order susceptibility estimated in the noise-split configuration (legend). The cells from \panel{A--D} are marked by black circles. Pearson's correlation coefficients $r$, the corresponding significance level $p$ and regression line (dashed gray line) are indicated. The higher the stimulus contrast, the less cells show weakly nonlinear interactions as expressed by the triangular structure in the second-order susceptibility.}
\end{figure}
\subsection{Weakly nonlinear interactions in many model cells}
@ -617,25 +617,22 @@ Is it possible to predict nonlinear responses in a three-fish setting based on s
\section{Discussion}
Theoretical work \citep{Voronenko2017,Franzen2023} derived analytical expressions for weakly-nonlinear responses in LIF and theta model neurons driven by two sine waves with distinct frequencies. We here investigated such nonlinear responses in two types of electroreceptor afferents that differ in their intrinsic noise levels \citep{Grewe2017} using white-noise stimuli to estimate second-order susceptibilities. Following \citet{Voronenko2017} we expected to observe increased levels of second-order susceptibility where either of the stimulus frequencies alone or the sum of the stimulus frequencies matches the baseline firing rate ($f_1=\fbase{}$, $f_2=\fbase{}$ or \fsumb{}). We find traces of these nonlinear responses in most of the low-noise ampullary afferents and only those P-units with very low intrinsic noise levels. Complementary model simulations demonstrate, in the limit to vanishing stimulus amplitudes and extremely high number of repetitions, that the second order susceptibilities estimated from the electrophysiological data are indeed indicative of the theoretically expected weakly nonlinear responses. With this, we provide experimental evidence for nonlinear responses of a spike generator at low stimulus amplitudes.
% EOD locking:
% Phase-locking to the own field also leads to a representation of \feod{} in the P-unit firing rate (see \figref{fig:punit}\panel{B}) \citep{Sinz2020}.
% Weakly nonlinear responses versus saturation regime
Theoretical work \citep{Voronenko2017,Franzen2023} derived analytical expressions for weakly-nonlinear responses in LIF and theta model neurons driven by two sine waves with distinct frequencies. We here investigated such nonlinear responses in two types of electroreceptor afferents that differ in their intrinsic noise levels \citep{Grewe2017} using band-limited white-noise stimuli to estimate second-order susceptibilities. Following \citet{Voronenko2017} we expected to observe distinct ridges in the second-order susceptibility where either of the stimulus frequencies alone or their sum matche the baseline firing rate. We find traces of these nonlinear responses in the majority of the low-noise ampullary afferents and in only less than a fifth of the P-units that are characterized by low intrinsic noise levels and low output noise. Complementary model simulations demonstrate in the limit of high numbers of FFT segments, that the second order susceptibilities estimated from the electrophysiological data are indeed indicative of the theoretically expected triangular structure of super.threshold weakly nonlinear responses. With this, we provide experimental evidence for nonlinear responses of a spike generator at low intrinsic noise levels or low stimulus amplitudes.
\subsection{Intrinsic noise limits nonlinear responses}
The weakly nonlinear regime with its triangular pattern of elevated second-order susceptibility resides between the linear and a stochastic mode-locking regime. Too strong intrinsic noise linearizes the system and wipes out the triangular structure of the second-order susceptibility \citep{Voronenko2017}. Our electrophysiological recordings match this theoretical expectation. Only P-units with low coefficients of variation (CV $<$ 0.25) of the interspike-interval distribution in their baseline response show the expected nonlinearities (\figref{fig:punit}, \figref{fig:model_full}, \subfigref{fig:dataoverview}{A}). Such low-CV cells are rare among the 221 P-units used in this study. On the other hand, the majority of the ampullary cells have generally lower CVs (median of 0.12) and have an approximately ten-fold higher level of second-order susceptibilities where \fsumb{} (\figref{fig:ampullary}, \subfigrefb{fig:dataoverview}{B}).
The weakly nonlinear regime with its triangular pattern of elevated second-order susceptibility resides between the linear and a stochastic mode-locking regime . Too strong intrinsic noise linearizes the system and wipes out the triangular structure of the second-order susceptibility \citep{Voronenko2017}. Our electrophysiological recordings match this theoretical expectation. The lower the coefficient of variations of the P-units' baseline interspike intervals, the more cells show the expected nonlinearities (\subfigref{fig:dataoverview}{B}). Still, in only 18\,\% of the P-units analyzed in this study we find relevant nonlinear responses. On the other hand, the majority of the ampullary cells have generally lower CVs (median of 0.09) and indeed in the majority of ampullary afferents (73\,\%) we observe nonlinear responses (\subfigrefb{fig:dataoverview}{C}).
The CV is a proxy for the intrinsic noise in the cells (\citealp{Vilela2009}, note however the effect of coherence resonance for excitable systems close to a bifurcation, \citealp{Pikovsky1997, Lindner2004}). In both cell types, we observe a negative correlation between the second-order susceptibility at \fsumb{} and the CV (\figrefb{fig:dataoverview}), indicating that it is the level of intrinsic noise that shapes nonlinear responses. These findings are in line with previous theoretical and experimental studies showing the linearizing effects of noise in nonlinear systems \citep{Roddey2000, Chialvo1997, Voronenko2017}. Increased intrinsic noise has been demonstrated to increase the CV and to reduce nonlinear phase-locking in vestibular afferents \citep{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL \citep{Chacron2006}. Only in cells with sufficiently low levels of intrinsic noise, weakly nonlinear responses can be observed.
The CV is a proxy for the intrinsic noise in the cells (\citealp{Vilela2009}, note however the effect of coherence resonance for excitable systems close to a bifurcation, \citealp{Pikovsky1997, Lindner2004}). In both cell types, we observe a negative correlation between the second-order susceptibility at $f_1 + f_2 = r$ and the baseline CV (\figrefb{fig:dataoverview}), indicating that it is the level of intrinsic noise that shapes nonlinear responses. These findings are in line with previous theoretical and experimental studies showing the linearizing effects of noise in nonlinear systems \citep{Roddey2000, Chialvo1997, Voronenko2017}. Increased intrinsic noise has been demonstrated to increase the CV and to reduce nonlinear phase-locking in vestibular afferents \citep{Schneider2011}. Reduced noise, on the other hand, has been associated with stronger nonlinearity in pyramidal cells of the ELL \citep{Chacron2006}. Only in cells with sufficiently low levels of intrinsic noise, weakly nonlinear responses can be observed.
\subsection{Linearization by white-noise stimulation}
Not only the intrinsic noise but also the stimulation with external white-noise linearizes the cells. This applies to both, the stimulation with AMs in P-units (\subfigrefb{fig:dataoverview}{E}) and direct stimulation in ampullary cells (\subfigrefb{fig:dataoverview}{F}). The stronger the effective stimulus, the less pronounced are the peaks in second-order susceptibility (see \subfigref{fig:punit}{E\&F} for a P-unit example and \subfigref{fig:ampullary}{E\&F} for an ampullary cell). This linearizing effect of noise stimuli limits the weakly nonlinear regime to small stimulus amplitudes. At higher stimulus amplitudes, however, other nonlinearities of the system eventually show up in the second-order susceptibility.
Not only the intrinsic noise but also the stimulation with external white-noise linearizes the cells. This applies to both, the stimulation with AMs in P-units (\figrefb{fig:dataoverview}\,\panel[ii]{B}) and direct stimulation in ampullary cells (\figrefb{fig:dataoverview}\,\panel[ii]{C}). The stronger the effective stimulus, the less pronounced are the ridges in the second-order susceptibility (see \subfigref{fig:punit}{E\&F} for a P-unit example and \subfigref{fig:ampullary}{E\&F} for an ampullary cell). This linearizing effect of noise stimuli limits the weakly nonlinear regime to small stimulus amplitudes. At higher stimulus amplitudes, however, other nonlinearities of the system eventually show up in the second-order susceptibility.
In order to characterize weakly nonlinear responses of the cells in the limit to vanishing stimulus amplitudes we utilized the Furutsu-Novikov theorem \citep{Novikov1965, Furutsu1963}. Following \citet{Lindner2022}, a substantial part of the intrinsic noise of a P-unit model \citep{Barayeu2023} is treated as signal. Performing this noise-split trick we can estimate the weakly nonlinear response without the linearizing effect of an additional external white noise stimulus. The model of a low-CV P-unit then shows the full nonlinear structure (\figref{fig:noisesplit}) known from analytical derivations and simulations of basic LIF and theta models driven with pairs of sine-wave stimuli \citep{Voronenko2017,Franzen2023}. Previous studies on second-order nonlinearities have not observed the weakly nonlinear regime, probably because of the linearizing effects of strong noise stimuli \citep{Victor1977, Schanze1997, Neiman2011}.
In order to characterize weakly nonlinear responses of the cells in the limit to vanishing stimulus amplitudes we utilized the Furutsu-Novikov theorem \citep{Novikov1965, Furutsu1963}. Following \citet{Lindner2022}, a substantial part of the intrinsic noise of a P-unit model \citep{Barayeu2023} is treated as signal. Performing this noise-split trick we can estimate the weakly nonlinear response without the linearizing effect of an additional external white noise stimulus. 41\,\% of the model cells then show the full nonlinear structure (\figref{fig:modelsusceptcontrast}\,\panel[i]{E}) known from analytical derivations and simulations of basic LIF and theta models driven with pairs of sine-wave stimuli \citep{Voronenko2017,Franzen2023}. Previous studies on second-order nonlinearities have not observed the weakly nonlinear regime, probably because of the linearizing effects of strong noise stimuli \citep{Victor1977, Schanze1997, Neiman2011}.
\subsection{Characterizing nonlinear coding from limited experimental data}
Estimating the Volterra series from limited experimental data is usually restricted to the first two or three orders, which might not be sufficient for a proper prediction of the neuronal response \citep{French2001}. A proper estimation of just the second-order susceptibility in the weakly nonlinear regime is challenging in electrophysiological experiments. Making assumptions about the nonlinearities in a system reduces the amount of data needed for parameter estimation. In particular, models combining linear filtering with static nonlinearities \citep{Chichilnisky2001} have been successful in capturing functionally relevant neuronal computations in visual \citep{Gollisch2009} as well as auditory systems \citep{Clemens2013}. Linear methods based on backward models for estimating the stimulus from neuronal responses, have been extensively used to quantify information transmission in neural systems \citep{Theunissen1996, Borst1999, Wessel1996, Machens2001}, because backward models do not need to generate action potentials that involve strong nonlinearities \citep{Rieke1999}.
Estimating the Volterra series from limited experimental data is usually restricted to the first two or three orders, which might not be sufficient for a proper prediction of the neuronal response \citep{French2001}. As we have demonstrated, a proper estimation of just the second-order susceptibility in the weakly nonlinear regime is challenging in electrophysiological experiments (\figrefb{modelsusceptlown}). Our minimum of 100 FFT segements corresponds to just 26\,s of stimulation and thus is not a challenge. However, the estimates of the second-order susceptibilities start to converge only beyond 10\,000 FFT segments, corresponding to 43\,min of stimulation. Often, however, more than one million segments were needed which requires 71 hours of recording, which is clearly out of reach. We have demonstrated that even in non-converged estimates, the presence of a anti-diagonal ridge is sufficient to predict a triangular pattern in a converged estimate.
Making assumptions about the nonlinearities in a system also reduces the amount of data needed for parameter estimation. In particular, models combining linear filtering with static nonlinearities \citep{Chichilnisky2001} have been successful in capturing functionally relevant neuronal computations in visual \citep{Gollisch2009} as well as auditory systems \citep{Clemens2013}. Linear methods based on backward models for estimating the stimulus from neuronal responses, have been extensively used to quantify information transmission in neural systems \citep{Theunissen1996, Borst1999, Wessel1996, Machens2001}, because backward models do not need to generate action potentials that involve strong nonlinearities \citep{Rieke1999}.
\subsection{Nonlinear encoding in ampullary cells}
The afferents of the passive electrosensory system, the ampullary cells, exhibit strong second-order susceptibilities (\figref{fig:dataoverview}). Ampullary cells more or less directly translate external low-frequency electric fields into afferent spikes, much like in the standard LIF and theta models used by Lindner and colleagues \citep{Voronenko2017,Franzen2023}. Indeed, we observe in the ampullary cells similar second-order nonlinearities as in LIF models.
@ -644,25 +641,25 @@ Ampullary stimuli originate from the muscle potentials induced by prey movement
Ampullary stimulus encoding is somewhat different in \lepto{}. The power spectrum of the spontaneous response is dominated by only the baseline firing rate and its harmonics, a second oscillator is not visible. The baseline firing frequency, however, is outside the linear coding range \citep{Grewe2017} while it is within the linear coding range in paddlefish \citep{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullaries increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:dataoverview}{F}) indicating that paddlefish data have been recorded above the weakly-nonlinear regime.
The population of ampullary cells is very homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties \citep{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, there should be a nonlinear response at a frequency that is similar in the full population of ampullary cells (at the baseline firing frequency) that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract such nonlinear responses. How such nonlinear effects might influence prey detection should be addressed in future studies.
The population of ampullary cells is very homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties \citep{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, the resulting nonlinear response appears at the baseline rate that is similar in the full population of ampullary cells and that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract such nonlinear responses. How such nonlinear effects might influence prey detection should be addressed in future studies.
\subsection{Nonlinear encoding in P-units}
Noise stimuli have the advantage that a range of frequencies can be measured with a single stimulus presentation and they have been successfully applied to characterize sensory coding in many systems \citep{French1973, Marmarelis1999, Borst1999, Chacron2005, Grewe2017}. In the real-world situation of wave-type electric fish, however, the natural stimuli encoded by P-units are periodic amplitude modulations of the self-generated electric field which arise from the superposition of the own and foreign EODs. Natural interactions usually occur between low numbers of close-by fish and thus the AMs are a mixture of a few distinct frequencies with substantial amplitudes \citep{Stamper2010,Fotowat2013, Henninger2020}. How informative are the second-order susceptibilities observed under noise stimulation for the encoding of distinct frequencies?
We here applied broad-band noise amplitude-modulation stimuli to estimate the second-order susceptibility.
%The total signal power in noise stimuli is uniformly distributed over a wide frequency band while the power is spectrally focused in pure sinewave stimuli.
Broadband noise stimuli introduce additional noise that linearizes the dynamics of the system. In contrast, pure sinewave stimulation is spectrally focussed and drives the system on the background of the intrinsic noise. This explains why we can observe nonlinear interactions between sinewave stimuli with distinct frequencies (\figrefb{fig:motivation}) although they are barely visible when stimulating with strong broad-band noise (\figrefb{fig:noisesplit}). As discussed above in the context of broad-band noise stimulation, we expect interactions with a cell's baseline frequency only for the very few P-units with low enough CVs of the baseline interspike intervals.
We here applied broad-band noise amplitude-modulation stimuli to estimate the second-order susceptibility. Broadband noise stimuli introduce additional noise that linearizes the dynamics of the system. In contrast, pure sinewave stimulation is spectrally focussed and drives the system on the background of the intrinsic noise. This explains why we can observe nonlinear interactions between sinewave stimuli with distinct frequencies (\figrefb{fig:motivation}) although they are barely visible when stimulating with strong broad-band noise (\figrefb{fig:noisesplit}).
%As discussed above in the context of broad-band noise stimulation, we expect interactions with a cell's baseline frequency only for the very few P-units with low enough CVs of the baseline interspike intervals.
%We thus conclude that the presence of the anti-diagonal pattern in the \suscept{} matrix is sufficient to infer that the same nonlinear interactions happen here, in accordance with the the second-order susceptibilities found in LIF models without a carrier \citep{Voronenko2017, Schlungbaum2023}. This also validates the application of the white noise approach to characterize the full \suscept{} matrix instead of using all combinations of frequencies.
Extracting the AM from the stimulus already requires a (threshold) nonlinearity \citep{Middleton2006, Stamper2012Envelope, Savard2011, Barayeu2023}. This nonlinearity, however, does not show up in our estimates of the susceptibilities, because in our analysis we directly relate the AM waveform to the recorded cellular responses. Encoding the time-course of the AM, however, has been shown to be linear over a wide range of AM amplitudes and frequencies \citep{Xu1996, Benda2005, Gussin2007, Grewe2017, Savard2011}. In contrast, we here have demonstrated nonlinear interactions originating from the spike generator for broad-band noise stimuli in the limit of vanishing amplitudes and for stimulation with two distinct frequencies. Both settings have not been studied yet.
Extracting the AM from the stimulus already requires a (threshold) nonlinearity \citep{Middleton2006, Stamper2012Envelope, Savard2011, Barayeu2023}. This nonlinearity, however, does not show up in our estimates of the susceptibilities, because in our analysis we directly relate the AM waveform to the recorded cellular responses. Encoding the time-course of the AM, however, has been shown to be linear over a wide range of AM amplitudes and frequencies \citep{Xu1996, Benda2005, Gussin2007, Grewe2017, Savard2011}. In contrast, we here have demonstrated nonlinear interactions originating from the spike generator for broad-band noise stimuli with small amplitudes and for stimulation with two distinct frequencies. Both settings have not been studied yet.
The encoding of secondary or social envelopes that arise from relative movement or the interaction of more than two animals \citep{Stamper2012Envelope} requires an additional nonlinearity in the system that was initially attributed to downstream processing \citep{Middleton2006, Middleton2007}. Later studies showed that already the electroreceptors can encode such information whenever the firing rate saturates at zero or the maximum rate at the EOD frequency \citep{Savard2011}. Based on our work, we predict that P-units with low CVs encode the social envelopes even under weak stimulation, whenever the resulting beat frequencies match or add up to the baseline firing rate. Then difference frequencies show up in the response spectrum that characterize the slow envelope.
The weakly nonlinear interactions in low-CV P-units could facilitate the detectability of faint signals during three-animal interactions as found in courtship contexts in the wild \citep{Henninger2018}, the electrosensory cocktail party. The detection of a faint, distant intruder male could be improved by the presence of a nearby strong female stimulus, because of the nonlinear interaction terms \citep{Schlungbaum2023}. This boosting effect is, however, very specific with respect to the stimulus frequencies and a given P-unit's baseline frequency. The population of P-units is very heterogeneous in their baseline firing rates and CVs (50--450\,Hz and 0.1--1.4, respectively, \figref{fig:dataoverview}\panel{A}, \citealp{Grewe2017, Hladnik2023}). The range of baseline firing rates thus covers substantial parts of the beat frequencies that may occur during animal interactions \citep{Henninger2018, Henninger2020}, while the number of low-CV P-units is small. Whether and how this information is specifically maintained and read out by pyramidal cells in the electrosensory lateral line lobe (ELL) in the hindbrain onto which P-units converge \citep{Krahe2014, Maler2009a} is an open question.
The weakly nonlinear interactions in low-CV P-units could facilitate the detectability of faint signals during three-animal interactions as found in courtship contexts in the wild \citep{Henninger2018}, the electrosensory cocktail party. The detection of a faint, distant intruder male could be improved by the presence of a nearby strong female stimulus, because of the nonlinear interaction terms \citep{Schlungbaum2023}. This boosting effect is, however, very specific with respect to the stimulus frequencies and a given P-unit's baseline frequency. The population of P-units is very heterogeneous in their baseline firing rates and CVs (50--450\,Hz and 0.1--1.4, respectively, \subfigref{fig:dataoverview}{B}, \citealp{Grewe2017, Hladnik2023}). The range of baseline firing rates thus covers substantial parts of the beat frequencies that may occur during animal interactions \citep{Henninger2018, Henninger2020}, while the number of P-units showing weakly nonlinear responses is small. Whether and how this information is specifically maintained and read out by pyramidal cells in the electrosensory lateral line lobe (ELL) in the hindbrain onto which P-units converge \citep{Krahe2014, Maler2009a} is an open question.
\subsection{Conclusions}
We have demonstrated pronounced nonlinear responses in primary electrosensory afferents at weak stimulus amplitudes and sufficiently low intrinsic noise levels. The observed nonlinearities match the expectations from previous theoretical studies \citep{Voronenko2017,Franzen2023}. The resulting nonlinear components introduce spectral components not present in the original stimulus, but may provide an edge in the context of signal detection problems at stimulus amplitudes close to threshold \citep{Schlungbaum2023}. Electrosenory afferents share an evolutionary history with hair cells \citep{Baker2019} and share many response properties with mammalian auditory nerve fibers \citep{Barayeu2023, Joris2004}. Thus, we expect weakly nonlinear responses for near-threshold stimulation in auditory nerve fibers.
We have demonstrated pronounced nonlinear responses in primary electrosensory afferents at weak stimulus amplitudes and sufficiently low intrinsic noise levels. The observed nonlinearities match the expectations from previous theoretical studies \citep{Voronenko2017,Franzen2023}. The resulting nonlinear components introduce spectral components not present in the original stimulus, but may provide an edge in the context of signal detection problems at stimulus amplitudes close to threshold \citep{Schlungbaum2023}. Electrosenory afferents share an evolutionary history with hair cells \citep{Baker2019} and share many response properties with mammalian auditory nerve fibers \citep{Barayeu2023, Joris2004}. Thus, we expect weakly nonlinear responses for near-threshold stimulation in auditory nerve fibers as well.
\section{Acknowledgements}