started acknowledgements
This commit is contained in:
parent
d108b4a004
commit
94ea6d1313
@ -577,7 +577,7 @@ The population of ampullary cells is generally more homogeneous, with lower base
|
||||
|
||||
\begin{figure*}[t]
|
||||
\includegraphics[width=\columnwidth]{model_full.pdf}
|
||||
\caption{\label{fig:model_full} Using second-order susceptibility to predict responses to sine-wave stimuli. \figitem[]{A} Absolute value of the second-order susceptibility, \eqnref{eq:susceptibility}, for both positive and negative frequencies. \susceptf{} was estimated from $N=10^6$ segments of model simulations in the noise-split condition (cell 2013-01-08-aa, see table~\ref{modelparams} for model parameters). White lines indicate zero frequencies. Nonlinear responses at \fsum{} are quantified in the upper right and lower left quadrants. Nonlinear responses at \fdiff{} are quantified in the upper left and lower right quadrants. The baseline firing rate of this cell was at $\fbase=120$\,Hz. The position of the orange/red letters corresponds to the beat frequencies used for the stimulation with pure sine waves in the subsequent panels and indicates the sum/difference of those beat frequencies. \figitem{B--E} Black line -- power spectral density of model simulations in response to stimulation with two pure sine waves, \fone{} and \ftwo, in addition to the receiving fish's own EOD (three-fish scenario). The contrast of beat beats is 0.02. Colored circles highlight the height of selected peaks in the power spectrum. Grey line -- power spectral density of model in the baseline condition. \figitem{B} The sum of the two beat frequencies match \fbase{}. \figitem{C} The difference of \fone{} and \ftwo{} match \fbase{}. \figitem{D} Only the first beat frequency matches \fbase{}. \figitem{E} None of the two beat frequencies matches \fbase{}.}
|
||||
\caption{\label{fig:model_full} Second-order susceptibility qualitatively predicts responses to sine-wave stimuli. \figitem[]{A} Absolute value of the second-order susceptibility, \eqnref{eq:susceptibility}, for both positive and negative frequencies. \susceptf{} was estimated from $N=10^6$ FFT segments of model simulations in the noise-split condition (cell ``2013-01-08-aa'', table~\ref{modelparams}). Dashed white lines mark zero frequencies. Nonlinear responses at \fsum{} are quantified in the upper right and lower left quadrants. Nonlinear responses at \fdiff{} are quantified in the upper left and lower right quadrants. The baseline firing rate of this cell was at $\fbase=120$\,Hz. The position of the orange/red letters corresponds to the beat frequencies used for the stimulation with pure sine waves in the subsequent panels and indicates the sum/difference of those beat frequencies. \figitem{B--E} Black line -- power spectral density of model simulations in response to stimulation with two pure sine waves, \fone{} and \ftwo, in addition to the receiving fish's own EOD (three-fish scenario). The contrast of beat beats is 2\,\%. Colored circles highlight the height of selected peaks in the power spectrum. Grey line -- power spectral density of model in the baseline condition. \figitem{B} The sum of the two beat frequencies match \fbase{}. \figitem{C} The difference of \fone{} and \ftwo{} match \fbase{}. \figitem{D} Only the first beat frequency matches \fbase{}. \figitem{E} None of the two beat frequencies matches \fbase{}.}
|
||||
\end{figure*}
|
||||
|
||||
\subsection{Second-order susceptibility can explain nonlinear peaks in pure sinewave stimulation}
|
||||
@ -639,6 +639,11 @@ The weakly nonlinear interactions in low-CV P-units could facilitate the detecta
|
||||
We have demonstrated pronounced nonlinear responses in primary electrosensory afferents at weak stimulus amplitudes and sufficiently low intrinsic noise levels. The observed nonlinearities match the expectations from previous theoretical studies \citep{Voronenko2017,Franzen2023}. The resulting nonlinear components introduce spectral components not present in the original stimulus, but may provide an edge in the context of signal detection problems at stimulus amplitudes close to threshold \citep{Schlungbaum2023}. Electrosenory afferents share an evolutionary history with hair cells \citep{Baker2019} and share many response properties with mammalian auditory nerve fibers \citep{Barayeu2023, Joris2004}. Thus, we expect weakly nonlinear responses for near-threshold stimulation in auditory nerve fibers.
|
||||
|
||||
|
||||
\section{Acknowledgements}
|
||||
\notejb{Supported by DFG SPP XXX}
|
||||
Tim Hladnik, Henriette Walz, Franziska Kuempfbeck, Fabian Sinz, Laura Seidler, Eva Vennemann, and Ibrahim Tunc recorded data.
|
||||
|
||||
|
||||
\section{Methods}
|
||||
|
||||
\subsection{Experimental subjects and procedures}
|
||||
|
Loading…
Reference in New Issue
Block a user