[noisesplit] almost done
This commit is contained in:
parent
8119543dda
commit
8d8b02d581
@ -93,10 +93,10 @@ def plot_overn(ax, s, files, nmax=1e6, title=False):
|
|||||||
ns = ns[indx]
|
ns = ns[indx]
|
||||||
stats = stats[indx]
|
stats = stats[indx]
|
||||||
ax.set_visible(True)
|
ax.set_visible(True)
|
||||||
ax.plot(ns, stats[:, 7], '0.5', lw=1, zorder=50, label='99.8\\%')
|
ax.plot(ns, stats[:, 7], zorder=50, label='99.8\\%', **s.lsMax)
|
||||||
ax.fill_between(ns, stats[:, 2], stats[:, 6], fc='0.85', zorder=40, label='5--95\\%')
|
ax.fill_between(ns, stats[:, 2], stats[:, 6], fc='0.85', zorder=40, label='5--95\\%')
|
||||||
ax.fill_between(ns, stats[:, 3], stats[:, 5], fc='0.5', zorder=45, label='25-75\\%')
|
ax.fill_between(ns, stats[:, 3], stats[:, 5], fc='0.5', zorder=45, label='25-75\\%')
|
||||||
ax.plot(ns, stats[:, 4], zorder=50, label='median', **s.lsSpine)
|
ax.plot(ns, stats[:, 4], zorder=50, label='median', **s.lsMedian)
|
||||||
#ax.plot(ns, stats[:, 8], '0.0')
|
#ax.plot(ns, stats[:, 8], '0.0')
|
||||||
if title:
|
if title:
|
||||||
if 'noise_frac' in data:
|
if 'noise_frac' in data:
|
||||||
|
214
noisesplit.py
214
noisesplit.py
@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from spectral import whitenoise
|
||||||
from plotstyle import plot_style
|
from plotstyle import plot_style
|
||||||
|
|
||||||
|
|
||||||
@ -33,9 +34,11 @@ def plot_chi2(ax, s, freqs, chi2, nsegs):
|
|||||||
for fac, delta in zip([1, 2, 3, 4, 6, 8, 10],
|
for fac, delta in zip([1, 2, 3, 4, 6, 8, 10],
|
||||||
[0.5, 1, 1, 2, 3, 4, 5]):
|
[0.5, 1, 1, 2, 3, 4, 5]):
|
||||||
if fac*ten >= vmax:
|
if fac*ten >= vmax:
|
||||||
vmax = fac*ten
|
vmax = prev_fac*ten
|
||||||
ten *= delta
|
ten *= prev_delta
|
||||||
break
|
break
|
||||||
|
prev_fac = fac
|
||||||
|
prev_delta = delta
|
||||||
pc = ax.pcolormesh(freqs, freqs, chi2, vmin=0, vmax=vmax,
|
pc = ax.pcolormesh(freqs, freqs, chi2, vmin=0, vmax=vmax,
|
||||||
rasterized=True)
|
rasterized=True)
|
||||||
ax.set_xlim(0, 300)
|
ax.set_xlim(0, 300)
|
||||||
@ -54,11 +57,60 @@ def plot_chi2(ax, s, freqs, chi2, nsegs):
|
|||||||
cb.outline.set_linewidth(0)
|
cb.outline.set_linewidth(0)
|
||||||
cax.set_ylabel(r'$|\chi_2|$ [Hz]')
|
cax.set_ylabel(r'$|\chi_2|$ [Hz]')
|
||||||
cax.set_yticks_delta(ten)
|
cax.set_yticks_delta(ten)
|
||||||
|
return cax
|
||||||
|
|
||||||
|
|
||||||
def plot_chi2_contrast(ax1, ax2, s, cell_name, contrast, nsmall, nlarge):
|
def plot_overn(ax, s, files, nmax=1e6):
|
||||||
data_files = sims_path.glob(f'chi2-noisen-{cell_name}-{1000*contrast:03.0f}-*.npz')
|
ns = []
|
||||||
files, nums = sort_files(cell_name, data_files, 2)
|
stats = []
|
||||||
|
for fname in files:
|
||||||
|
data = np.load(fname)
|
||||||
|
n = data['n']
|
||||||
|
if nmax is not None and n > nmax:
|
||||||
|
continue
|
||||||
|
alpha = data['alpha']
|
||||||
|
freqs = data['freqs']
|
||||||
|
pss = data['pss']
|
||||||
|
dt_fix = 1 # 0.0005
|
||||||
|
chi2 = np.abs(data['prss'])/dt_fix*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
||||||
|
ns.append(n)
|
||||||
|
i0 = np.argmin(freqs < 0)
|
||||||
|
i1 = np.argmax(freqs > 300)
|
||||||
|
if i1 == 0:
|
||||||
|
i1 = len(freqs)
|
||||||
|
chi2 = chi2[i0:i1, i0:i1]
|
||||||
|
stats.append(np.quantile(chi2, [0, 0.001, 0.05, 0.25, 0.5,
|
||||||
|
0.75, 0.95, 0.998, 1.0]))
|
||||||
|
ns = np.array(ns)
|
||||||
|
stats = np.array(stats)
|
||||||
|
indx = np.argsort(ns)
|
||||||
|
ns = ns[indx]
|
||||||
|
stats = stats[indx]
|
||||||
|
ax.set_visible(True)
|
||||||
|
ax.plot(ns, stats[:, 7], zorder=50, label='99.8\\%', **s.lsMax)
|
||||||
|
ax.fill_between(ns, stats[:, 2], stats[:, 6], fc='0.85', zorder=40, label='5--95\\%')
|
||||||
|
ax.fill_between(ns, stats[:, 3], stats[:, 5], fc='0.5', zorder=45, label='25-75\\%')
|
||||||
|
ax.plot(ns, stats[:, 4], zorder=50, label='median', **s.lsMedian)
|
||||||
|
#ax.plot(ns, stats[:, 8], '0.0')
|
||||||
|
ax.set_xlim(1e2, nmax)
|
||||||
|
ax.set_xscale('log')
|
||||||
|
ax.set_yscale('log')
|
||||||
|
ax.set_yticks_log(numticks=5)
|
||||||
|
if nmax > 1e6:
|
||||||
|
ax.set_ylim(3e-1, 5e3)
|
||||||
|
ax.set_minor_yticks_log(numticks=5)
|
||||||
|
ax.set_xticks_log(numticks=4)
|
||||||
|
ax.set_minor_xticks_log(numticks=8)
|
||||||
|
else:
|
||||||
|
ax.set_ylim(1e0, 1.3e3)
|
||||||
|
#ax.set_minor_yticks_log(numticks=5)
|
||||||
|
ax.set_xticks_log(numticks=5)
|
||||||
|
#ax.set_minor_xticks_log(numticks=6)
|
||||||
|
ax.set_xlabel('segments')
|
||||||
|
ax.set_ylabel('$|\\chi_2|$ [Hz]')
|
||||||
|
|
||||||
|
|
||||||
|
def plot_chi2_contrast(ax1, ax2, s, files, nums, nsmall, nlarge):
|
||||||
for ax, n in zip([ax1, ax2], [nsmall, nlarge]):
|
for ax, n in zip([ax1, ax2], [nsmall, nlarge]):
|
||||||
i = nums.index(n)
|
i = nums.index(n)
|
||||||
data = np.load(files[i])
|
data = np.load(files[i])
|
||||||
@ -67,12 +119,11 @@ def plot_chi2_contrast(ax1, ax2, s, cell_name, contrast, nsmall, nlarge):
|
|||||||
freqs = data['freqs']
|
freqs = data['freqs']
|
||||||
pss = data['pss']
|
pss = data['pss']
|
||||||
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
||||||
plot_chi2(ax, s, freqs, chi2, n)
|
cax = plot_chi2(ax, s, freqs, chi2, n)
|
||||||
|
cax.set_ylabel('')
|
||||||
|
|
||||||
|
|
||||||
def plot_chi2_split(ax1, ax2, s, cell_name, nsmall, nlarge):
|
def plot_chi2_split(ax1, ax2, s, files, nums, nsmall, nlarge):
|
||||||
data_files = sims_path.glob(f'chi2-split-{cell_name}-*.npz')
|
|
||||||
files, nums = sort_files(cell_name, data_files, 1)
|
|
||||||
for ax, n in zip([ax1, ax2], [nsmall, nlarge]):
|
for ax, n in zip([ax1, ax2], [nsmall, nlarge]):
|
||||||
i = nums.index(n)
|
i = nums.index(n)
|
||||||
data = np.load(files[i])
|
data = np.load(files[i])
|
||||||
@ -82,11 +133,17 @@ def plot_chi2_split(ax1, ax2, s, cell_name, nsmall, nlarge):
|
|||||||
freqs = data['freqs']
|
freqs = data['freqs']
|
||||||
pss = data['pss']
|
pss = data['pss']
|
||||||
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
||||||
plot_chi2(ax, s, freqs, chi2, n)
|
cax = plot_chi2(ax, s, freqs, chi2, n)
|
||||||
|
cax.set_ylabel('')
|
||||||
return alpha, noise_frac
|
return alpha, noise_frac
|
||||||
|
|
||||||
|
|
||||||
def plot_chi2_data(ax, s, cell_name, run):
|
def plot_chi2_data(ax, s, cell_name, run):
|
||||||
|
data_file = data_path / f'{cell_name}-baseline.npz'
|
||||||
|
data = np.load(data_file)
|
||||||
|
eodf = float(data['eodf'])
|
||||||
|
ratebase = float(data['ratebase/Hz'])
|
||||||
|
cvbase = float(data['cvbase'])
|
||||||
data_file = data_path / f'{cell_name}-spectral-s{run:02d}.npz'
|
data_file = data_path / f'{cell_name}-spectral-s{run:02d}.npz'
|
||||||
data = np.load(data_file)
|
data = np.load(data_file)
|
||||||
n = data['n']
|
n = data['n']
|
||||||
@ -94,57 +151,138 @@ def plot_chi2_data(ax, s, cell_name, run):
|
|||||||
freqs = data['freqs']
|
freqs = data['freqs']
|
||||||
pss = data['pss']
|
pss = data['pss']
|
||||||
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
chi2 = np.abs(data['prss'])*0.5/np.sqrt(pss.reshape(1, -1)*pss.reshape(-1, 1))
|
||||||
print(f'Measured cell {data_file.name} at {100*alpha:.1f}% contrast')
|
print(f'Measured cell {data_file.name} at {100*alpha:.1f}% contrast: r={ratebase:3.0f}Hz, CV={cvbase:4.2f}')
|
||||||
plot_chi2(ax, s, freqs, chi2, n)
|
plot_chi2(ax, s, freqs, chi2, n)
|
||||||
return alpha
|
return alpha, ratebase, eodf
|
||||||
|
|
||||||
|
|
||||||
def plot_noise_split(ax, contrast, noise_contrast, noise_frac):
|
def plot_ram(ax, contrast, eodf, wtime, wnoise):
|
||||||
axr, axs, axn = ax.subplots(3, 1, hspace=0.1)
|
|
||||||
tmax = 50
|
tmax = 50
|
||||||
|
am = 1 + contrast*wnoise
|
||||||
|
eod = np.sin(2*np.pi*eodf*wtime)*am
|
||||||
|
|
||||||
|
ax.show_spines('l')
|
||||||
|
ax.plot(1e3*wtime, eod, clip_on=False, **s.lsEOD)
|
||||||
|
ax.plot(1e3*wtime, +am, clip_on=False, **s.lsAM)
|
||||||
|
ax.plot(1e3*wtime, -am, clip_on=False, **s.lsAM)
|
||||||
|
ax.set_xlim(0, tmax)
|
||||||
|
ax.set_ylim(-1.3, 1.3)
|
||||||
|
ax.set_yticks_delta(1)
|
||||||
|
ax.set_ylabel('EOD')
|
||||||
|
ax.text(1, 1, f'RAM ($c={100*contrast:.0f}$\\,\\%)', ha='right',
|
||||||
|
transform=ax.transAxes, color=s.lsAM['color'])
|
||||||
|
|
||||||
|
|
||||||
|
def plot_noise_split(ax, contrast, noise_contrast, noise_frac,
|
||||||
|
wtime, wnoise):
|
||||||
|
axr, axs, axn = ax.subplots(3, 1, hspace=0.2)
|
||||||
|
cmax = 26
|
||||||
|
cdelta = 20
|
||||||
|
tmax = 50
|
||||||
|
|
||||||
axr.show_spines('l')
|
axr.show_spines('l')
|
||||||
|
axr.axhline(0, **s.lsGrid)
|
||||||
|
axr.plot(1e3*wtime, 100*contrast*wnoise, clip_on=False, **s.lsAM)
|
||||||
axr.set_xlim(0, tmax)
|
axr.set_xlim(0, tmax)
|
||||||
axr.set_ylim(-8, 8)
|
axr.set_ylim(-cmax, cmax)
|
||||||
axr.set_yticks_delta(6)
|
axr.set_yticks_delta(cdelta)
|
||||||
axr.set_ylabel('\\%')
|
axr.set_ylabel('\\%')
|
||||||
|
axr.text(1, 1, f'RAM ($c={100*contrast:.0f}$\\,\\%)', ha='right',
|
||||||
|
transform=axr.transAxes, color=s.lsAM['color'])
|
||||||
|
|
||||||
axs.show_spines('l')
|
axs.show_spines('l')
|
||||||
|
axs.axhline(0, **s.lsGrid)
|
||||||
|
axs.plot(1e3*wtime, 100*noise_contrast*wnoise, clip_on=False, **s.lsAMsplit)
|
||||||
axs.set_xlim(0, tmax)
|
axs.set_xlim(0, tmax)
|
||||||
axs.set_ylim(-8, 8)
|
axs.set_ylim(-cmax, cmax)
|
||||||
axs.set_yticks_delta(6)
|
axs.set_yticks_delta(cdelta)
|
||||||
axs.set_ylabel('\\%')
|
axs.set_ylabel('\\%')
|
||||||
|
if noise_contrast > 0:
|
||||||
axn.set_ylim(-6, 6)
|
axs.text(1, 1, f'$s_{{\\xi}}(t)$ ($c={100*noise_contrast:.0f}$\\,\\%)',
|
||||||
|
ha='right', transform=axs.transAxes,
|
||||||
|
color=s.lsAMsplit['color'])
|
||||||
|
|
||||||
|
ntime = np.linspace(0, 1e-3*tmax, 800)
|
||||||
|
rng = np.random.default_rng(45432)
|
||||||
|
nnoise = rng.normal(size=len(ntime))
|
||||||
|
axn.show_spines('l')
|
||||||
|
axn.axhline(0, **s.lsGrid)
|
||||||
|
axn.plot(1e3*ntime, noise_frac*nnoise, clip_on=False, **s.lsNoise)
|
||||||
|
axn.set_ylim(-2, 2)
|
||||||
axn.set_xlim(0, tmax)
|
axn.set_xlim(0, tmax)
|
||||||
axn.set_yticks_delta(6)
|
axn.set_yticks_delta(5)
|
||||||
axn.set_yticks_blank()
|
axn.set_yticks_blank()
|
||||||
axn.set_xticks_delta(25)
|
#axn.set_xticks_delta(25)
|
||||||
axn.set_xlabel('Time', 'ms')
|
#axn.set_xlabel('Time', 'ms')
|
||||||
|
y = 0.8 if noise_frac < 1 else 1.2
|
||||||
|
axn.text(1, y, f'Intrinsic noise (${100*noise_frac:.0f}$\\,\\%)',
|
||||||
|
ha='right', transform=axn.transAxes, color=s.lsNoise['color'])
|
||||||
|
if noise_frac < 1:
|
||||||
|
axn.xscalebar(1, 0, 10, 'ms', ha='right')
|
||||||
|
|
||||||
|
return axr
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
cell_name = '2012-07-03-ak-invivo-1'
|
#cell_name = ['2012-07-03-ak-invivo-1', 0]
|
||||||
|
cell_name = ['2017-07-18-ai-invivo-1', 1] # Take this! at 3% model, 5% data
|
||||||
nsmall = 100
|
nsmall = 100
|
||||||
nlarge = 1000000
|
nlarge = 1000000
|
||||||
contrast = 0.03
|
contrast = 0.03
|
||||||
|
|
||||||
|
wdt = 0.0001
|
||||||
|
wnoise = whitenoise(0, 300, wdt, 0.05, rng=np.random.default_rng(51234))
|
||||||
|
wtime = np.arange(len(wnoise))*wdt
|
||||||
|
|
||||||
s = plot_style()
|
s = plot_style()
|
||||||
fig, axs = plt.subplots(2, 4, cmsize=(s.plot_width, 0.4*s.plot_width),
|
fig, axs = plt.subplots(3, 4, cmsize=(s.plot_width, 0.7*s.plot_width),
|
||||||
width_ratios=[1, 0, 1, 1, 1])
|
width_ratios=[1, 0, 1, 1, 0.15, 1])
|
||||||
fig.subplots_adjust(leftm=7, rightm=8, topm=2, bottomm=3.5,
|
fig.subplots_adjust(leftm=8, rightm=1.5, topm=3, bottomm=4,
|
||||||
wspace=0.4, hspace=0.6)
|
wspace=0.25, hspace=0.8)
|
||||||
axs[1, 0].set_visible(False)
|
axs[0, 2].set_visible(False)
|
||||||
data_contrast = plot_chi2_data(axs[0, 0], s, cell_name[:13], 0)
|
axs[0, 3].set_visible(False)
|
||||||
plot_noise_split(axs[0, 1], data_contrast, 0, 1)
|
|
||||||
plot_chi2_contrast(axs[0, 2], axs[0, 3], s, cell_name, contrast, nsmall, nlarge)
|
# data:
|
||||||
noise_contrast, noise_frac = plot_chi2_split(axs[1, 2], axs[1, 3], s,
|
axs[0, 1].text(-2.42, 1.2, 'P-unit data', fontsize='large',
|
||||||
cell_name, nsmall, nlarge)
|
transform=axs[0, 1].transAxes, color=s.punit_color1)
|
||||||
plot_noise_split(axs[1, 1], contrast, noise_contrast, noise_frac)
|
data_contrast, ratebase, eodf = plot_chi2_data(axs[0, 1], s, cell_name[0],
|
||||||
|
cell_name[1])
|
||||||
|
plot_ram(axs[0, 0], data_contrast, eodf, wtime, wnoise)
|
||||||
|
axs[0, 1].text(-1.5, 1.2, f'$r={ratebase:.0f}$\\,Hz',
|
||||||
|
transform=axs[0, 1].transAxes, fontsize='large')
|
||||||
|
|
||||||
|
# model:
|
||||||
|
data_files = sims_path.glob(f'chi2-noisen-{cell_name[0]}-{1000*contrast:03.0f}-*.npz')
|
||||||
|
files, nums = sort_files(cell_name[0], data_files, 2)
|
||||||
|
axs[1, 1].text(-2.42, 1.2, 'P-unit model', fontsize='large',
|
||||||
|
transform=axs[1, 1].transAxes, color=s.model_color1)
|
||||||
|
plot_chi2_contrast(axs[1, 1], axs[1, 2], s, files, nums, nsmall, nlarge)
|
||||||
|
axr1 = plot_noise_split(axs[1, 0], contrast, 0, 1, wtime, wnoise)
|
||||||
|
plot_overn(axs[1, 3], s, files, nmax=1e6)
|
||||||
|
axs[1, 3].legend(loc='lower center', bbox_to_anchor=(0.5, 1.1),
|
||||||
|
markerfirst=False, title='$|\\chi_2|$ percentiles')
|
||||||
|
|
||||||
|
# model noise split:
|
||||||
|
data_files = sims_path.glob(f'chi2-split-{cell_name[0]}-*.npz')
|
||||||
|
files, nums = sort_files(cell_name[0], data_files, 1)
|
||||||
|
axs[2, 1].text(-2.42, 1.2, 'P-unit model', fontsize='large',
|
||||||
|
transform=axs[2, 1].transAxes, color=s.model_color1)
|
||||||
|
axs[2, 1].text(-1.5, 1.2, f'(noise split)', fontsize='large',
|
||||||
|
transform=axs[2, 1].transAxes)
|
||||||
|
noise_contrast, noise_frac = plot_chi2_split(axs[2, 1], axs[2, 2], s,
|
||||||
|
files, nums, nsmall, nlarge)
|
||||||
|
axr2 = plot_noise_split(axs[2, 0], 0, noise_contrast, noise_frac,
|
||||||
|
wtime, wnoise)
|
||||||
|
plot_overn(axs[2, 3], s, files, nmax=1e6)
|
||||||
|
|
||||||
|
fig.common_xticks(axs[:, 1])
|
||||||
fig.common_xticks(axs[:, 2])
|
fig.common_xticks(axs[:, 2])
|
||||||
fig.common_xticks(axs[:, 3])
|
fig.common_xticks(axs[:, 3])
|
||||||
fig.common_yticks(axs[0, 2:])
|
fig.common_yticks(axs[1, 1:3])
|
||||||
fig.common_yticks(axs[1, 2:])
|
fig.common_yticks(axs[2, 1:3])
|
||||||
#fig.tag(axs, xoffs=-4.5, yoffs=1.8)
|
fig.tag([axs[0, :2],
|
||||||
|
[axr1] + axs[1, 1:].tolist(),
|
||||||
|
[axr2] + axs[2, 1:].tolist()],
|
||||||
|
xoffs=-4.5, yoffs=2)
|
||||||
fig.savefig()
|
fig.savefig()
|
||||||
print()
|
print()
|
||||||
|
@ -55,7 +55,11 @@ def plot_style():
|
|||||||
pt.make_line_styles(ns, 'ls', 'Line', '', palette['black'], '-',
|
pt.make_line_styles(ns, 'ls', 'Line', '', palette['black'], '-',
|
||||||
lwthin)
|
lwthin)
|
||||||
pt.make_line_styles(ns, 'ls', 'EOD', '', palette['gray'], '-', lwthin)
|
pt.make_line_styles(ns, 'ls', 'EOD', '', palette['gray'], '-', lwthin)
|
||||||
pt.make_line_styles(ns, 'ls', 'AM', '', palette['red'], '-', lwthick)
|
pt.make_line_styles(ns, 'ls', 'AM', '', palette['red'], '-', lwmid)
|
||||||
|
pt.make_line_styles(ns, 'ls', 'AMsplit', '', palette['orange'], '-', lwmid)
|
||||||
|
pt.make_line_styles(ns, 'ls', 'Noise', '', palette['gray'], '-', lwmid)
|
||||||
|
pt.make_line_styles(ns, 'ls', 'Median', '', palette['black'], '-', lwthick)
|
||||||
|
pt.make_line_styles(ns, 'ls', 'Max', '', palette['black'], '-', lwmid)
|
||||||
|
|
||||||
ns.lsStim = dict(color='gray', lw=ns.lwmid)
|
ns.lsStim = dict(color='gray', lw=ns.lwmid)
|
||||||
ns.lsRaster = dict(color='black', lw=ns.lwthin)
|
ns.lsRaster = dict(color='black', lw=ns.lwthin)
|
||||||
|
@ -14,9 +14,9 @@ run2 = 1
|
|||||||
example_cells = [
|
example_cells = [
|
||||||
['2021-06-18-ae-invivo-1', 3], # 98Hz, 1%, ok
|
['2021-06-18-ae-invivo-1', 3], # 98Hz, 1%, ok
|
||||||
['2012-03-30-ah', 2], # 177Hz, 2.5%, 2.0, nice
|
['2012-03-30-ah', 2], # 177Hz, 2.5%, 2.0, nice
|
||||||
##['2012-07-03-ak', 0], # 120Hz, 2.5%, 1.8, broader
|
##['2012-07-03-ak', 0], # 120Hz, 2.5%, 1.8, broader, the one model cell, nice triangle up to 1%!
|
||||||
##['2012-12-20-ac', 0], # 213Hz, 2.5%, 2.1, ok
|
##['2012-12-20-ac', 0], # 213Hz, 2.5%, 2.1, ok, model cell, weak triangle up to 1%!
|
||||||
#['2017-07-18-ai-invivo-1', 1], # 78Hz, 5%, 2.3, weak
|
#['2017-07-18-ai-invivo-1', 1], # 78Hz, 5%, 2.3, weak, nice model cell with clear triangle up to 10%!
|
||||||
##['2019-06-28-ae', 0], # 477Hz, 10%, 2.6, weak
|
##['2019-06-28-ae', 0], # 477Hz, 10%, 2.6, weak
|
||||||
##['2020-10-27-aa-invivo-1', 4], # 259Hz, 0.5%, 2.0, ok
|
##['2020-10-27-aa-invivo-1', 4], # 259Hz, 0.5%, 2.0, ok
|
||||||
##['2020-10-27-ae-invivo-1', 4], # 375Hz, 0.5%, 4.3, nice, additional low freq line
|
##['2020-10-27-ae-invivo-1', 4], # 375Hz, 0.5%, 4.3, nice, additional low freq line
|
||||||
|
Loading…
Reference in New Issue
Block a user