finished new figure captions

This commit is contained in:
Jan Benda 2025-05-23 11:25:53 +02:00
parent 3e07684093
commit 585e5ec27b
6 changed files with 116 additions and 156 deletions

View File

@ -1,10 +1,4 @@
cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;durationbase/s;ratebase/Hz;cvbase;vsbase;vsmode;serialcorr1;serialcorrnull;burstfrac;burstfracthresh;burstthresh/s;stimindex;contrast;stimulus;fcutoff/Hz;duration/s;trials;ratestim/Hz;cvstim;respmod1/Hz;respmod2/Hz;respmod4/Hz;transferfpeak/Hz;transferpeak/Hz;coherefpeak/Hz;coherepeak;nsegs;nlifpeak/Hz;nli;nlimedian;nsegs_single;nlifpeak_single/Hz;nli_single;nlimedian_single;nsegs_5s;nlifpeak_5s/Hz;nli_5s;nlimedian_5s
2010-04-28-af;Apteronotus leptorhynchus;17;-;Ampullary;Nerve;good;892;4356;32.6146;133.619;0.132269;0.0572138;1;-0.262052;0.0493963;0;0;0;0;0.2;gwn100Hz10s0.3.dat;100;10;11;132.709;0.555356;89.3286;71.9568;53.3382;27.3438;522.369;27.3438;0.866904;418;148.438;1.3613;1.20051;38;175.781;2.09077;2.81892;18;175.781;2.86461;3.53128
2010-04-28-at;Apteronotus leptorhynchus;17;-;Ampullary;Nerve;fair;885;3474;27.4183;126.73;0.115227;0.0410552;1;-0.325095;0.0519928;0;0;0;0;0.2;gwn100Hz10s0.3.dat;100;10;5;92.1224;0.658304;105.186;73.0515;51.219;39.0625;429.206;39.0625;0.63249;190;175.781;1.64147;1.54247;38;152.344;1.85215;1.75485;18;175.781;1.09077;1.93135
2010-04-28-at;Apteronotus leptorhynchus;17;-;Ampullary;Nerve;fair;885;3474;27.4183;126.73;0.115227;0.0410552;1;-0.325095;0.0519928;0;0;0;1;0.2;gwn100Hz10s0.3.dat;100;10;5;83.1633;0.624523;101.084;66.6904;45.2904;31.25;361.963;39.0625;0.545143;190;113.281;1.67341;1.92267;38;113.281;1.59327;1.94575;18;175.781;1.27984;1.79457
2010-04-28-at;Apteronotus leptorhynchus;17;-;Ampullary;Nerve;fair;885;3474;27.4183;126.73;0.115227;0.0410552;1;-0.325095;0.0519928;0;0;0;2;0.2;gwn100Hz10s0.3.dat;100;10;8;80.7653;0.575645;98.5909;63.8735;42.6526;39.0625;348.454;27.3438;0.618219;304;113.281;1.47452;1.8736;38;144.531;1.5704;1.90153;18;175.781;1.79957;2.34631
2010-05-07-av;Apteronotus leptorhynchus;13;-;Ampullary;Nerve;good;723;3192;31.13;102.534;0.129037;0.122025;1;-0.381929;0.0542761;0;0;0;0;0.2;gwn100Hz10s0.3.dat;100;10;25;104.388;0.614711;86.4156;70.2956;52.2396;19.5312;499.882;11.7188;0.793711;950;54.6875;1.36459;1.90917;38;82.0312;1.4081;1.36934;18;132.812;1.4413;1.50664
2010-05-07-av;Apteronotus leptorhynchus;13;-;Ampullary;Nerve;good;723;3192;31.13;102.534;0.129037;0.122025;1;-0.381929;0.0542761;0;0;0;2;0.2;gwn100Hz10s0.3.dat;100;10;50;104.039;0.604549;86.5408;70.8827;52.8477;19.5312;510.133;27.3438;0.849552;1900;54.6875;1.30522;1.81824;38;152.344;1.18372;1.5345;18;152.344;1.20295;1.56645
2010-05-18-af;Apteronotus leptorhynchus;14;-;Ampullary;Nerve;good;635;2770;34.9956;79.1715;0.102739;0.0246739;1;0.0198069;0.0614926;0;0;0;0;0.2;gwn150Hz10s0.3.dat;150;10;22;78.4787;0.500701;57.7174;45.9132;36.058;15.625;454.473;11.7188;0.805778;836;35.1562;1.63285;2.11554;38;105.469;1.32812;1.52964;18;105.469;1.30443;1.49856
2010-05-21-aj;Apteronotus leptorhynchus;15.5;-;Ampullary;Nerve;fair;793;5160;33.5363;153.888;0.148552;0.026761;1;-0.0471877;0.0476448;0;0;0;0;0.2;gwn150Hz10s0.3.dat;150;10;25;156.759;0.186892;39.3693;25.1679;18.0827;27.3438;210.939;27.3438;0.689643;950;156.25;1.68403;2.41387;38;152.344;1.56968;2.42894;18;152.344;1.67762;2.95679
2010-05-21-aj;Apteronotus leptorhynchus;15.5;-;Ampullary;Nerve;fair;793;5160;33.5363;153.888;0.148552;0.026761;1;-0.0471877;0.0476448;0;0;0;1;0.1;gwn150Hz10s0.3.dat;150;10;11;135.232;0.232333;44.5768;18.5342;11.3723;136.719;252.304;27.3438;0.181645;418;152.344;3.91373;6.46129;38;152.344;3.36487;6.01846;18;152.344;3.39688;6.0765
@ -60,57 +54,19 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2012-05-15-ac;Apteronotus leptorhynchus;12.5;5.1;Ampullary;Nerve;good;667;11806;83.3791;141.611;0.0481658;0.107312;1;-0.0545366;0.0288959;0;0;0;4;0.1;gwn150Hz10s0.3.dat;150;10;16;141.767;0.104929;41.4485;17.9908;10.1925;132.812;459.6;27.3438;0.585054;608;136.719;2.56081;5.5712;38;136.719;3.25441;5.55113;18;136.719;4.75285;7.28743
2012-05-15-ac;Apteronotus leptorhynchus;12.5;5.1;Ampullary;Nerve;good;667;11806;83.3791;141.611;0.0481658;0.107312;1;-0.0545366;0.0288959;0;0;0;5;0.2;gwn150Hz10s0.3.dat;150;10;3;119.49;0.404033;88.6304;43.2043;25.6483;140.625;436.037;27.3438;0.313207;114;140.625;1.42244;2.33999;38;136.719;1.42761;2.65573;18;140.625;1.49888;2.92994
2012-05-15-ac;Apteronotus leptorhynchus;12.5;5.1;Ampullary;Nerve;good;667;11806;83.3791;141.611;0.0481658;0.107312;1;-0.0545366;0.0288959;0;0;0;6;0.2;gwn150Hz10s0.3.dat;150;10;16;125.733;0.44698;57.9149;30.2131;18.4491;140.625;305.509;35.1562;0.461898;608;144.531;1.39374;2.65929;38;132.812;1.47686;2.09568;18;136.719;1.44734;2.05281
2012-06-08-aj;Apteronotus leptorhynchus;14.5;10;Ampullary;Nerve;good;840;5026;30.464;164.96;0.101653;0.119912;1;-0.219405;0.0449507;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;189;163.51;0.103695;15.216;8.52573;7.31872;164.062;4911.26;97.6562;0.0027973;1323;160.156;6.19991;7.42821;7;160.156;4.29183;4.91982;7;160.156;4.29183;4.91982
2012-06-08-aj;Apteronotus leptorhynchus;14.5;10;Ampullary;Nerve;good;840;5026;30.464;164.96;0.101653;0.119912;1;-0.219405;0.0449507;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;120;164.088;0.105995;15.2744;8.53854;7.2825;183.594;1168.71;27.3438;0.00624412;840;160.156;4.39603;4.77495;7;160.156;5.16386;6.15278;7;160.156;5.16386;6.15278
2012-06-08-aj;Apteronotus leptorhynchus;14.5;10;Ampullary;Nerve;good;840;5026;30.464;164.96;0.101653;0.119912;1;-0.219405;0.0449507;0;0;0;2;0.1;gwn300Hz10s0.3short.dat;300;2;135;163.123;0.137737;14.2563;8.28482;7.18398;164.062;1142.69;203.125;0.00755612;945;160.156;4.99613;4.98378;7;164.062;2.84929;3.62476;7;164.062;2.84929;3.62476
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;49;137.562;0.0811087;16.7101;9.32536;7.22105;269.531;8658.31;31.25;0.105298;343;132.812;3.13309;3.15143;7;136.719;8.34537;6.68058;7;136.719;8.34537;6.68058
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;123;135.867;0.0932509;16.3089;10.7294;8.06282;140.625;3202;15.625;0.288209;861;132.812;3.79716;4.1151;7;132.812;7.21879;6.9329;7;132.812;7.21879;6.9329
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;2;0.1;gwn300Hz10s0.3short.dat;300;2;114;136.672;0.130666;22.9208;16.6846;11.959;31.25;1418.35;15.625;0.593671;798;132.812;2.07958;2.73782;7;132.812;3.83435;4.06447;7;132.812;3.83435;4.06447
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;3;0.025;gwn150Hz10s0.3short.dat;150;2;110;137.99;0.0842129;17.0328;9.94927;7.59422;140.625;2272.37;39.0625;0.158623;770;136.719;4.78018;6.52797;7;132.812;8.75118;11.0131;7;132.812;8.75118;11.0131
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;4;0.05;gwn150Hz10s0.3short.dat;150;2;125;135.618;0.10256;18.8579;12.4904;9.09497;132.812;724.029;15.625;0.413126;875;132.812;2.95999;4.2622;7;132.812;4.04291;7.40859;7;132.812;4.04291;7.40859
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;5;0.1;gwn150Hz10s0.3short.dat;150;2;122;137.336;0.156814;32.9157;21.9263;14.7499;132.812;495.864;15.625;0.703292;854;136.719;2.4388;3.62448;7;136.719;1.90433;3.21194;7;136.719;1.90433;3.21194
2012-07-12-al;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;746;4243;30.5668;138.805;0.0755225;0.0068461;1;-0.222826;0.0479118;0;0;0;6;0.025;gwn150Hz10s0.3.dat;150;10;20;137.01;0.0823391;31.1635;11.5256;4.87523;136.719;1402.18;27.3438;0.176036;760;132.812;6.08243;8.55906;38;132.812;7.106;8.96488;18;132.812;7.78783;10.6118
2012-07-12-an;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;766;3607;29.7472;121.237;0.057747;0.0301156;1;-0.208778;0.0515187;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;88;120.979;0.0596767;16.232;9.23446;6.66715;242.188;7627.55;50.7812;0.0150735;616;117.188;8.60953;6.54486;7;117.188;9.00674;6.46307;7;117.188;9.00674;6.46307
2012-07-12-an;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;766;3607;29.7472;121.237;0.057747;0.0301156;1;-0.208778;0.0515187;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;116;121.231;0.0623433;14.8498;8.76565;6.51384;121.094;4114.6;15.625;0.0767796;812;117.188;10.4532;7.99808;7;117.188;9.72651;6.44674;7;117.188;9.72651;6.44674
2012-07-12-an;Apteronotus leptorhynchus;12.5;-;Ampullary;Nerve;good;766;3607;29.7472;121.237;0.057747;0.0301156;1;-0.208778;0.0515187;0;0;0;2;0.1;gwn300Hz10s0.3short.dat;300;2;83;119.739;0.0761934;16.8761;10.381;7.5901;125;1539.8;35.1562;0.187141;581;117.188;4.59165;4.63272;7;117.188;10.8223;7.32657;7;117.188;10.8223;7.32657
2012-12-13-ai;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;659;3726;31.1565;119.619;0.0762188;0.0499267;1;-0.0366303;0.0498219;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;48;117.465;0.0910177;21.4871;12.1595;8.09316;238.281;7947.85;19.5312;0.275028;336;117.188;3.61664;3.37879;7;113.281;3.72123;3.49761;7;113.281;3.72123;3.49761
2012-12-13-ai;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;659;3726;31.1565;119.619;0.0762188;0.0499267;1;-0.0366303;0.0498219;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;34;117.206;0.135349;32.9434;19.4883;11.9358;121.094;5266.29;15.625;0.563418;238;117.188;2.46013;3.51194;7;113.281;2.30432;2.68436;7;113.281;2.30432;2.68436
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;28;154.107;0.0830419;27.9514;10.4409;7.16917;156.25;11080.8;50.7812;0.0927743;196;148.438;2.62315;4.09521;7;144.531;2.69546;3.81528;7;144.531;2.69546;3.81528
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;53;154.015;0.0898975;22.5454;11.1539;8.45333;160.156;4698.23;15.625;0.26807;371;152.344;2.94962;4.10697;7;156.25;3.50733;5.86238;7;156.25;3.50733;5.86238
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;2;0.1;gwn300Hz10s0.3short.dat;300;2;50;154.211;0.119666;25.4336;15.7951;11.8138;160.156;2558.94;39.0625;0.469134;350;152.344;2.31772;2.98929;7;148.438;3.16321;3.96013;7;148.438;3.16321;3.96013
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;3;0.025;gwn150Hz10s0.3short.dat;150;2;43;154.496;0.0869103;22.6864;10.444;7.83434;148.438;1959.94;15.625;0.166468;301;152.344;3.18552;6.31376;7;152.344;5.497;10.2219;7;152.344;5.497;10.2219
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;4;0.05;gwn150Hz10s0.3short.dat;150;2;39;154.031;0.103289;26.0697;13.5534;9.76368;148.438;943.078;15.625;0.416691;273;144.531;2.38246;4.63101;7;156.25;3.47182;7.02856;7;156.25;3.47182;7.02856
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;5;0.1;gwn150Hz10s0.3short.dat;150;2;34;154.069;0.156596;33.2365;21.6729;15.9511;140.625;384.881;39.0625;0.65497;238;156.25;1.54442;2.75087;7;156.25;1.944;4.07553;7;156.25;1.944;4.07553
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;6;0.025;gwn150Hz10s0.3.dat;150;10;19;156.176;0.0937916;33.1622;10.4479;5.42592;148.438;714.915;15.625;0.138218;722;152.344;2.07866;5.90619;38;148.438;2.41105;6.31729;18;148.438;3.35752;7.43257
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;7;0.05;gwn150Hz10s0.3.dat;150;10;19;157.084;0.108135;33.9416;13.7646;8.68919;148.438;614.434;27.3438;0.417872;722;156.25;2.78656;6.2252;38;152.344;2.41562;5.23298;18;160.156;2.01793;4.92892
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;12;0.025;blwn125Hz10s0.3.dat;125;10;18;155.754;0.0974115;32.8782;9.9014;4.43574;42.9688;2554.34;82.0312;0.0750057;684;152.344;2.35523;6.0588;38;148.438;2.26104;6.65742;18;148.438;2.66055;7.53206
2012-12-18-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;629;4802;31.8472;150.788;0.146096;0.014558;1;0.0632353;0.0524178;0;0;0;13;0.05;blwn125Hz10s0.3.dat;125;10;17;158.571;0.100569;36.8134;11.3478;4.3966;42.9688;1585.58;78.125;0.220304;646;156.25;2.55341;6.32418;38;156.25;3.583;9.40472;18;156.25;4.38481;11.4592
2012-12-18-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;651;6206;36.7363;168.949;0.152686;0.0520582;1;0.222372;0.0424781;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;95;169.333;0.133268;21.2381;14.2119;10.6057;175.781;5338.35;39.0625;0.458774;665;160.156;1.47941;2.28448;7;179.688;2.30005;3.83644;7;179.688;2.30005;3.83644
2012-12-18-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;651;6206;36.7363;168.949;0.152686;0.0520582;1;0.222372;0.0424781;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;54;166.193;0.208838;33.8777;24.7291;17.5732;31.25;4214.72;39.0625;0.691694;378;179.688;1.46863;2.10692;7;171.875;1.6042;2.25387;7;171.875;1.6042;2.25387
2012-12-19-aa;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;766;4295;32.9982;130.187;0.10381;0.0678645;1;0.142469;0.0473172;0.00163018;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;56;132.202;0.156586;19.0504;11.4753;8.98505;265.625;7197.53;15.625;0.0861497;392;117.188;1.99998;2.29908;7;125;3.95336;3.70615;7;125;3.95336;3.70615
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;88;176.54;0.168192;32.9278;25.4127;19.6245;31.25;9440.11;15.625;0.815689;616;179.688;1.44982;2.66298;7;179.688;1.81392;3.30154;7;179.688;1.81392;3.30154
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;94;172.89;0.304672;53.8993;46.1091;35.7967;31.25;8850.22;15.625;0.91231;658;207.031;1.73682;2.22773;7;222.656;1.67335;2.20819;7;222.656;1.67335;2.20819
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;3;0.025;gwn150Hz10s0.3short.dat;150;2;96;179.433;0.203859;37.8183;31.8988;24.7739;31.25;2555.1;15.625;0.850276;672;179.688;1.4531;1.91532;7;175.781;1.47878;2.51799;7;175.781;1.47878;2.51799
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;4;0.05;gwn150Hz10s0.3short.dat;150;2;94;182.784;0.388219;68.2983;59.5196;46.3678;27.3438;2363.18;15.625;0.918998;658;171.875;1.49438;1.26199;7;230.469;1.56285;2.98034;7;230.469;1.56285;2.98034
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;5;0.025;gwn150Hz10s0.3.dat;150;10;18;182.477;0.204827;47.2891;32.5837;24.8263;19.5312;2502.41;27.3438;0.853384;684;175.781;1.20305;2.11131;38;199.219;1.40132;2.97444;18;199.219;1.41973;3.19038
2012-12-20-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;781;6139;33.7156;182.081;0.0765999;0.041354;1;-0.170063;0.0409603;0;0;0;6;0.05;gwn150Hz10s0.3.dat;150;10;19;182.309;0.41787;74.2479;61.6598;47.7696;19.5312;2415.32;27.3438;0.833953;722;183.594;1.28397;1.2711;38;222.656;1.27877;2.36325;18;222.656;1.16916;2.15917
2012-12-21-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;689;4469;31.898;140.121;0.0667173;0.0318861;1;0.356893;0.045462;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;79;138.79;0.148865;17.4004;9.50749;7.58735;292.969;8171.05;19.5312;0.161845;553;140.625;2.33274;3.43181;7;136.719;2.78444;3.81426;7;136.719;2.78444;3.81426
2012-12-21-ac;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;689;4469;31.898;140.121;0.0667173;0.0318861;1;0.356893;0.045462;0;0;0;2;0.05;gwn300Hz10s0.3short.dat;300;2;29;140.996;0.115378;30.416;13.0813;8.95399;273.438;5947.73;15.625;0.168355;203;136.719;2.66014;3.90352;7;140.625;4.66881;4.67449;7;140.625;4.66881;4.67449
2012-12-21-ad;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;702;3011;21.632;139.235;0.0539231;0.0623144;1;-0.0432212;0.0595767;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;60;135.806;0.212069;38.9364;29.3277;22.6563;31.25;10200.9;15.625;0.864882;420;144.531;1.32562;2.32323;7;140.625;1.46051;2.10497;7;140.625;1.46051;2.10497
2012-12-21-ad;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;702;3011;21.632;139.235;0.0539231;0.0623144;1;-0.0432212;0.0595767;0;0;0;1;0.025;gwn300Hz10s0.3short.dat;300;2;48;137.188;0.212023;39.0512;29.483;22.7907;31.25;10563.6;15.625;0.859242;336;132.812;1.61343;2.41872;7;152.344;1.4512;1.97743;7;152.344;1.4512;1.97743
2012-12-21-ad;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;702;3011;21.632;139.235;0.0539231;0.0623144;1;-0.0432212;0.0595767;0;0;0;3;0.05;gwn300Hz10s0.3short.dat;300;2;32;130.069;0.444894;73.0075;55.4261;42.6142;19.5312;9955.73;15.625;0.881572;224;183.594;1.75216;2.96043;7;140.625;1.59195;1.59219;7;140.625;1.59195;1.59219
2012-12-21-ae;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;718;5389;36.1987;148.979;0.107008;0.0112806;1;0.04135;0.0423576;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;39;142.934;0.115526;21.3654;9.99219;7.69452;289.062;7498.42;3.90625;0.090783;273;148.438;3.07068;3.23556;7;148.438;2.35089;3.42194;7;148.438;2.35089;3.42194
2012-12-21-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;723;4526;31.6671;142.954;0.0503564;0.0463125;1;-0.0238997;0.0457841;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;38;137.208;0.162674;34.5896;23.1599;17.5734;144.531;9922.4;15.625;0.792977;266;136.719;2.02179;2.78505;7;136.719;1.59261;2.18129;7;136.719;1.59261;2.18129
2012-12-21-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;723;4526;31.6671;142.954;0.0503564;0.0463125;1;-0.0238997;0.0457841;0;0;0;1;0.025;gwn300Hz10s0.3short.dat;300;2;19;130.702;0.425661;37.1214;22.8798;16.8414;144.531;7602.64;15.625;0.723364;133;144.531;1.65814;2.19565;7;140.625;1.74963;2.28238;7;140.625;1.74963;2.28238
2012-12-21-af;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;723;4526;31.6671;142.954;0.0503564;0.0463125;1;-0.0238997;0.0457841;0;0;0;2;0.025;gwn300Hz10s0.3short.dat;300;2;27;126.379;0.444977;33.865;21.7709;16.2863;140.625;10116.1;15.625;0.762348;189;132.812;1.55912;2.40533;7;140.625;1.64703;2.41052;7;140.625;1.64703;2.41052
2012-12-21-ah;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;778;4713;31.591;149.17;0.0585815;0.0144477;1;-0.0667223;0.0454193;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;105;148.026;0.0823988;19.69;11.6894;8.58732;296.875;6875.75;39.0625;0.404515;735;144.531;4.92418;6.05162;7;144.531;4.34987;4.64912;7;144.531;4.34987;4.64912
2012-12-21-al;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;804;12;31.2839;156.584;0.140215;0.122743;1;-0.116241;0.977609;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;173;159.544;0.270519;55.4826;41.6305;29.5426;31.25;14753.3;15.625;0.886343;1211;191.406;1.59903;3.31809;7;152.344;1.47731;1.83604;7;152.344;1.47731;1.83604
2012-12-21-al;Apteronotus leptorhynchus;13.5;-;Ampullary;Nerve;good;804;12;31.2839;156.584;0.140215;0.122743;1;-0.116241;0.977609;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;26;147.97;0.769093;102.582;74.9655;53.061;27.3438;12653.3;15.625;0.852082;182;152.344;1.36267;1.56608;7;156.25;1.52955;1.27436;7;156.25;1.52955;1.27436
2013-02-21-aa;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;680;4115;31.898;129.033;0.0890287;0.00689996;1;-0.0844207;0.0476072;0.00097229;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;24;123.75;0.216326;45.099;29.8771;19.9763;113.281;12088.5;15.625;0.818551;168;117.188;1.89885;2.25515;7;125;1.8454;2.24018;7;125;1.8454;2.24018
2013-02-21-af;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;663;5278;38.5536;136.911;0.102048;0.0429685;1;-0.151301;0.0442524;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;97;134.977;0.102028;16.9388;9.5979;7.29954;136.719;7887.91;15.625;0.0751584;679;132.812;3.57322;4.66113;7;132.812;5.74085;6.17639;7;132.812;5.74085;6.17639
2013-02-21-af;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;663;5278;38.5536;136.911;0.102048;0.0429685;1;-0.151301;0.0442524;0;0;0;1;0.05;gwn300Hz10s0.3short.dat;300;2;56;134.107;0.114619;22.1633;12.319;8.47906;132.812;7871.61;15.625;0.156816;392;128.906;4.17131;4.46922;7;128.906;3.83779;4.29234;7;128.906;3.83779;4.29234
2013-04-09-aa;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;693;5152;32.0771;160.652;0.0896672;0.0480096;1;-0.210457;0.0439676;0;0;0;0;0.025;gwn300Hz10s0.3short.dat;300;2;64;154.01;0.194286;37.8169;27.1287;20.1745;156.25;9593.15;15.625;0.776714;448;156.25;2.1995;3.18294;7;160.156;1.4962;2.05285;7;160.156;1.4962;2.05285
2013-04-09-aa;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;693;5152;32.0771;160.652;0.0896672;0.0480096;1;-0.210457;0.0439676;0;0;0;1;0.025;gwn300Hz10s0.3short.dat;300;2;96;153.536;0.199485;36.7491;27.5569;20.7285;31.25;9409.9;15.625;0.802026;672;156.25;1.84149;3.10069;7;156.25;1.58809;2.37418;7;156.25;1.58809;2.37418
2013-04-09-aa;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;693;5152;32.0771;160.652;0.0896672;0.0480096;1;-0.210457;0.0439676;0;0;0;2;0.025;gwn150Hz10s0.3short.dat;150;2;126;160.926;0.270093;48.0063;38.802;29.4005;27.3438;2841.8;15.625;0.868614;882;179.688;1.563;1.80633;7;183.594;1.63625;2.60913;7;183.594;1.63625;2.60913
2013-04-09-aa;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;693;5152;32.0771;160.652;0.0896672;0.0480096;1;-0.210457;0.0439676;0;0;0;3;0.05;gwn150Hz10s0.3short.dat;150;2;121;163.618;0.526692;91.7656;74.0495;56.6222;23.4375;2762.54;15.625;0.929719;847;183.594;1.57083;1.55334;7;203.125;1.31755;1.71949;7;203.125;1.31755;1.71949
2013-04-09-ab;Apteronotus leptorhynchus;18.9;-;Ampullary;Nerve;good;689;5341;38.3493;139.307;0.139216;0.0863535;1;-0.0981168;0.0611801;0;0;0;1;0.025;gwn150Hz10s0.3short.dat;150;2;26;141.603;0.199384;42.7906;26.8857;18.7824;140.625;2203.52;15.625;0.762956;182;144.531;1.48505;2.56134;7;132.812;1.58305;2.65824;7;132.812;1.58305;2.65824
@ -132,5 +88,3 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2014-01-16-aj;Apteronotus leptorhynchus;16.5;11.4;Ampullary;Nerve;good;799;5332;32.4338;164.397;0.0811499;0.0703113;1;-0.0595718;0.044134;0;0;0;5;0.05;gwn150Hz50s0.3.dat;150;10;16;153.342;0.599727;84.762;72.6195;58.8329;11.7188;2696.71;7.8125;0.819015;608;203.125;1.22296;1.35702;38;195.312;1.26889;1.6106;18;183.594;1.26427;1.58779
2014-01-16-aj;Apteronotus leptorhynchus;16.5;11.4;Ampullary;Nerve;good;799;5332;32.4338;164.397;0.0811499;0.0703113;1;-0.0595718;0.044134;0;0;0;6;0.025;gwn150Hz50s0.3.dat;150;2;119;164.197;0.309188;53.7162;44.7051;35.7388;15.625;3385.93;7.8125;0.937005;833;191.406;1.82802;1.95936;7;195.312;1.60111;2.93536;7;195.312;1.60111;2.93536
2014-01-16-aj;Apteronotus leptorhynchus;16.5;11.4;Ampullary;Nerve;good;799;5332;32.4338;164.397;0.0811499;0.0703113;1;-0.0595718;0.044134;0;0;0;7;0.025;gwn150Hz50s0.3.dat;150;2;106;163.7;0.342671;50.149;44.012;35.2749;15.625;3347.19;7.8125;0.82756;742;207.031;1.53622;1.43503;7;199.219;1.36708;2.53912;7;199.219;1.36708;2.53912
2017-08-15-ad-invivo-1;Apteronotus leptorhynchus;16;17.4;Ampullary;Brain;good;853.009;5800;32.0513;180.982;0.0748433;0.0261187;1;-0.0847882;0.0413143;0;0;0;2;0.05;gwn300Hz50s0.3.dat;300;5;11;179.527;0.249342;61.9918;40.4169;30.1865;31.25;1985.58;31.25;0.879003;198;199.219;1.23911;1.71587;18;210.938;1.2285;1.76261;18;210.938;1.2285;1.76261
2017-10-25-am-invivo-1;Apteronotus leptorhynchus;17;15;Ampullary;Brain;good;895.009;4657;33.4337;139.349;0.0479628;0.0147115;1;-0.132162;0.0438107;0;0;0;1;0.05;gwn300Hz50s0.3.dat;300;10;4;140.153;0.0462193;73.5441;22.4287;3.53122;281.25;3056.42;207.031;0.0390586;152;136.719;11.7627;11.0595;38;136.719;11.8756;10.4106;18;136.719;11.3913;10.2854

1 cell species size/cm weight/g celltype structure quality eodf/Hz nspikesbase durationbase/s ratebase/Hz cvbase vsbase vsmode serialcorr1 serialcorrnull burstfrac burstfracthresh burstthresh/s stimindex contrast stimulus fcutoff/Hz duration/s trials ratestim/Hz cvstim respmod1/Hz respmod2/Hz respmod4/Hz transferfpeak/Hz transferpeak/Hz coherefpeak/Hz coherepeak nsegs nlifpeak/Hz nli nlimedian nsegs_single nlifpeak_single/Hz nli_single nlimedian_single nsegs_5s nlifpeak_5s/Hz nli_5s nlimedian_5s
2010-04-28-af Apteronotus leptorhynchus 17 - Ampullary Nerve good 892 4356 32.6146 133.619 0.132269 0.0572138 1 -0.262052 0.0493963 0 0 0 0 0.2 gwn100Hz10s0.3.dat 100 10 11 132.709 0.555356 89.3286 71.9568 53.3382 27.3438 522.369 27.3438 0.866904 418 148.438 1.3613 1.20051 38 175.781 2.09077 2.81892 18 175.781 2.86461 3.53128
2010-04-28-at Apteronotus leptorhynchus 17 - Ampullary Nerve fair 885 3474 27.4183 126.73 0.115227 0.0410552 1 -0.325095 0.0519928 0 0 0 0 0.2 gwn100Hz10s0.3.dat 100 10 5 92.1224 0.658304 105.186 73.0515 51.219 39.0625 429.206 39.0625 0.63249 190 175.781 1.64147 1.54247 38 152.344 1.85215 1.75485 18 175.781 1.09077 1.93135
2010-04-28-at Apteronotus leptorhynchus 17 - Ampullary Nerve fair 885 3474 27.4183 126.73 0.115227 0.0410552 1 -0.325095 0.0519928 0 0 0 1 0.2 gwn100Hz10s0.3.dat 100 10 5 83.1633 0.624523 101.084 66.6904 45.2904 31.25 361.963 39.0625 0.545143 190 113.281 1.67341 1.92267 38 113.281 1.59327 1.94575 18 175.781 1.27984 1.79457
2010-04-28-at Apteronotus leptorhynchus 17 - Ampullary Nerve fair 885 3474 27.4183 126.73 0.115227 0.0410552 1 -0.325095 0.0519928 0 0 0 2 0.2 gwn100Hz10s0.3.dat 100 10 8 80.7653 0.575645 98.5909 63.8735 42.6526 39.0625 348.454 27.3438 0.618219 304 113.281 1.47452 1.8736 38 144.531 1.5704 1.90153 18 175.781 1.79957 2.34631
2010-05-07-av Apteronotus leptorhynchus 13 - Ampullary Nerve good 723 3192 31.13 102.534 0.129037 0.122025 1 -0.381929 0.0542761 0 0 0 0 0.2 gwn100Hz10s0.3.dat 100 10 25 104.388 0.614711 86.4156 70.2956 52.2396 19.5312 499.882 11.7188 0.793711 950 54.6875 1.36459 1.90917 38 82.0312 1.4081 1.36934 18 132.812 1.4413 1.50664
2010-05-07-av Apteronotus leptorhynchus 13 - Ampullary Nerve good 723 3192 31.13 102.534 0.129037 0.122025 1 -0.381929 0.0542761 0 0 0 2 0.2 gwn100Hz10s0.3.dat 100 10 50 104.039 0.604549 86.5408 70.8827 52.8477 19.5312 510.133 27.3438 0.849552 1900 54.6875 1.30522 1.81824 38 152.344 1.18372 1.5345 18 152.344 1.20295 1.56645
2 2010-05-18-af Apteronotus leptorhynchus 14 - Ampullary Nerve good 635 2770 34.9956 79.1715 0.102739 0.0246739 1 0.0198069 0.0614926 0 0 0 0 0.2 gwn150Hz10s0.3.dat 150 10 22 78.4787 0.500701 57.7174 45.9132 36.058 15.625 454.473 11.7188 0.805778 836 35.1562 1.63285 2.11554 38 105.469 1.32812 1.52964 18 105.469 1.30443 1.49856
3 2010-05-21-aj Apteronotus leptorhynchus 15.5 - Ampullary Nerve fair 793 5160 33.5363 153.888 0.148552 0.026761 1 -0.0471877 0.0476448 0 0 0 0 0.2 gwn150Hz10s0.3.dat 150 10 25 156.759 0.186892 39.3693 25.1679 18.0827 27.3438 210.939 27.3438 0.689643 950 156.25 1.68403 2.41387 38 152.344 1.56968 2.42894 18 152.344 1.67762 2.95679
4 2010-05-21-aj Apteronotus leptorhynchus 15.5 - Ampullary Nerve fair 793 5160 33.5363 153.888 0.148552 0.026761 1 -0.0471877 0.0476448 0 0 0 1 0.1 gwn150Hz10s0.3.dat 150 10 11 135.232 0.232333 44.5768 18.5342 11.3723 136.719 252.304 27.3438 0.181645 418 152.344 3.91373 6.46129 38 152.344 3.36487 6.01846 18 152.344 3.39688 6.0765
54 2012-05-15-ac Apteronotus leptorhynchus 12.5 5.1 Ampullary Nerve good 667 11806 83.3791 141.611 0.0481658 0.107312 1 -0.0545366 0.0288959 0 0 0 4 0.1 gwn150Hz10s0.3.dat 150 10 16 141.767 0.104929 41.4485 17.9908 10.1925 132.812 459.6 27.3438 0.585054 608 136.719 2.56081 5.5712 38 136.719 3.25441 5.55113 18 136.719 4.75285 7.28743
55 2012-05-15-ac Apteronotus leptorhynchus 12.5 5.1 Ampullary Nerve good 667 11806 83.3791 141.611 0.0481658 0.107312 1 -0.0545366 0.0288959 0 0 0 5 0.2 gwn150Hz10s0.3.dat 150 10 3 119.49 0.404033 88.6304 43.2043 25.6483 140.625 436.037 27.3438 0.313207 114 140.625 1.42244 2.33999 38 136.719 1.42761 2.65573 18 140.625 1.49888 2.92994
56 2012-05-15-ac Apteronotus leptorhynchus 12.5 5.1 Ampullary Nerve good 667 11806 83.3791 141.611 0.0481658 0.107312 1 -0.0545366 0.0288959 0 0 0 6 0.2 gwn150Hz10s0.3.dat 150 10 16 125.733 0.44698 57.9149 30.2131 18.4491 140.625 305.509 35.1562 0.461898 608 144.531 1.39374 2.65929 38 132.812 1.47686 2.09568 18 136.719 1.44734 2.05281
2012-06-08-aj Apteronotus leptorhynchus 14.5 10 Ampullary Nerve good 840 5026 30.464 164.96 0.101653 0.119912 1 -0.219405 0.0449507 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 189 163.51 0.103695 15.216 8.52573 7.31872 164.062 4911.26 97.6562 0.0027973 1323 160.156 6.19991 7.42821 7 160.156 4.29183 4.91982 7 160.156 4.29183 4.91982
2012-06-08-aj Apteronotus leptorhynchus 14.5 10 Ampullary Nerve good 840 5026 30.464 164.96 0.101653 0.119912 1 -0.219405 0.0449507 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 120 164.088 0.105995 15.2744 8.53854 7.2825 183.594 1168.71 27.3438 0.00624412 840 160.156 4.39603 4.77495 7 160.156 5.16386 6.15278 7 160.156 5.16386 6.15278
2012-06-08-aj Apteronotus leptorhynchus 14.5 10 Ampullary Nerve good 840 5026 30.464 164.96 0.101653 0.119912 1 -0.219405 0.0449507 0 0 0 2 0.1 gwn300Hz10s0.3short.dat 300 2 135 163.123 0.137737 14.2563 8.28482 7.18398 164.062 1142.69 203.125 0.00755612 945 160.156 4.99613 4.98378 7 164.062 2.84929 3.62476 7 164.062 2.84929 3.62476
2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 49 137.562 0.0811087 16.7101 9.32536 7.22105 269.531 8658.31 31.25 0.105298 343 132.812 3.13309 3.15143 7 136.719 8.34537 6.68058 7 136.719 8.34537 6.68058
2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 123 135.867 0.0932509 16.3089 10.7294 8.06282 140.625 3202 15.625 0.288209 861 132.812 3.79716 4.1151 7 132.812 7.21879 6.9329 7 132.812 7.21879 6.9329
2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 2 0.1 gwn300Hz10s0.3short.dat 300 2 114 136.672 0.130666 22.9208 16.6846 11.959 31.25 1418.35 15.625 0.593671 798 132.812 2.07958 2.73782 7 132.812 3.83435 4.06447 7 132.812 3.83435 4.06447
57 2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 3 0.025 gwn150Hz10s0.3short.dat 150 2 110 137.99 0.0842129 17.0328 9.94927 7.59422 140.625 2272.37 39.0625 0.158623 770 136.719 4.78018 6.52797 7 132.812 8.75118 11.0131 7 132.812 8.75118 11.0131
58 2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 4 0.05 gwn150Hz10s0.3short.dat 150 2 125 135.618 0.10256 18.8579 12.4904 9.09497 132.812 724.029 15.625 0.413126 875 132.812 2.95999 4.2622 7 132.812 4.04291 7.40859 7 132.812 4.04291 7.40859
59 2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 5 0.1 gwn150Hz10s0.3short.dat 150 2 122 137.336 0.156814 32.9157 21.9263 14.7499 132.812 495.864 15.625 0.703292 854 136.719 2.4388 3.62448 7 136.719 1.90433 3.21194 7 136.719 1.90433 3.21194
60 2012-07-12-al Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 746 4243 30.5668 138.805 0.0755225 0.0068461 1 -0.222826 0.0479118 0 0 0 6 0.025 gwn150Hz10s0.3.dat 150 10 20 137.01 0.0823391 31.1635 11.5256 4.87523 136.719 1402.18 27.3438 0.176036 760 132.812 6.08243 8.55906 38 132.812 7.106 8.96488 18 132.812 7.78783 10.6118
2012-07-12-an Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 766 3607 29.7472 121.237 0.057747 0.0301156 1 -0.208778 0.0515187 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 88 120.979 0.0596767 16.232 9.23446 6.66715 242.188 7627.55 50.7812 0.0150735 616 117.188 8.60953 6.54486 7 117.188 9.00674 6.46307 7 117.188 9.00674 6.46307
2012-07-12-an Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 766 3607 29.7472 121.237 0.057747 0.0301156 1 -0.208778 0.0515187 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 116 121.231 0.0623433 14.8498 8.76565 6.51384 121.094 4114.6 15.625 0.0767796 812 117.188 10.4532 7.99808 7 117.188 9.72651 6.44674 7 117.188 9.72651 6.44674
2012-07-12-an Apteronotus leptorhynchus 12.5 - Ampullary Nerve good 766 3607 29.7472 121.237 0.057747 0.0301156 1 -0.208778 0.0515187 0 0 0 2 0.1 gwn300Hz10s0.3short.dat 300 2 83 119.739 0.0761934 16.8761 10.381 7.5901 125 1539.8 35.1562 0.187141 581 117.188 4.59165 4.63272 7 117.188 10.8223 7.32657 7 117.188 10.8223 7.32657
2012-12-13-ai Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 659 3726 31.1565 119.619 0.0762188 0.0499267 1 -0.0366303 0.0498219 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 48 117.465 0.0910177 21.4871 12.1595 8.09316 238.281 7947.85 19.5312 0.275028 336 117.188 3.61664 3.37879 7 113.281 3.72123 3.49761 7 113.281 3.72123 3.49761
2012-12-13-ai Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 659 3726 31.1565 119.619 0.0762188 0.0499267 1 -0.0366303 0.0498219 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 34 117.206 0.135349 32.9434 19.4883 11.9358 121.094 5266.29 15.625 0.563418 238 117.188 2.46013 3.51194 7 113.281 2.30432 2.68436 7 113.281 2.30432 2.68436
2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 28 154.107 0.0830419 27.9514 10.4409 7.16917 156.25 11080.8 50.7812 0.0927743 196 148.438 2.62315 4.09521 7 144.531 2.69546 3.81528 7 144.531 2.69546 3.81528
2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 53 154.015 0.0898975 22.5454 11.1539 8.45333 160.156 4698.23 15.625 0.26807 371 152.344 2.94962 4.10697 7 156.25 3.50733 5.86238 7 156.25 3.50733 5.86238
2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 2 0.1 gwn300Hz10s0.3short.dat 300 2 50 154.211 0.119666 25.4336 15.7951 11.8138 160.156 2558.94 39.0625 0.469134 350 152.344 2.31772 2.98929 7 148.438 3.16321 3.96013 7 148.438 3.16321 3.96013
61 2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 3 0.025 gwn150Hz10s0.3short.dat 150 2 43 154.496 0.0869103 22.6864 10.444 7.83434 148.438 1959.94 15.625 0.166468 301 152.344 3.18552 6.31376 7 152.344 5.497 10.2219 7 152.344 5.497 10.2219
62 2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 4 0.05 gwn150Hz10s0.3short.dat 150 2 39 154.031 0.103289 26.0697 13.5534 9.76368 148.438 943.078 15.625 0.416691 273 144.531 2.38246 4.63101 7 156.25 3.47182 7.02856 7 156.25 3.47182 7.02856
63 2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 5 0.1 gwn150Hz10s0.3short.dat 150 2 34 154.069 0.156596 33.2365 21.6729 15.9511 140.625 384.881 39.0625 0.65497 238 156.25 1.54442 2.75087 7 156.25 1.944 4.07553 7 156.25 1.944 4.07553
64 2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 6 0.025 gwn150Hz10s0.3.dat 150 10 19 156.176 0.0937916 33.1622 10.4479 5.42592 148.438 714.915 15.625 0.138218 722 152.344 2.07866 5.90619 38 148.438 2.41105 6.31729 18 148.438 3.35752 7.43257
65 2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 7 0.05 gwn150Hz10s0.3.dat 150 10 19 157.084 0.108135 33.9416 13.7646 8.68919 148.438 614.434 27.3438 0.417872 722 156.25 2.78656 6.2252 38 152.344 2.41562 5.23298 18 160.156 2.01793 4.92892
2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 12 0.025 blwn125Hz10s0.3.dat 125 10 18 155.754 0.0974115 32.8782 9.9014 4.43574 42.9688 2554.34 82.0312 0.0750057 684 152.344 2.35523 6.0588 38 148.438 2.26104 6.65742 18 148.438 2.66055 7.53206
2012-12-18-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 629 4802 31.8472 150.788 0.146096 0.014558 1 0.0632353 0.0524178 0 0 0 13 0.05 blwn125Hz10s0.3.dat 125 10 17 158.571 0.100569 36.8134 11.3478 4.3966 42.9688 1585.58 78.125 0.220304 646 156.25 2.55341 6.32418 38 156.25 3.583 9.40472 18 156.25 4.38481 11.4592
2012-12-18-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 651 6206 36.7363 168.949 0.152686 0.0520582 1 0.222372 0.0424781 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 95 169.333 0.133268 21.2381 14.2119 10.6057 175.781 5338.35 39.0625 0.458774 665 160.156 1.47941 2.28448 7 179.688 2.30005 3.83644 7 179.688 2.30005 3.83644
2012-12-18-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 651 6206 36.7363 168.949 0.152686 0.0520582 1 0.222372 0.0424781 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 54 166.193 0.208838 33.8777 24.7291 17.5732 31.25 4214.72 39.0625 0.691694 378 179.688 1.46863 2.10692 7 171.875 1.6042 2.25387 7 171.875 1.6042 2.25387
2012-12-19-aa Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 766 4295 32.9982 130.187 0.10381 0.0678645 1 0.142469 0.0473172 0.00163018 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 56 132.202 0.156586 19.0504 11.4753 8.98505 265.625 7197.53 15.625 0.0861497 392 117.188 1.99998 2.29908 7 125 3.95336 3.70615 7 125 3.95336 3.70615
2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 88 176.54 0.168192 32.9278 25.4127 19.6245 31.25 9440.11 15.625 0.815689 616 179.688 1.44982 2.66298 7 179.688 1.81392 3.30154 7 179.688 1.81392 3.30154
2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 94 172.89 0.304672 53.8993 46.1091 35.7967 31.25 8850.22 15.625 0.91231 658 207.031 1.73682 2.22773 7 222.656 1.67335 2.20819 7 222.656 1.67335 2.20819
66 2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 3 0.025 gwn150Hz10s0.3short.dat 150 2 96 179.433 0.203859 37.8183 31.8988 24.7739 31.25 2555.1 15.625 0.850276 672 179.688 1.4531 1.91532 7 175.781 1.47878 2.51799 7 175.781 1.47878 2.51799
67 2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 4 0.05 gwn150Hz10s0.3short.dat 150 2 94 182.784 0.388219 68.2983 59.5196 46.3678 27.3438 2363.18 15.625 0.918998 658 171.875 1.49438 1.26199 7 230.469 1.56285 2.98034 7 230.469 1.56285 2.98034
68 2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 5 0.025 gwn150Hz10s0.3.dat 150 10 18 182.477 0.204827 47.2891 32.5837 24.8263 19.5312 2502.41 27.3438 0.853384 684 175.781 1.20305 2.11131 38 199.219 1.40132 2.97444 18 199.219 1.41973 3.19038
69 2012-12-20-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 781 6139 33.7156 182.081 0.0765999 0.041354 1 -0.170063 0.0409603 0 0 0 6 0.05 gwn150Hz10s0.3.dat 150 10 19 182.309 0.41787 74.2479 61.6598 47.7696 19.5312 2415.32 27.3438 0.833953 722 183.594 1.28397 1.2711 38 222.656 1.27877 2.36325 18 222.656 1.16916 2.15917
2012-12-21-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 689 4469 31.898 140.121 0.0667173 0.0318861 1 0.356893 0.045462 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 79 138.79 0.148865 17.4004 9.50749 7.58735 292.969 8171.05 19.5312 0.161845 553 140.625 2.33274 3.43181 7 136.719 2.78444 3.81426 7 136.719 2.78444 3.81426
2012-12-21-ac Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 689 4469 31.898 140.121 0.0667173 0.0318861 1 0.356893 0.045462 0 0 0 2 0.05 gwn300Hz10s0.3short.dat 300 2 29 140.996 0.115378 30.416 13.0813 8.95399 273.438 5947.73 15.625 0.168355 203 136.719 2.66014 3.90352 7 140.625 4.66881 4.67449 7 140.625 4.66881 4.67449
2012-12-21-ad Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 702 3011 21.632 139.235 0.0539231 0.0623144 1 -0.0432212 0.0595767 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 60 135.806 0.212069 38.9364 29.3277 22.6563 31.25 10200.9 15.625 0.864882 420 144.531 1.32562 2.32323 7 140.625 1.46051 2.10497 7 140.625 1.46051 2.10497
2012-12-21-ad Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 702 3011 21.632 139.235 0.0539231 0.0623144 1 -0.0432212 0.0595767 0 0 0 1 0.025 gwn300Hz10s0.3short.dat 300 2 48 137.188 0.212023 39.0512 29.483 22.7907 31.25 10563.6 15.625 0.859242 336 132.812 1.61343 2.41872 7 152.344 1.4512 1.97743 7 152.344 1.4512 1.97743
2012-12-21-ad Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 702 3011 21.632 139.235 0.0539231 0.0623144 1 -0.0432212 0.0595767 0 0 0 3 0.05 gwn300Hz10s0.3short.dat 300 2 32 130.069 0.444894 73.0075 55.4261 42.6142 19.5312 9955.73 15.625 0.881572 224 183.594 1.75216 2.96043 7 140.625 1.59195 1.59219 7 140.625 1.59195 1.59219
2012-12-21-ae Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 718 5389 36.1987 148.979 0.107008 0.0112806 1 0.04135 0.0423576 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 39 142.934 0.115526 21.3654 9.99219 7.69452 289.062 7498.42 3.90625 0.090783 273 148.438 3.07068 3.23556 7 148.438 2.35089 3.42194 7 148.438 2.35089 3.42194
2012-12-21-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 723 4526 31.6671 142.954 0.0503564 0.0463125 1 -0.0238997 0.0457841 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 38 137.208 0.162674 34.5896 23.1599 17.5734 144.531 9922.4 15.625 0.792977 266 136.719 2.02179 2.78505 7 136.719 1.59261 2.18129 7 136.719 1.59261 2.18129
2012-12-21-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 723 4526 31.6671 142.954 0.0503564 0.0463125 1 -0.0238997 0.0457841 0 0 0 1 0.025 gwn300Hz10s0.3short.dat 300 2 19 130.702 0.425661 37.1214 22.8798 16.8414 144.531 7602.64 15.625 0.723364 133 144.531 1.65814 2.19565 7 140.625 1.74963 2.28238 7 140.625 1.74963 2.28238
2012-12-21-af Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 723 4526 31.6671 142.954 0.0503564 0.0463125 1 -0.0238997 0.0457841 0 0 0 2 0.025 gwn300Hz10s0.3short.dat 300 2 27 126.379 0.444977 33.865 21.7709 16.2863 140.625 10116.1 15.625 0.762348 189 132.812 1.55912 2.40533 7 140.625 1.64703 2.41052 7 140.625 1.64703 2.41052
2012-12-21-ah Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 778 4713 31.591 149.17 0.0585815 0.0144477 1 -0.0667223 0.0454193 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 105 148.026 0.0823988 19.69 11.6894 8.58732 296.875 6875.75 39.0625 0.404515 735 144.531 4.92418 6.05162 7 144.531 4.34987 4.64912 7 144.531 4.34987 4.64912
2012-12-21-al Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 804 12 31.2839 156.584 0.140215 0.122743 1 -0.116241 0.977609 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 173 159.544 0.270519 55.4826 41.6305 29.5426 31.25 14753.3 15.625 0.886343 1211 191.406 1.59903 3.31809 7 152.344 1.47731 1.83604 7 152.344 1.47731 1.83604
2012-12-21-al Apteronotus leptorhynchus 13.5 - Ampullary Nerve good 804 12 31.2839 156.584 0.140215 0.122743 1 -0.116241 0.977609 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 26 147.97 0.769093 102.582 74.9655 53.061 27.3438 12653.3 15.625 0.852082 182 152.344 1.36267 1.56608 7 156.25 1.52955 1.27436 7 156.25 1.52955 1.27436
2013-02-21-aa Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 680 4115 31.898 129.033 0.0890287 0.00689996 1 -0.0844207 0.0476072 0.00097229 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 24 123.75 0.216326 45.099 29.8771 19.9763 113.281 12088.5 15.625 0.818551 168 117.188 1.89885 2.25515 7 125 1.8454 2.24018 7 125 1.8454 2.24018
2013-02-21-af Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 663 5278 38.5536 136.911 0.102048 0.0429685 1 -0.151301 0.0442524 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 97 134.977 0.102028 16.9388 9.5979 7.29954 136.719 7887.91 15.625 0.0751584 679 132.812 3.57322 4.66113 7 132.812 5.74085 6.17639 7 132.812 5.74085 6.17639
2013-02-21-af Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 663 5278 38.5536 136.911 0.102048 0.0429685 1 -0.151301 0.0442524 0 0 0 1 0.05 gwn300Hz10s0.3short.dat 300 2 56 134.107 0.114619 22.1633 12.319 8.47906 132.812 7871.61 15.625 0.156816 392 128.906 4.17131 4.46922 7 128.906 3.83779 4.29234 7 128.906 3.83779 4.29234
2013-04-09-aa Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 693 5152 32.0771 160.652 0.0896672 0.0480096 1 -0.210457 0.0439676 0 0 0 0 0.025 gwn300Hz10s0.3short.dat 300 2 64 154.01 0.194286 37.8169 27.1287 20.1745 156.25 9593.15 15.625 0.776714 448 156.25 2.1995 3.18294 7 160.156 1.4962 2.05285 7 160.156 1.4962 2.05285
2013-04-09-aa Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 693 5152 32.0771 160.652 0.0896672 0.0480096 1 -0.210457 0.0439676 0 0 0 1 0.025 gwn300Hz10s0.3short.dat 300 2 96 153.536 0.199485 36.7491 27.5569 20.7285 31.25 9409.9 15.625 0.802026 672 156.25 1.84149 3.10069 7 156.25 1.58809 2.37418 7 156.25 1.58809 2.37418
70 2013-04-09-aa Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 693 5152 32.0771 160.652 0.0896672 0.0480096 1 -0.210457 0.0439676 0 0 0 2 0.025 gwn150Hz10s0.3short.dat 150 2 126 160.926 0.270093 48.0063 38.802 29.4005 27.3438 2841.8 15.625 0.868614 882 179.688 1.563 1.80633 7 183.594 1.63625 2.60913 7 183.594 1.63625 2.60913
71 2013-04-09-aa Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 693 5152 32.0771 160.652 0.0896672 0.0480096 1 -0.210457 0.0439676 0 0 0 3 0.05 gwn150Hz10s0.3short.dat 150 2 121 163.618 0.526692 91.7656 74.0495 56.6222 23.4375 2762.54 15.625 0.929719 847 183.594 1.57083 1.55334 7 203.125 1.31755 1.71949 7 203.125 1.31755 1.71949
72 2013-04-09-ab Apteronotus leptorhynchus 18.9 - Ampullary Nerve good 689 5341 38.3493 139.307 0.139216 0.0863535 1 -0.0981168 0.0611801 0 0 0 1 0.025 gwn150Hz10s0.3short.dat 150 2 26 141.603 0.199384 42.7906 26.8857 18.7824 140.625 2203.52 15.625 0.762956 182 144.531 1.48505 2.56134 7 132.812 1.58305 2.65824 7 132.812 1.58305 2.65824
88 2014-01-16-aj Apteronotus leptorhynchus 16.5 11.4 Ampullary Nerve good 799 5332 32.4338 164.397 0.0811499 0.0703113 1 -0.0595718 0.044134 0 0 0 5 0.05 gwn150Hz50s0.3.dat 150 10 16 153.342 0.599727 84.762 72.6195 58.8329 11.7188 2696.71 7.8125 0.819015 608 203.125 1.22296 1.35702 38 195.312 1.26889 1.6106 18 183.594 1.26427 1.58779
89 2014-01-16-aj Apteronotus leptorhynchus 16.5 11.4 Ampullary Nerve good 799 5332 32.4338 164.397 0.0811499 0.0703113 1 -0.0595718 0.044134 0 0 0 6 0.025 gwn150Hz50s0.3.dat 150 2 119 164.197 0.309188 53.7162 44.7051 35.7388 15.625 3385.93 7.8125 0.937005 833 191.406 1.82802 1.95936 7 195.312 1.60111 2.93536 7 195.312 1.60111 2.93536
90 2014-01-16-aj Apteronotus leptorhynchus 16.5 11.4 Ampullary Nerve good 799 5332 32.4338 164.397 0.0811499 0.0703113 1 -0.0595718 0.044134 0 0 0 7 0.025 gwn150Hz50s0.3.dat 150 2 106 163.7 0.342671 50.149 44.012 35.2749 15.625 3347.19 7.8125 0.82756 742 207.031 1.53622 1.43503 7 199.219 1.36708 2.53912 7 199.219 1.36708 2.53912
2017-08-15-ad-invivo-1 Apteronotus leptorhynchus 16 17.4 Ampullary Brain good 853.009 5800 32.0513 180.982 0.0748433 0.0261187 1 -0.0847882 0.0413143 0 0 0 2 0.05 gwn300Hz50s0.3.dat 300 5 11 179.527 0.249342 61.9918 40.4169 30.1865 31.25 1985.58 31.25 0.879003 198 199.219 1.23911 1.71587 18 210.938 1.2285 1.76261 18 210.938 1.2285 1.76261
2017-10-25-am-invivo-1 Apteronotus leptorhynchus 17 15 Ampullary Brain good 895.009 4657 33.4337 139.349 0.0479628 0.0147115 1 -0.132162 0.0438107 0 0 0 1 0.05 gwn300Hz50s0.3.dat 300 10 4 140.153 0.0462193 73.5441 22.4287 3.53122 281.25 3056.42 207.031 0.0390586 152 136.719 11.7627 11.0595 38 136.719 11.8756 10.4106 18 136.719 11.3913 10.2854

View File

@ -381,27 +381,3 @@ cell;species;size/cm;weight/g;celltype;structure;quality;eodf/Hz;nspikesbase;dur
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0228606;0.589366;0.589366;0.00291262;7;0.01;gwn300Hz10s0.3.dat;300;2.99998;128;199.636;0.795489;23.7668;17.2737;9.68446;82.0312;5367.22;7.8125;0.0200051;1280;156.25;1.35369;1.29993;10;203.125;1.55246;1.15671;10;203.125;1.55246;1.15671
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0228606;0.589366;0.589366;0.00291262;9;0.1;gwn300Hz10s0.3.dat;300;2.99998;128;208.632;0.852708;108.014;86.1085;49.9415;70.3125;2692.54;15.625;0.590848;1280;152.344;1.28036;2.08644;10;156.25;1.34483;1.15748;10;156.25;1.34483;1.15748
2021-12-17-ad-invivo-1;Apteronotus leptorhynchus;13;7.4;P-unit;Brain;awesome;515;21329;105.577;202.03;0.784883;0.892102;1;-0.630756;0.0228606;0.589366;0.589366;0.00291262;12;0.001;gwn300Hz10s0.3.dat;300;2.99998;256;203.173;0.779194;14.7383;10.6011;6.82135;70.3125;20217.4;35.1562;0.00166669;2560;175.781;1.17253;1.06684;10;160.156;1.64755;1.4768;10;160.156;1.64755;1.4768
2022-01-05-aa-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;558;1272;12.4685;102.103;0.197405;0.782115;1;-0.285104;0.0865205;0.000786782;0;0;0;0.2;InputArr_400hz_30s.dat;400;30;4;105.361;0.777905;102.089;82.7035;63.4736;19.5312;1239.37;19.5312;0.6499;464;54.6875;1.82612;2.24859;116;54.6875;1.61594;1.2798;18;144.531;1.42145;1.25172
2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0625113;0.383655;0.440757;0.00457038;0;0.2;InputArr_400hz_30s.dat;400;30;5;120.517;0.916766;135.742;105.305;65.2115;46.875;1465.99;19.5312;0.636699;580;70.3125;1.3792;4.01591;116;70.3125;1.40089;2.36945;18;66.4062;1.33967;1.62024
2022-01-05-ab-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;547;2803;24.508;114.486;0.727618;0.841286;1;-0.792328;0.0625113;0.383655;0.440757;0.00457038;1;0.2;InputArr_400hz_30s.dat;400;30;5;108.342;1.08766;126.749;104.683;69.9059;35.1562;1617.31;19.5312;0.55982;580;70.3125;1.12842;3.42909;116;74.2188;1.42969;2.49517;18;78.125;1.37069;2.09999
2022-01-05-ac-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;528;3014;20.8946;144.425;1.2446;0.786968;1;-0.341868;0.0552452;0.736143;0.736143;0.00284091;0;0.2;InputArr_400hz_30s.dat;400;30;3;102.573;1.24685;108.804;91.7133;61.7437;35.1562;645.161;19.5312;0.0406215;348;97.6562;1.06494;1.12292;116;97.6562;0.931386;0.98864;18;132.812;1.21531;0.923164
2022-01-05-ae-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;516;3922;17.997;217.912;0.816962;0.758693;1;-0.594823;0.0509492;0.62331;0.62331;0.00290698;0;0.2;InputArr_400hz_30s.dat;400;30;5;211.967;1.04758;187.718;146.642;85.8938;54.6875;2469.97;35.1562;0.685574;580;175.781;1.06883;0.933609;116;175.781;1.23913;0.849658;18;222.656;1.31911;0.849699
2022-01-06-ah-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;679;2058;11.112;185.34;1.01526;0.742714;1;-0.476177;0.0708686;0.631502;0.659212;0.00368189;0;0.2;InputArr_400hz_30s.dat;400;30;5;193.034;1.05855;149.647;114.552;61.489;54.6875;1765.14;31.25;0.38341;580;140.625;1.08028;1.01794;116;136.719;1.05448;0.992046;18;140.625;1.24709;1.10604
2022-01-06-ai-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;657;3525;11.7313;300.485;0.953398;0.805977;1;-0.314176;0.0520852;0.745176;0.745176;0.00228311;0;0.2;InputArr_400hz_30s.dat;400;30;5;303.92;0.99732;195.842;145.994;69.9912;70.3125;2769.71;46.875;0.512263;580;339.844;1.18053;0.788881;116;339.844;1.17406;0.825191;18;339.844;1.21258;0.893669
2022-01-06-ai-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;657;3525;11.7313;300.485;0.953398;0.805977;1;-0.314176;0.0520852;0.745176;0.745176;0.00228311;1;0.2;InputArr_400hz_30s.dat;400;30;5;298.41;0.971923;193.778;142.38;65.2662;70.3125;2796.52;46.875;0.494765;580;273.438;1.16795;0.700212;116;300.781;1.25474;0.792487;18;253.906;1.26334;0.805112
2022-01-06-ai-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;657;3525;11.7313;300.485;0.953398;0.805977;1;-0.314176;0.0520852;0.745176;0.745176;0.00228311;2;0.2;InputArr_400hz_30s.dat;400;16.654;2;294.061;0.975171;165.879;126.051;75.7366;66.4062;1768.21;46.875;0.341511;128;343.75;1.06653;0.773348;64;343.75;1.00744;0.706679;18;339.844;1.16;0.862385
2022-01-08-ad-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;734;1898;9.94953;190.949;0.998787;0.739642;1;-0.5075;0.0772921;0.606747;0.649446;0.00476839;0;0.2;InputArr_400hz_30s.dat;400;30;5;202.685;1.14756;198.2;149.245;80.4596;58.5938;2369.64;42.9688;0.527857;580;144.531;1.03608;1.82979;116;144.531;1.23671;1.31757;18;144.531;1.40276;1.48686
2022-01-08-ad-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;734;1898;9.94953;190.949;0.998787;0.739642;1;-0.5075;0.0772921;0.606747;0.649446;0.00476839;1;0.2;InputArr_400hz_30s.dat;400;30;5;202.785;1.16133;195.912;149.141;80.9944;58.5938;2416.33;42.9688;0.491156;580;144.531;1.08387;1.89135;116;144.531;0.941063;1.0477;18;148.438;1.07361;1.05711
2022-01-08-af-invivo-1;Apteronotus leptorhynchus;15.7;17;P-unit;Nerve;good;713;3669;21.0027;174.906;1.34726;0.710509;1;-0.313534;0.055758;0.749182;0.750273;0.00490884;0;0.2;InputArr_400hz_30s.dat;400;30;5;170.503;1.54278;207.049;174.774;117.533;35.1562;2764.11;19.5312;0.541786;580;125;0.99469;2.10482;116;125;1.04037;1.46753;18;125;1.05498;1.31076
2022-01-27-aa-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;bad;626;4993;28.1087;177.685;0.873168;0.785724;1;-0.228023;0.0459643;0.385417;0.634615;0.00559105;0;0.2;InputArr_400hz_30s.dat;400;30;3;109.195;0.860215;113.562;86.7226;59.4107;42.9688;950.787;42.9688;0.342463;348;128.906;1.12658;1.17221;116;128.906;1.24101;1.21711;18;179.688;1.37152;1.22473
2022-01-28-ab-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;761;2029;6.7742;299.5;0.890086;0.849786;1;-0.400537;0.0690345;0.66568;0.688363;0.00328515;0;0.2;InputArr_400hz_30s.dat;400;30;5;304.792;0.92168;228.991;155.387;80.6766;93.75;2406.43;42.9688;0.640329;580;250;1.20505;0.873663;116;250;1.51168;0.913428;18;296.875;1.2385;0.835487
2022-01-28-ab-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;761;2029;6.7742;299.5;0.890086;0.849786;1;-0.400537;0.0690345;0.66568;0.688363;0.00328515;1;0.2;InputArr_400hz_30s.dat;400;26.2964;1;256.587;0.841758;234.2;150.871;76.5861;89.8438;2059.56;42.9688;0.567493;101;250;1.32771;1.02314;101;250;1.32771;1.02314;18;250;1.48823;1.02043
2022-01-28-ab-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;761;2029;6.7742;299.5;0.890086;0.849786;1;-0.400537;0.0690345;0.66568;0.688363;0.00328515;2;0.2;InputArr_400hz_30s.dat;400;15.8295;2;221.121;0.6882;115.587;77.7136;47.7613;82.0312;1029.63;97.6562;0.293732;122;324.219;1.31508;1.184;61;324.219;1.29675;1.11515;18;332.031;1.2936;1.18297
2022-01-28-ab-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;761;2029;6.7742;299.5;0.890086;0.849786;1;-0.400537;0.0690345;0.66568;0.688363;0.00328515;4;0.2;InputArr_400hz_30s.dat;400;30;3;205.694;0.878717;168.973;117.026;69.6077;82.0312;1483.59;66.4062;0.38325;348;250;1.32157;1.06247;116;285.156;1.26927;0.984763;18;304.688;1.21958;1.24385
2022-01-28-ad-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;762;5580;21.7337;256.864;1.04767;0.817044;1;-0.316963;0.0410602;0.669475;0.730597;0.00459318;0;0.2;InputArr_400hz_30s.dat;400;30;4;237.995;1.22831;193.486;154.452;91.7969;54.6875;2042.52;19.5312;0.575148;464;261.719;1.11451;0.681172;116;285.156;1.4309;0.830054;18;285.156;1.47929;0.947566
2022-01-28-af-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;760;2429;21.8774;111.18;0.96121;0.748431;1;-0.449343;0.063945;0.452224;0.520593;0.00328947;0;0.2;InputArr_400hz_30s.dat;400;30;5;150.832;1.23447;181.455;141.04;81.6907;42.9688;2303.76;42.9688;0.331232;580;74.2188;1.15906;6.04729;116;74.2188;1.18142;3.79887;18;62.5;1.05086;2.91075
2022-01-28-af-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;760;2429;21.8774;111.18;0.96121;0.748431;1;-0.449343;0.063945;0.452224;0.520593;0.00328947;1;0.2;InputArr_400hz_30s.dat;400;30;2;138.96;1.0426;186.397;136.609;77.6986;42.9688;1883.66;42.9688;0.39765;232;66.4062;1.04485;3.07709;116;66.4062;1.13587;2.592;18;70.3125;1.27182;2.3737
2022-01-28-af-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;760;2429;21.8774;111.18;0.96121;0.748431;1;-0.449343;0.063945;0.452224;0.520593;0.00328947;2;0.2;InputArr_400hz_30s.dat;400;30;4;97.8105;1.10007;135.224;102.799;60.8037;42.9688;1495.23;42.9688;0.313018;464;74.2188;1.51959;5.4281;116;74.2188;1.46223;3.5328;18;62.5;1.3184;2.58511
2022-01-28-af-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;760;2429;21.8774;111.18;0.96121;0.748431;1;-0.449343;0.063945;0.452224;0.520593;0.00328947;3;0.2;InputArr_400hz_30s.dat;400;30;5;140.061;1.16742;168.327;128.608;73.5157;46.875;2060.43;42.9688;0.334177;580;62.5;1.12888;5.54363;116;74.2188;1.17827;3.16457;18;62.5;1.17605;3.25234
2022-01-28-ah-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;759;4542;16.0602;282.909;0.882444;0.72099;1;-0.388297;0.0451745;0.609557;0.682889;0.00329381;0;0.2;InputArr_400hz_30s.dat;400;30;3;228.266;0.975535;191.569;139.537;83.8082;62.5;1897.63;42.9688;0.534334;348;312.5;1.1826;0.815446;116;332.031;1.1477;0.720368;18;308.594;1.36932;0.884038
2022-01-28-ah-invivo-1;Apteronotus leptorhynchus;10.7;11;P-unit;Nerve;good;759;4542;16.0602;282.909;0.882444;0.72099;1;-0.388297;0.0451745;0.609557;0.682889;0.00329381;1;0.2;InputArr_400hz_30s.dat;400;30;4;225.99;0.95199;189.245;137.827;84.2536;66.4062;1721.13;42.9688;0.496521;464;273.438;1.22981;0.948748;116;238.281;1.25594;0.837559;18;332.031;1.36759;0.883603

1 cell species size/cm weight/g celltype structure quality eodf/Hz nspikesbase durationbase/s ratebase/Hz cvbase vsbase vsmode serialcorr1 serialcorrnull burstfrac burstfracthresh burstthresh/s stimindex contrast stimulus fcutoff/Hz duration/s trials ratestim/Hz cvstim respmod1/Hz respmod2/Hz respmod4/Hz transferfpeak/Hz transferpeak/Hz coherefpeak/Hz coherepeak nsegs nlifpeak/Hz nli nlimedian nsegs_single nlifpeak_single/Hz nli_single nlimedian_single nsegs_5s nlifpeak_5s/Hz nli_5s nlimedian_5s
381 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0228606 0.589366 0.589366 0.00291262 7 0.01 gwn300Hz10s0.3.dat 300 2.99998 128 199.636 0.795489 23.7668 17.2737 9.68446 82.0312 5367.22 7.8125 0.0200051 1280 156.25 1.35369 1.29993 10 203.125 1.55246 1.15671 10 203.125 1.55246 1.15671
382 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0228606 0.589366 0.589366 0.00291262 9 0.1 gwn300Hz10s0.3.dat 300 2.99998 128 208.632 0.852708 108.014 86.1085 49.9415 70.3125 2692.54 15.625 0.590848 1280 152.344 1.28036 2.08644 10 156.25 1.34483 1.15748 10 156.25 1.34483 1.15748
383 2021-12-17-ad-invivo-1 Apteronotus leptorhynchus 13 7.4 P-unit Brain awesome 515 21329 105.577 202.03 0.784883 0.892102 1 -0.630756 0.0228606 0.589366 0.589366 0.00291262 12 0.001 gwn300Hz10s0.3.dat 300 2.99998 256 203.173 0.779194 14.7383 10.6011 6.82135 70.3125 20217.4 35.1562 0.00166669 2560 175.781 1.17253 1.06684 10 160.156 1.64755 1.4768 10 160.156 1.64755 1.4768
2022-01-05-aa-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 558 1272 12.4685 102.103 0.197405 0.782115 1 -0.285104 0.0865205 0.000786782 0 0 0 0.2 InputArr_400hz_30s.dat 400 30 4 105.361 0.777905 102.089 82.7035 63.4736 19.5312 1239.37 19.5312 0.6499 464 54.6875 1.82612 2.24859 116 54.6875 1.61594 1.2798 18 144.531 1.42145 1.25172
2022-01-05-ab-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 547 2803 24.508 114.486 0.727618 0.841286 1 -0.792328 0.0625113 0.383655 0.440757 0.00457038 0 0.2 InputArr_400hz_30s.dat 400 30 5 120.517 0.916766 135.742 105.305 65.2115 46.875 1465.99 19.5312 0.636699 580 70.3125 1.3792 4.01591 116 70.3125 1.40089 2.36945 18 66.4062 1.33967 1.62024
2022-01-05-ab-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 547 2803 24.508 114.486 0.727618 0.841286 1 -0.792328 0.0625113 0.383655 0.440757 0.00457038 1 0.2 InputArr_400hz_30s.dat 400 30 5 108.342 1.08766 126.749 104.683 69.9059 35.1562 1617.31 19.5312 0.55982 580 70.3125 1.12842 3.42909 116 74.2188 1.42969 2.49517 18 78.125 1.37069 2.09999
2022-01-05-ac-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 528 3014 20.8946 144.425 1.2446 0.786968 1 -0.341868 0.0552452 0.736143 0.736143 0.00284091 0 0.2 InputArr_400hz_30s.dat 400 30 3 102.573 1.24685 108.804 91.7133 61.7437 35.1562 645.161 19.5312 0.0406215 348 97.6562 1.06494 1.12292 116 97.6562 0.931386 0.98864 18 132.812 1.21531 0.923164
2022-01-05-ae-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 516 3922 17.997 217.912 0.816962 0.758693 1 -0.594823 0.0509492 0.62331 0.62331 0.00290698 0 0.2 InputArr_400hz_30s.dat 400 30 5 211.967 1.04758 187.718 146.642 85.8938 54.6875 2469.97 35.1562 0.685574 580 175.781 1.06883 0.933609 116 175.781 1.23913 0.849658 18 222.656 1.31911 0.849699
2022-01-06-ah-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 679 2058 11.112 185.34 1.01526 0.742714 1 -0.476177 0.0708686 0.631502 0.659212 0.00368189 0 0.2 InputArr_400hz_30s.dat 400 30 5 193.034 1.05855 149.647 114.552 61.489 54.6875 1765.14 31.25 0.38341 580 140.625 1.08028 1.01794 116 136.719 1.05448 0.992046 18 140.625 1.24709 1.10604
2022-01-06-ai-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 657 3525 11.7313 300.485 0.953398 0.805977 1 -0.314176 0.0520852 0.745176 0.745176 0.00228311 0 0.2 InputArr_400hz_30s.dat 400 30 5 303.92 0.99732 195.842 145.994 69.9912 70.3125 2769.71 46.875 0.512263 580 339.844 1.18053 0.788881 116 339.844 1.17406 0.825191 18 339.844 1.21258 0.893669
2022-01-06-ai-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 657 3525 11.7313 300.485 0.953398 0.805977 1 -0.314176 0.0520852 0.745176 0.745176 0.00228311 1 0.2 InputArr_400hz_30s.dat 400 30 5 298.41 0.971923 193.778 142.38 65.2662 70.3125 2796.52 46.875 0.494765 580 273.438 1.16795 0.700212 116 300.781 1.25474 0.792487 18 253.906 1.26334 0.805112
2022-01-06-ai-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 657 3525 11.7313 300.485 0.953398 0.805977 1 -0.314176 0.0520852 0.745176 0.745176 0.00228311 2 0.2 InputArr_400hz_30s.dat 400 16.654 2 294.061 0.975171 165.879 126.051 75.7366 66.4062 1768.21 46.875 0.341511 128 343.75 1.06653 0.773348 64 343.75 1.00744 0.706679 18 339.844 1.16 0.862385
2022-01-08-ad-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 734 1898 9.94953 190.949 0.998787 0.739642 1 -0.5075 0.0772921 0.606747 0.649446 0.00476839 0 0.2 InputArr_400hz_30s.dat 400 30 5 202.685 1.14756 198.2 149.245 80.4596 58.5938 2369.64 42.9688 0.527857 580 144.531 1.03608 1.82979 116 144.531 1.23671 1.31757 18 144.531 1.40276 1.48686
2022-01-08-ad-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 734 1898 9.94953 190.949 0.998787 0.739642 1 -0.5075 0.0772921 0.606747 0.649446 0.00476839 1 0.2 InputArr_400hz_30s.dat 400 30 5 202.785 1.16133 195.912 149.141 80.9944 58.5938 2416.33 42.9688 0.491156 580 144.531 1.08387 1.89135 116 144.531 0.941063 1.0477 18 148.438 1.07361 1.05711
2022-01-08-af-invivo-1 Apteronotus leptorhynchus 15.7 17 P-unit Nerve good 713 3669 21.0027 174.906 1.34726 0.710509 1 -0.313534 0.055758 0.749182 0.750273 0.00490884 0 0.2 InputArr_400hz_30s.dat 400 30 5 170.503 1.54278 207.049 174.774 117.533 35.1562 2764.11 19.5312 0.541786 580 125 0.99469 2.10482 116 125 1.04037 1.46753 18 125 1.05498 1.31076
2022-01-27-aa-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve bad 626 4993 28.1087 177.685 0.873168 0.785724 1 -0.228023 0.0459643 0.385417 0.634615 0.00559105 0 0.2 InputArr_400hz_30s.dat 400 30 3 109.195 0.860215 113.562 86.7226 59.4107 42.9688 950.787 42.9688 0.342463 348 128.906 1.12658 1.17221 116 128.906 1.24101 1.21711 18 179.688 1.37152 1.22473
2022-01-28-ab-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 761 2029 6.7742 299.5 0.890086 0.849786 1 -0.400537 0.0690345 0.66568 0.688363 0.00328515 0 0.2 InputArr_400hz_30s.dat 400 30 5 304.792 0.92168 228.991 155.387 80.6766 93.75 2406.43 42.9688 0.640329 580 250 1.20505 0.873663 116 250 1.51168 0.913428 18 296.875 1.2385 0.835487
2022-01-28-ab-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 761 2029 6.7742 299.5 0.890086 0.849786 1 -0.400537 0.0690345 0.66568 0.688363 0.00328515 1 0.2 InputArr_400hz_30s.dat 400 26.2964 1 256.587 0.841758 234.2 150.871 76.5861 89.8438 2059.56 42.9688 0.567493 101 250 1.32771 1.02314 101 250 1.32771 1.02314 18 250 1.48823 1.02043
2022-01-28-ab-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 761 2029 6.7742 299.5 0.890086 0.849786 1 -0.400537 0.0690345 0.66568 0.688363 0.00328515 2 0.2 InputArr_400hz_30s.dat 400 15.8295 2 221.121 0.6882 115.587 77.7136 47.7613 82.0312 1029.63 97.6562 0.293732 122 324.219 1.31508 1.184 61 324.219 1.29675 1.11515 18 332.031 1.2936 1.18297
2022-01-28-ab-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 761 2029 6.7742 299.5 0.890086 0.849786 1 -0.400537 0.0690345 0.66568 0.688363 0.00328515 4 0.2 InputArr_400hz_30s.dat 400 30 3 205.694 0.878717 168.973 117.026 69.6077 82.0312 1483.59 66.4062 0.38325 348 250 1.32157 1.06247 116 285.156 1.26927 0.984763 18 304.688 1.21958 1.24385
2022-01-28-ad-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 762 5580 21.7337 256.864 1.04767 0.817044 1 -0.316963 0.0410602 0.669475 0.730597 0.00459318 0 0.2 InputArr_400hz_30s.dat 400 30 4 237.995 1.22831 193.486 154.452 91.7969 54.6875 2042.52 19.5312 0.575148 464 261.719 1.11451 0.681172 116 285.156 1.4309 0.830054 18 285.156 1.47929 0.947566
2022-01-28-af-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 760 2429 21.8774 111.18 0.96121 0.748431 1 -0.449343 0.063945 0.452224 0.520593 0.00328947 0 0.2 InputArr_400hz_30s.dat 400 30 5 150.832 1.23447 181.455 141.04 81.6907 42.9688 2303.76 42.9688 0.331232 580 74.2188 1.15906 6.04729 116 74.2188 1.18142 3.79887 18 62.5 1.05086 2.91075
2022-01-28-af-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 760 2429 21.8774 111.18 0.96121 0.748431 1 -0.449343 0.063945 0.452224 0.520593 0.00328947 1 0.2 InputArr_400hz_30s.dat 400 30 2 138.96 1.0426 186.397 136.609 77.6986 42.9688 1883.66 42.9688 0.39765 232 66.4062 1.04485 3.07709 116 66.4062 1.13587 2.592 18 70.3125 1.27182 2.3737
2022-01-28-af-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 760 2429 21.8774 111.18 0.96121 0.748431 1 -0.449343 0.063945 0.452224 0.520593 0.00328947 2 0.2 InputArr_400hz_30s.dat 400 30 4 97.8105 1.10007 135.224 102.799 60.8037 42.9688 1495.23 42.9688 0.313018 464 74.2188 1.51959 5.4281 116 74.2188 1.46223 3.5328 18 62.5 1.3184 2.58511
2022-01-28-af-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 760 2429 21.8774 111.18 0.96121 0.748431 1 -0.449343 0.063945 0.452224 0.520593 0.00328947 3 0.2 InputArr_400hz_30s.dat 400 30 5 140.061 1.16742 168.327 128.608 73.5157 46.875 2060.43 42.9688 0.334177 580 62.5 1.12888 5.54363 116 74.2188 1.17827 3.16457 18 62.5 1.17605 3.25234
2022-01-28-ah-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 759 4542 16.0602 282.909 0.882444 0.72099 1 -0.388297 0.0451745 0.609557 0.682889 0.00329381 0 0.2 InputArr_400hz_30s.dat 400 30 3 228.266 0.975535 191.569 139.537 83.8082 62.5 1897.63 42.9688 0.534334 348 312.5 1.1826 0.815446 116 332.031 1.1477 0.720368 18 308.594 1.36932 0.884038
2022-01-28-ah-invivo-1 Apteronotus leptorhynchus 10.7 11 P-unit Nerve good 759 4542 16.0602 282.909 0.882444 0.72099 1 -0.388297 0.0451745 0.609557 0.682889 0.00329381 1 0.2 InputArr_400hz_30s.dat 400 30 4 225.99 0.95199 189.245 137.827 84.2536 66.4062 1721.13 42.9688 0.496521 464 273.438 1.22981 0.948748 116 238.281 1.25594 0.837559 18 332.031 1.36759 0.883603

View File

@ -9,16 +9,27 @@ from plotstyle import plot_style, lighter, significance_str
data_path = Path('data')
from noisesplit import model_cell as model_split_example
from modelsusceptcontrasts import model_cells as model_contrast_examples
from modelsusceptlown import model_cell as model_lown_example
from punitexamplecell import example_cell as punit_example
from punitexamplecell import example_cells as punit_examples
from noisesplit import example_cell as punit_split_example
from ampullaryexamplecell import example_cell as ampul_example
from ampullaryexamplecell import example_cells as ampul_examples
model_examples = ([[model_lown_example, 0.01],
[model_lown_example, 0.03],
[model_lown_example, 0.1]],
[[model_split_example, 0.01]],
[[m, a] for m in model_contrast_examples for a in [0.01, 0.03, 0.1]])
punit_examples = (punit_example, [punit_split_example], punit_examples)
ampul_examples = (ampul_example, [], ampul_examples)
def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
nli_thresh, example=[], examples=[]):
ax.axhline(nli_thresh, color='k', ls=':', lw=0.5)
si_thresh, example=[], split_example=[], examples=[]):
ax.axhline(si_thresh, color='k', ls=':', lw=0.5)
xmax = ax.get_xlim()[1]
ymax = ax.get_ylim()[1]
mask = (data[xcol] < xmax) & (data[ycol] < ymax)
@ -31,13 +42,38 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=6, marker='^', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
for cell, run in split_example:
mask = (data['cell'] == cell) & (data['stimindex'] == run)
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=6, marker='s', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
for cell, run in examples:
mask = (data['cell'] == cell) & (data['stimindex'] == run)
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=5, marker='o', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
else:
for cell, alpha in example:
mask = (data['cell'] == cell) & (data['contrast'] == alpha)
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=6, marker='^', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
for cell, alpha in split_example:
mask = (data['cell'] == cell) & (data['contrast'] == alpha)
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=6, marker='s', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
for cell, alpha in examples:
mask = (data['cell'] == cell) & (data['contrast'] == alpha)
ax.scatter(data[mask, xcol], data[mask, ycol], c=data[mask, zcol],
s=5, marker='o', linewidth=0.5, edgecolors='black',
clip_on=False, cmap=cmap, vmin=zmin, vmax=zmax,
zorder=20)
# color bar:
fig = ax.get_figure()
cax = ax.inset_axes([1.3, 0, 0.04, 1])
@ -66,9 +102,9 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
yax.set_xlim(left=0)
# threshold:
if 'cvbase' in xcol:
ax.text(xmax, 0.4*ymax, f'{100*np.sum(data[ycol] > nli_thresh)/len(data):.0f}\\%',
ax.text(xmax, 0.4*ymax, f'{100*np.sum(data[ycol] > si_thresh)/len(data):.0f}\\%',
ha='right', va='bottom', fontsize='small')
ax.text(xmax, 0.3, f'{100*np.sum(data[ycol] < nli_thresh)/len(data):.0f}\\%',
ax.text(xmax, 0.3, f'{100*np.sum(data[ycol] < si_thresh)/len(data):.0f}\\%',
ha='right', va='center', fontsize='small')
# statistics:
r, p = pearsonr(data[xcol], data[ycol])
@ -83,76 +119,80 @@ def plot_corr(ax, data, xcol, ycol, zcol, zmin, zmax, xpdfmax, cmap, color,
return cax
def nli_stats(title, data, column, nli_thresh):
def si_stats(title, data, column, si_thresh):
print(title)
print(f' nli threshold: {nli_thresh:.1f}')
cells = np.unique(data['cell'])
ncells = len(cells)
nrecs = len(data)
print(f' cells: {ncells}')
print(f' recordings: {nrecs}')
hcells = np.unique(data[data(column) > nli_thresh, 'cell'])
print(f' high nli cells: n={len(hcells):3d}, {100*len(hcells)/ncells:4.1f}%')
print(f' high nli recordings: n={np.sum(data(column) > nli_thresh):3d}, '
f'{100*np.sum(data(column) > nli_thresh)/nrecs:4.1f}%')
print(f' cells: {ncells}')
print(f' recordings: {nrecs}')
print(f' SI threshold: {si_thresh:.1f}')
hcells = np.unique(data[data(column) > si_thresh, 'cell'])
print(f' high SI cells: n={len(hcells):3d}, {100*len(hcells)/ncells:4.1f}%')
print(f' high SI recordings: n={np.sum(data(column) > si_thresh):3d}, '
f'{100*np.sum(data(column) > si_thresh)/nrecs:4.1f}%')
nsegs = data['nsegs']
print(f' number of segments: {np.min(nsegs):4.0f} - {np.max(nsegs):4.0f}, median={np.median(nsegs):4.0f}, mean={np.mean(nsegs):4.0f}, std={np.std(nsegs):4.0f}')
nrecs = []
for cell in cells:
nrecs.append(len(data[data["cell"] == cell, :]))
print(f' number of recordings per cell: {np.min(nrecs):4.0f} - {np.max(nrecs):4.0f}, median={np.median(nrecs):4.0f}, mean={np.mean(nrecs):4.0f}, std={np.std(nrecs):4.0f}')
fcutoff = data['fcutoff']
print(' cutoff frequencies:', ' '.join([f'{f:3.0f}Hz' for f in np.unique(fcutoff)]))
print(' cutoff frequencies:', ' '.join([f'{np.sum(fcutoff == f):3d}' for f in np.unique(fcutoff)]))
print(f' cutoff frequencies: {np.min(fcutoff):.0f}Hz - {np.max(fcutoff):.0f}Hz, median={np.median(fcutoff):.0f}Hz, mean={np.mean(fcutoff):.0f}Hz, std={np.std(fcutoff):.0f}Hz')
contrasts = 100*data['contrast']
print(' contrasts: ', ' '.join([f'{c:.2g}%' for c in np.unique(contrasts)]))
print(f' contrasts: {np.min(contrasts):.2g}% - {np.max(contrasts):.2g}%, median={np.median(contrasts):.2g}%, mean={np.mean(contrasts):.2g}%, std={np.std(contrasts):.2g}%')
def plot_cvbase_nli_punit(ax, data, ycol, nli_thresh, color):
def plot_cvbase_si_punit(ax, data, ycol, si_thresh, color):
ax.set_xlabel('CV$_{\\rm base}$')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 1.5)
ax.set_ylim(0, 7.2)
ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples
cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 250, 3,
'coolwarm', color, nli_thresh,
punit_example, punit_examples)
'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('Response mod.', 'Hz')
def plot_cvstim_nli_punit(ax, data, ycol, nli_thresh, color):
def plot_cvstim_si_punit(ax, data, ycol, si_thresh, color):
ax.set_xlabel('CV$_{\\rm stim}$')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 1.6)
ax.set_ylim(0, 7.2)
ax.set_xticks_delta(0.5)
ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples
#cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 250, 2,
# 'coolwarm', color, nli_thresh,
# punit_example, punit_examples)
# 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('Response mod.', 'Hz')
cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 1.5, 2,
'coolwarm', color, nli_thresh,
punit_example, punit_examples)
'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('CV$_{\\rm base}$')
#cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 50, 450, 2,
# 'coolwarm', color, nli_thresh,
# punit_example, punit_examples)
# 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('$r$', 'Hz')
#cax = plot_corr(ax, data, 'cvstim', ycol, 'serialcorr1', -0.6, 0, 2,
# 'coolwarm', color, nli_thresh,
# punit_example, punit_examples)
# 'coolwarm', color, si_thresh, *examples)
#cax.set_ylabel('$\\rho_1$')
def plot_mod_nli_punit(ax, data, ycol, nli_thresh, color):
def plot_rmod_si_punit(ax, data, ycol, si_thresh, color):
ax.set_xlabel('Response modulation', 'Hz')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 250)
ax.set_ylim(0, 7.2)
ax.set_yticks_delta(2)
examples = punit_examples if 'stimindex' in data else model_examples
cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 1.5, 0.016,
'coolwarm', color, nli_thresh,
punit_example, punit_examples)
'coolwarm', color, si_thresh, *examples)
cax.set_ylabel('CV$_{\\rm base}$')
def plot_cvbase_nli_ampul(ax, data, ycol, nli_thresh, color):
def plot_cvbase_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_xlabel('CV$_{\\rm base}$')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 0.2)
@ -160,12 +200,11 @@ def plot_cvbase_nli_ampul(ax, data, ycol, nli_thresh, color):
ax.set_xticks_delta(0.1)
ax.set_yticks_delta(5)
cax = plot_corr(ax, data, 'cvbase', ycol, 'respmod2', 0, 80, 20,
'coolwarm', color, nli_thresh,
ampul_example, ampul_examples)
'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('Response mod.', 'Hz')
def plot_cvstim_nli_ampul(ax, data, ycol, nli_thresh, color):
def plot_cvstim_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_xlabel('CV$_{\\rm stim}$')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 0.85)
@ -173,22 +212,19 @@ def plot_cvstim_nli_ampul(ax, data, ycol, nli_thresh, color):
ax.set_xticks_delta(0.2)
ax.set_yticks_delta(5)
#cax = plot_corr(ax, data, 'cvstim', ycol, 'respmod2', 0, 80, 6,
# 'coolwarm', color, nli_thresh,
# ampul_example, ampul_examples)
# 'coolwarm', color, si_thresh, *ampul_examples)
#cax.set_ylabel('Response mod.', 'Hz')
cax = plot_corr(ax, data, 'cvstim', ycol, 'cvbase', 0, 0.2, 6,
'coolwarm', color, nli_thresh,
ampul_example, ampul_examples)
'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('CV$_{\\rm base}$')
cax.set_yticks_delta(0.1)
#cax = plot_corr(ax, data, 'cvstim', ycol, 'ratebase', 90, 180, 6,
# 'coolwarm', color, nli_thresh,
# ampul_example, ampul_examples)
# 'coolwarm', color, si_thresh, *ampul_examples)
#cax.set_ylabel('$r$', 'Hz')
#cax.set_yticks_delta(30)
def plot_mod_nli_ampul(ax, data, ycol, nli_thresh, color):
def plot_rmod_si_ampul(ax, data, ycol, si_thresh, color):
ax.set_xlabel('Response modulation', 'Hz')
ax.set_ylabel('SI($r$)')
ax.set_xlim(0, 80)
@ -196,8 +232,7 @@ def plot_mod_nli_ampul(ax, data, ycol, nli_thresh, color):
ax.set_xticks_delta(20)
ax.set_yticks_delta(5)
cax = plot_corr(ax, data, 'respmod2', ycol, 'cvbase', 0, 0.2, 0.06,
'coolwarm', color, nli_thresh,
ampul_example, ampul_examples)
'coolwarm', color, si_thresh, *ampul_examples)
cax.set_ylabel('CV$_{\\rm base}$')
cax.set_yticks_delta(0.1)
@ -213,25 +248,25 @@ if __name__ == '__main__':
ampul_data = TableData(data_path /
'Apteronotus_leptorhynchus-Ampullary-data.csv',
sep=';')
nli_thresh = 1.8
si_thresh = 1.8
u, p = mannwhitneyu(punit_model['cvbase'], punit_data['cvbase'])
print('CV differs between P-unit models and data:')
print(f' U={u:g}, p={p:.2g}')
print(f' median model: {np.median(punit_model["cvbase"]):.2f}')
print(f' median data: {np.median(punit_data["cvbase"]):.2f}')
print(f' median data: {np.median(punit_data["cvbase"]):.2f}')
print()
u, p = mannwhitneyu(punit_model['respmod2'], punit_data['respmod2'])
print('Response modulation differs between P-unit models and data:')
print(f' U={u:g}, p={p:.2g}')
print(f' median model: {np.median(punit_model["respmod2"]):.2f}')
print(f' median data: {np.median(punit_data["respmod2"]):.2f}')
print(f' median data: {np.median(punit_data["respmod2"]):.2f}')
print()
u, p = mannwhitneyu(punit_model['dnli100'], punit_data['nli'])
print('NLI does not differ between P-unit models and data:')
print('SI does not differ between P-unit models and data:')
print(f' U={u:g}, p={p:.2g}')
print(f' median model: {np.median(punit_model["dnli100"]):.1f}')
print(f' median data: {np.median(punit_data["nli"]):.1f}')
print(f' median data: {np.median(punit_data["nli"]):.1f}')
print()
s = plot_style()
@ -240,28 +275,28 @@ if __name__ == '__main__':
fig.subplots_adjust(leftm=6.5, rightm=13.5, topm=4.5, bottomm=4,
wspace=1.1, hspace=0.6)
nli_stats('P-unit model:', punit_model, 'dnli100', nli_thresh)
si_stats('P-unit model:', punit_model, 'dnli100', si_thresh)
axs[0, 0].text(0, 1.35, 'P-unit models',
transform=axs[0, 0].transAxes, color=s.model_color1)
plot_cvbase_nli_punit(axs[0, 0], punit_model, 'dnli100', nli_thresh, s.model_color2)
plot_mod_nli_punit(axs[0, 1], punit_model, 'dnli100', nli_thresh, s.model_color2)
plot_cvstim_nli_punit(axs[0, 2], punit_model, 'dnli100', nli_thresh, s.model_color2)
plot_cvbase_si_punit(axs[0, 0], punit_model, 'dnli100', si_thresh, s.model_color2)
plot_rmod_si_punit(axs[0, 1], punit_model, 'dnli100', si_thresh, s.model_color2)
plot_cvstim_si_punit(axs[0, 2], punit_model, 'dnli100', si_thresh, s.model_color2)
print()
nli_stats('P-unit data:', punit_data, 'nli', nli_thresh)
si_stats('P-unit data:', punit_data, 'nli', si_thresh)
axs[1, 0].text(0, 1.35, 'P-unit data',
transform=axs[1, 0].transAxes, color=s.punit_color1)
plot_cvbase_nli_punit(axs[1, 0], punit_data, 'nli', nli_thresh, s.punit_color2)
plot_mod_nli_punit(axs[1, 1], punit_data, 'nli', nli_thresh, s.punit_color2)
plot_cvstim_nli_punit(axs[1, 2], punit_data, 'nli', nli_thresh, s.punit_color2)
plot_cvbase_si_punit(axs[1, 0], punit_data, 'nli', si_thresh, s.punit_color2)
plot_rmod_si_punit(axs[1, 1], punit_data, 'nli', si_thresh, s.punit_color2)
plot_cvstim_si_punit(axs[1, 2], punit_data, 'nli', si_thresh, s.punit_color2)
print()
nli_stats('Ampullary data:', ampul_data, 'nli', nli_thresh)
si_stats('Ampullary data:', ampul_data, 'nli', si_thresh)
axs[2, 0].text(0, 1.35, 'Ampullary data',
transform=axs[2, 0].transAxes, color=s.ampul_color1)
plot_cvbase_nli_ampul(axs[2, 0], ampul_data, 'nli', nli_thresh, s.ampul_color2)
plot_mod_nli_ampul(axs[2, 1], ampul_data, 'nli', nli_thresh, s.ampul_color2)
plot_cvstim_nli_ampul(axs[2, 2], ampul_data, 'nli', nli_thresh, s.ampul_color2)
plot_cvbase_si_ampul(axs[2, 0], ampul_data, 'nli', si_thresh, s.ampul_color2)
plot_rmod_si_ampul(axs[2, 1], ampul_data, 'nli', si_thresh, s.ampul_color2)
plot_cvstim_si_ampul(axs[2, 2], ampul_data, 'nli', si_thresh, s.ampul_color2)
print()
fig.common_xticks(axs[:2, 0])
@ -270,6 +305,6 @@ if __name__ == '__main__':
fig.common_yticks(axs[0, :])
fig.common_yticks(axs[1, :])
fig.common_yticks(axs[2, :])
fig.tag(xoffs=-3.5, yoffs=2)
fig.tag(axs, xoffs=-3.5, yoffs=2)
fig.savefig()
print()

View File

@ -189,10 +189,10 @@ if __name__ == '__main__':
xthresh = 1.2
ythresh = 1.8
s = plot_style()
fig, axs = plt.subplots(4, 4, cmsize=(s.plot_width, 0.85*s.plot_width),
height_ratios=[1, 1, 0, 1, 0, 1])
fig, axs = plt.subplots(3, 4, cmsize=(s.plot_width, 0.6*s.plot_width),
height_ratios=[1, 1, 0, 1])
fig.subplots_adjust(leftm=7, rightm=9, topm=2, bottomm=4,
wspace=1, hspace=0.8)
wspace=1, hspace=0.6)
for ax in axs.flat:
ax.set_visible(False)
print('Example cells:')
@ -204,9 +204,9 @@ if __name__ == '__main__':
fig.common_xticks(axs[:2, k])
print()
plot_summary_contrasts(axs[2], s, xthresh, ythresh, model_cell)
plot_summary_diags(axs[3], s, xthresh, ythresh, model_cell)
fig.common_yticks(axs[2, 1:])
fig.common_yticks(axs[3, 1:])
#plot_summary_diags(axs[3], s, xthresh, ythresh, model_cell)
#fig.common_yticks(axs[3, 1:])
fig.tag(axs, xoffs=-4.5, yoffs=1.8)
axs[1, 0].set_visible(False)
fig.savefig()

View File

@ -5,9 +5,8 @@ from spectral import whitenoise, diag_projection, peakedness
from plotstyle import plot_style
#example_cell = ['2012-07-03-ak-invivo-1', 0]
example_cell = ['2017-07-18-ai-invivo-1', 1] # Take this! at 3% model, 5% data
model_cell = example_cell
example_cell = ['2017-07-18-ai-invivo-1', 1]
model_cell = example_cell[0]
base_path = Path('data')
data_path = base_path / 'cells'
@ -275,8 +274,8 @@ if __name__ == '__main__':
# model 5%:
axss = axs[1]
data_files = sims_path.glob(f'chi2-noisen-{example_cell[0]}-{1000*data_contrast:03.0f}-*.npz')
files, nums = sort_files(example_cell[0], data_files, 2)
data_files = sims_path.glob(f'chi2-noisen-{model_cell}-{1000*data_contrast:03.0f}-*.npz')
files, nums = sort_files(model_cell, data_files, 2)
axss[1].text(xt, yt, 'P-unit model', fontsize='large',
transform=axs[1, 1].transAxes, color=s.model_color1)
plot_chi2_contrast(axss[1], axss[2], s, files, nums, nsmall, nlarge, ratebase)
@ -287,16 +286,16 @@ if __name__ == '__main__':
# model 1%:
axss = axs[2]
data_files = sims_path.glob(f'chi2-noisen-{example_cell[0]}-{1000*contrast:03.0f}-*.npz')
files, nums = sort_files(example_cell[0], data_files, 2)
data_files = sims_path.glob(f'chi2-noisen-{model_cell}-{1000*contrast:03.0f}-*.npz')
files, nums = sort_files(model_cell, data_files, 2)
plot_chi2_contrast(axss[1], axss[2], s, files, nums, nsmall, nlarge, ratebase)
axr2 = plot_noise_split(axss[0], contrast, 0, 1, wtime, wnoise)
plot_overn(axss[3], s, files, nmax=1e6)
# model noise split:
axss = axs[3]
data_files = sims_path.glob(f'chi2-split-{example_cell[0]}-*.npz')
files, nums = sort_files(example_cell[0], data_files, 1)
data_files = sims_path.glob(f'chi2-split-{model_cell}-*.npz')
files, nums = sort_files(model_cell, data_files, 1)
axss[1].text(xt, yt, 'P-unit model', fontsize='large',
transform=axss[1].transAxes, color=s.model_color1)
axss[1].text(xt + 0.9, yt, f'(noise split)', fontsize='large',

View File

@ -420,7 +420,7 @@ We here analyze nonlinear responses in two types of primary electroreceptor affe
\begin{figure*}[t]
\includegraphics[width=\columnwidth]{lifsuscept}
\caption{\label{fig:lifresponse} First- (linear) and second-order response functions of the leaky integrate-and-fire model. \figitem{A} Magnitude of the first-order response function $|\chi_1(f)|$, also known as the ``gain'' function, quantifies the response amplitude relative to the stimulus amplitude, both measured at the same stimulus frequency. \figitem{B} Magnitude of the second-order response function $|\chi_2(f_1, f_2)|$ quantifies the response at the sum of two stimulus frequencies. For linear systems, the second-order response function is zero, because linear systems do not create new frequencies and thus there is no response at the sum of the two frequencies. The plots show the analytical solutions from \citet{Lindner2001} and \citet{Voronenko2017} with $\mu = 1.1$ and $D = 0.001$. Note that the leaky integrate-and-fire model is formulated without dimensions, frequencies are given in multiples of the inverse membrane time constant.}
\caption{\label{fig:lifresponse} First- and second-order response functions of the leaky integrate-and-fire model. \figitem{A} Magnitude of the first-order (linear) response function $|\chi_1(f)|$, also known as the ``gain'' function, quantifies the response amplitude relative to the stimulus amplitude, both measured at the same stimulus frequency. \figitem{B} Magnitude of the second-order (non-linear) response function $|\chi_2(f_1, f_2)|$ quantifies the response at the sum of two stimulus frequencies. For linear systems, the second-order response function is zero, because linear systems do not create new frequencies and thus there is no response at the sum of the two frequencies. The plots show the analytical solutions from \citet{Lindner2001} and \citet{Voronenko2017} with $\mu = 1.1$ and $D = 0.001$. Note that the leaky integrate-and-fire model is formulated without dimensions, frequencies are given in multiples of the inverse membrane time constant.}
\end{figure*}
We like to think about signal encoding in terms of linear relations with unique mapping of a given input value to a certain output of the system under consideration. Indeed, such linear methods, for example the transfer function or first-oder susceptibility shown in figure~\ref{fig:lifresponse}, have been widely and successfully applied to describe and predict neuronal responses and are an invaluable tool to characterize neural systems \citep{Borst1999}. Nonlinear mechanisms, on the other hand, are key on different levels of neural processing. Deciding for one action over another is a nonlinear process on the systemic level. On the cellular level, spiking neurons are inherently nonlinear. Whether an action potential is elicited depends on the membrane potential to exceed a threshold \citep{Hodgkin1952, Koch1995}. Because of such nonlinearities, understanding and predicting neuronal responses to sensory stimuli is in general a difficult task.
@ -498,7 +498,7 @@ In the example recordings shown above (\figsrefb{fig:punit} and \fref{fig:ampull
\begin{figure*}[p]
\includegraphics[width=\columnwidth]{noisesplit}
\caption{\label{fig:noisesplit} Estimation of second-order susceptibilities. \figitem{A} \suscept{} (right) estimated from $N=198$ 256\,ms long FFT segments of an electrophysiological recording of another P-unit (cell ``2017-07-18-ai'', $r=78$\,Hz, CV$_{\text{base}}=0.22$) driven with a RAM stimulus with contrast 5\,\% (left). \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell ``2017-07-18-ai'', table~\ref{modelparams}) based on a similar number of $N=100$ FFT segments. As in the electrophysiological recording only a weak anti-diagonal is visible. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ FFT segments. Now, the expected triangular structure is revealed. \figitem[iv]{B} Convergence of the \suscept{} estimate as a function of FFTsegements. \figitem{C} At a lower stimulus contrast of 1\,\% the estimate did not converge yet even for $10^6$ FFT segments. \figitem[i]{D} Same as in \panel[i]{B} but in the \textit{noise split} condition: there is no external RAM signal (red) driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as a signal and is presented as an equivalent amplitude modulation ($s_{\xi}(t)$, orange), while the intrinsic noise is reduced to 10\,\% of its original strength (bottom, see methods for details). \figitem[i]{D} 100 FFT segements are still not sufficient for estimating \suscept{}. \figitem[iii]{D} Simulating one million segments reveals the full expected trangular structure of the second-order susceptibility. \figitem[iv]{D} In the noise-split condition, the \suscept{} estimate converges already at about $10^{4}$ FFT Segements.}
\caption{\label{fig:noisesplit} Estimation of second-order susceptibilities. \figitem{A} \suscept{} (right) estimated from $N=198$ 256\,ms long FFT segments of an electrophysiological recording of another P-unit (cell ``2017-07-18-ai'', $r=78$\,Hz, CV$_{\text{base}}=0.22$) driven with a RAM stimulus with contrast 5\,\% (left). \figitem[i]{B} \textit{Standard condition} of model simulations with intrinsic noise (bottom) and a RAM stimulus (top). \figitem[ii]{B} \suscept{} estimated from simulations of the cell's LIF model counterpart (cell ``2017-07-18-ai'', table~\ref{modelparams}) based on a similar number of $N=100$ FFT segments. As in the electrophysiological recording only a weak anti-diagonal is visible. \figitem[iii]{B} Same as \panel[ii]{B} but using $10^6$ FFT segments. Now, the expected triangular structure is revealed. \figitem[iv]{B} Convergence of the \suscept{} estimate as a function of FFT segments. \figitem{C} At a lower stimulus contrast of 1\,\% the estimate did not converge yet even for $10^6$ FFT segments. \figitem[i]{D} Same as in \panel[i]{B} but in the \textit{noise split} condition: there is no external RAM signal (red) driving the model. Instead, a large part (90\,\%) of the total intrinsic noise is treated as a signal and is presented as an equivalent amplitude modulation ($s_{\xi}(t)$, orange), while the intrinsic noise is reduced to 10\,\% of its original strength (bottom, see methods for details). \figitem[i]{D} 100 FFT segments are still not sufficient for estimating \suscept{}. \figitem[iii]{D} Simulating one million segments reveals the full expected trangular structure of the second-order susceptibility. \figitem[iv]{D} In the noise-split condition, the \suscept{} estimate converges already at about $10^{4}$ FFT segments.}
\end{figure*}
%\notejb{Since the model overestimated the sensitivity of the real P-unit, we adjusted the RAM contrast to 0.9\,\%, such that the resulting spike trains had the same CV as the electrophysiological recorded P-unit during the 2.5\,\% contrast stimulation (see table~\ref{modelparams} for model parameters).} \notejb{chi2 scale is higher than in real cell}
@ -509,12 +509,12 @@ In model simulations we can increase the number of FFT segments beyond what woul
Using a broadband stimulus increases the effective input-noise level. This may linearize signal transmission and suppress potential nonlinear responses \citep{Longtin1993, Chialvo1997, Roddey2000, Voronenko2017}. Assuming that the intrinsic noise level in this P-unit is small enough, the full expected structure of the second-order susceptibility should appear in the limit of weak AMs. Again, this cannot be done experimentally, because the problem of insufficient averaging becomes even more severe for weak AMs (low contrast). In the model, however, we know the time course of the intrinsic noise and can use this knowledge to determine the susceptibilities by input-output correlations via the Furutsu-Novikov theorem \citep{Furutsu1963, Novikov1965}. This theorem, in its simplest form, states that the cross-spectrum $S_{x\eta}(\omega)$ of a Gaussian noise $\eta(t)$ driving a nonlinear system and the system's output $x(t)$ is proportional to the linear susceptibility according to $S_{x\eta}(\omega)=\chi(\omega)S_{\eta\eta}(\omega)$. Here $\chi(\omega)$ characterizes the linear response to an infinitely weak signal $s(t)$ in the presence of the background noise $\eta(t)$. Likewise, the nonlinear susceptibility can be determined in an analogous fashion from higher-order input-output cross-spectra (see methods, equations \eqref{eq:crosshigh} and \eqref{eq:susceptibility}) \citep{Egerland2020}. In line with an alternative derivation of the Furutsu-Novikov theorem \citep{Lindner2022}, we can split the total noise and consider a fraction of it as a stimulus. This allows us to calculate the susceptibility from the cross-spectrum between the output and this stimulus fraction of the noise. Adapting this approach to our P-unit model (see methods), we replace the intrinsic noise by an approximately equivalent RAM stimulus $s_{\xi}(t)$ and a weak remaining intrinsic noise $\sqrt{2D \, c_{\rm{noise}}}\;\xi(t)$ with $c_\text{noise} = 0.1$ (see methods, equations \eqref{eq:ram_split}, \eqref{eq:Noise_split_intrinsic}, \eqref{eq:Noise_split_intrinsic_dendrite}, \subfigrefb{fig:noisesplit}\,\panel[i]{C}). We tune the amplitude of the RAM stimulus $s_{\xi}(t)$ such that the output firing rate and variability (CV) are the same as in the baseline activity (i.e. full intrinsic noise $\sqrt{2D}\;\xi(t)$ in the voltage equation but no RAM) and compute the cross-spectra between the RAM part of the noise $s_{\xi}(t)$ and the output spike train. This procedure has two consequences: (i) by means of the cross-spectrum between the output and \signalnoise, which is a large fraction of the noise, the signal-to-noise ratio of the measured susceptibilities is drastically improved; (ii) the total noise in the system has been reduced (by what was before the external RAM stimulus $s(t)$), which makes the system more nonlinear. For both reasons we now see the expected nonlinear features in the second-order susceptibility for a sufficient number of segments (\subfigrefb{fig:noisesplit}\,\panel[iii]{C}), but not for a number of segments comparable to the experiment (\subfigrefb{fig:noisesplit}\,\panel[ii]{C}). In addition to the strong response for \fsumb{}, we now also observe pronounced nonlinear responses at \foneb{} and \ftwob{} (vertical and horizontal lines, \subfigrefb{fig:noisesplit}\,\panel[iii]{C}).
Note, that the increased number of segments goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{fig:noisesplit}\,\panel[iii]{C}). Only for more than about $10^5$ segments does the estimate of the second-order susceptibility converge for most of the model cells (\subfigrefb{fig:trialnr}{A--D}).
Note, that the increased number of segments goes along with a substantial reduction of second-order susceptibility values (\subfigrefb{fig:noisesplit}\,\panel[iii]{C}). Only for more than about $10^5$ segments does the estimate of the second-order susceptibility converge for most of the model cells.
\begin{figure}[p]
\includegraphics[width=\columnwidth]{modelsusceptcontrasts}
\caption{\label{fig:modelsusceptcontrasts}Dependence of second order susceptibility on stimulus contrast. \figitem{A} Second-order susceptibilities estimated for increasing stimulus contrasts $c=0, 1, 3$ and $10$\,\% as indicated ($N=10^7$ FFT segments for $c=1$\,\%, $N=10^6$ segments for all other contrasts). $c=0$\,\% refers to the noise-split configuration (limit to vanishing external RAM signal, see \subfigrefb{fig:noisesplit}{D}). Shown are simulations of the P-unit model cell ``2017-07-18-ai'' (table~\ref{modelparams}) with a baseline firing rate of $82$\,Hz and CV$=0.23$. The cell shows a clear triangular pattern in its second-order susceptibility even up to a contrast of $10$\,\%. Note, that for $c=1$\,\% (\panel[ii]{D}), the estimate did not converge yet. \figitem{B} Cell ``2012-12-13-ao'' (baseline firing rate of $146$\,Hz, CV$=0.23$) also has strong interactions at its baseline firing rate that survive up to a stimulus contrast of $3$\,\%. \figitem{C} Model cell ``2012-12-20-ac'' (baseline firing rate of $212$\,Hz, CV$=0.26$) shows a weak triangular structure in the second-order susceptibility that vanishes for stimulus contrasts larger than $1$\,\%. \figitem{D} Cell ``2013-01-08-ab'' (baseline firing rate of $218$\,Hz, CV$=0.55$) does not show any triangular pattern in its second-order susceptibility. Nevertheless, interactions between low stimulus frequencies become substantial at higher contrasts. \figitem{E} The presence of an elevated second-order susceptibility where the stimulus frequency add up to the neuron's baseline frequency, can be identified by the susceptibility index (SI($r$), \eqnref{eq:nli_equation2}) greater than one (horizontal black line). The SI($r$) (density to the right) is plotted as a function of the model neuron's baseline CV for all $39$ model cells (table~\ref{modelparams}). Model cells have been visually categorized based on the presence of a triangular pattern in their second-order susceptibility estimated in the noise-split configuration (legend). The cells from \panel{A--D} are marked by a black circle. Pearson's correlation coefficients $r$, the corresponding significance level $p$ and regression line (dashed gray line) are indicated. The higher the stimulus contrast, the less cells show weakly nonlinear interactions as expressed by the triangular structure in the second-order susceptibility.}
\caption{\label{fig:modelsusceptcontrasts}Dependence of second order susceptibility on stimulus contrast. \figitem{A} Second-order susceptibilities estimated for increasing stimulus contrasts of $c=0, 1, 3$ and $10$\,\% as indicated ($N=10^7$ FFT segments for $c=1$\,\%, $N=10^6$ segments for all other contrasts). $c=0$\,\% refers to the noise-split configuration (limit to vanishing external RAM signal, see \subfigrefb{fig:noisesplit}{D}). Shown are simulations of the P-unit model cell ``2017-07-18-ai'' (table~\ref{modelparams}) with a baseline firing rate of $82$\,Hz and CV$_{\text{base}}=0.23$. The cell shows a clear triangular pattern in its second-order susceptibility even up to a contrast of $10$\,\%. Note, that for $c=1$\,\% (\panel[ii]{D}), the estimate did not converge yet. \figitem{B} Cell ``2012-12-13-ao'' (baseline firing rate of $146$\,Hz, CV$=0.23$) also has strong interactions at its baseline firing rate that survive up to a stimulus contrast of $3$\,\%. \figitem{C} Model cell ``2012-12-20-ac'' (baseline firing rate of $212$\,Hz, CV$=0.26$) shows a weak triangular structure in the second-order susceptibility that vanishes for stimulus contrasts larger than $1$\,\%. \figitem{D} Cell ``2013-01-08-ab'' (baseline firing rate of $218$\,Hz, CV$=0.55$) does not show any triangular pattern in its second-order susceptibility. Nevertheless, interactions between low stimulus frequencies become substantial at higher contrasts. \figitem{E} The presence of an elevated second-order susceptibility where the stimulus frequency add up to the neuron's baseline frequency, can be identified by the susceptibility index (SI($r$), \eqnref{eq:nli_equation2}) greater than one (horizontal black line). The SI($r$) (density to the right) is plotted as a function of the model neuron's baseline CV for all $39$ model cells (table~\ref{modelparams}). Model cells have been visually categorized based on the presence of a triangular pattern in their second-order susceptibility estimated in the noise-split configuration (legend). The cells from \panel{A--D} are marked by black circles. Pearson's correlation coefficients $r$, the corresponding significance level $p$ and regression line (dashed gray line) are indicated. The higher the stimulus contrast, the less cells show weakly nonlinear interactions as expressed by the triangular structure in the second-order susceptibility.}
\end{figure}
\subsection{Weakly nonlinear interactions in many model cells}
@ -534,14 +534,13 @@ At a RAM contrast of 3\,\% the \nli{} values become smaller (\figrefb{fig:models
\begin{figure}[tp]
\includegraphics[width=\columnwidth]{modelsusceptlown}
\notejb{We could remove D?}
\caption{\label{fig:modelsusceptlown}Inferring the triangular structure of the second-order susceptibility from limited data. \figitem{A} Reliably estimating the structure of the second-order susceptibility requires a high number of FFT segements $N$ in the order of one or even ten millions. As an example, susceptibilities of the model cell ``2012-12-21-ak-invivo-1'' (baseline firing rate of 157\,Hz, CV=0.15) are shown for the noise-split configuration ($c=0$\,\%) and RAM stimulus contrasts of $c=1$, $3$, and $10$\,\% as indicated. For contrasts below $10$\,\% this cell shows a nice triangular pattern in its susceptibilities, quite similar to the introductory example of a LIF in \figrefb{fig:lifresponse}. \figitem{B} However, with limited data of $N=100$ trials the susceptibility estimates are noisy and show much less structure, except for the anti-diagonal at the cell's baseline firing rate. \figitem{C} Correlating the estimates of SI($r$), that quantify the height of the ridge where the two stimulus frequencies add up to the neuron's baseline firing rate, based on 100 FFT segments (density to the right) with the converged ones based on one or ten million segments at a given stimulus contrast. The black diagonal line is the identity line and the dashed line is a linear regression. The correlation coefficient and corresponding significance level are indicated in the top left corner. The thin vertical line is a threshold at 1.2, the thin horizontal line a threshold at 1.8. The number of cells within each of the resulting four quadrants denote the false positives (top left), true positives (top right), true negatives (bottom left), and false negatives (bottom right) for predicting a triangular structure in the converged susceptibility estimate. \figitem{D} Relation between the estimates based on 100 trials with the one in the noise-split configuration based on one million trials. Cells are categorized as in \subfigref{fig:modelsusceptcontrasts}{E}.}
\caption{\label{fig:modelsusceptlown}Inferring the triangular structure of the second-order susceptibility from limited data. \figitem{A} Reliably estimating the structure of the second-order susceptibility requires a high number of FFT segments $N$ in the order of one or even ten millions. As an example, susceptibilities of the model cell ``2012-12-21-ak-invivo-1'' (baseline firing rate of 157\,Hz, CV=0.15) are shown for the noise-split configuration ($c=0$\,\%) and RAM stimulus contrasts of $c=1$, $3$, and $10$\,\% as indicated. For contrasts below $10$\,\% this cell shows a nice triangular pattern in its susceptibilities, quite similar to the introductory example of a LIF in \figrefb{fig:lifresponse}. \figitem{B} However, with limited data of $N=100$ trials the susceptibility estimates are noisy and show much less structure, except for the anti-diagonal at the cell's baseline firing rate. The SI($r$) quantifies the height of this ridge where the two stimulus frequencies add up to the neuron's baseline firing rate. \figitem{C} Correlations between the estimates of SI($r$) based on 100 FFT segments (density to the right) with the converged ones based on one or ten million segments at a given stimulus contrast for all $n=39$ model cells. The black circle marks the model cell shown in \panel{A} and \panel{B}. The black diagonal line is the identity line and the dashed line is a linear regression. The correlation coefficient and corresponding significance level are indicated in the top left corner. The thin vertical line is a threshold at 1.2, the thin horizontal line a threshold at 1.8. The number of cells within each of the resulting four quadrants denote the false positives (top left), true positives (top right), true negatives (bottom left), and false negatives (bottom right) for predicting a triangular structure in the converged susceptibility estimate from the estimates based on only 100 segments.}
\end{figure}
\subsection{Weakly nonlinear interactions can be deduced from limited data}
Estimating second-order susceptibilities reliably requires large numbers (millions) of FFT segments (\figrefb{fig:trialnr}). Electrophysiological measurements, however, suffer from limited recording durations and hence limited numbers of available FFT segments and estimating weakly nonlinear interactions from just ten segments appears futile. The question arises, to what extend such limited-data estimates are still informative?
The second-order susceptibility matrices that are based on only 10 segements look flat and noisy, lacking the triangular structure \subfigref{fig:modelsusceptcontrasts}{B}. The anti-diagonal ridge, however, when the sum of the stimulus frequencies matches the neuron's baseline firing rate seems to be present whenever the converged estimate shows a clear triangular structure (compare \subfigref{fig:modelsusceptcontrasts}{B} and \subfigref{fig:modelsusceptcontrasts}{a}).
The second-order susceptibility matrices that are based on only 10 sgements look flat and noisy, lacking the triangular structure \subfigref{fig:modelsusceptcontrasts}{B}. The anti-diagonal ridge, however, when the sum of the stimulus frequencies matches the neuron's baseline firing rate seems to be present whenever the converged estimate shows a clear triangular structure (compare \subfigref{fig:modelsusceptcontrasts}{B} and \subfigref{fig:modelsusceptcontrasts}{a}).
%A comparison of well converged estimates based on millions of segments with estimates based on just ten segments as a worst-case scenario (\subfigrefb{fig:modelsusceptlown}{A\&B}) seems hopeless on a first glance. These estimates using just ten segments look flat and noisy, no triangular structure is visible. However, the anti-diagonal ridge where the stimulus frequencies add up to the neuron's baseline firing rate seems to be present when the converged estimate shows a clear triangular structure.
@ -549,16 +548,12 @@ The \nli{} characterizes the ridgeness of the second-oder susceptibility plane.
Trying to predict whether there is a triangular structure in the noise-split configuration is more difficult (\subfigrefb{fig:modelsusceptlown}{D}). The correlations are weaker and at a stimulus contrast of 10\,\% the correlation is no longer significant. One false positive arises at a contrast of 1\,\%, and false positives are absent for higher contrasts. False negatives increase with increasing contrast and at a contrast of 10\,\% all \nli{} values based on 10 segments are so low that just one triangular pattern can be predicted. This makes sense given the absent correlation between \nli{} values estimated at 10\,\% stimulus contrast and the noise-split configuration described above.
Overall, observing \nli{} values greater than at least 1.6, even for a number of FFT segments as low as ten, seems to be a reliable indication for a triangular structure in the second-order susceptibility at the corresponding stimulus contrast. Small stimulus contrasts of 1\,\% are less informative, because of the bad signal-to-noise ratio. Intermediate stimulus contrasts around 3\,\% seem to be optimal, because there, most cells still have a triangular structure in their susceptibility and the signal-to-noise ratio is better. At RAM stimulus contrasts of 10\,\% or higher the signal-to-noise ratio is even better, but only few cells remain with weak triangularly shaped susceptibilities that might be missed as a false positives. Note that increasing the number of segements used for estimating the susceptibilities to 100 or 1000 improves the situation only marginally (not shown).
Overall, observing \nli{} values greater than at least 1.6, even for a number of FFT segments as low as ten, seems to be a reliable indication for a triangular structure in the second-order susceptibility at the corresponding stimulus contrast. Small stimulus contrasts of 1\,\% are less informative, because of the bad signal-to-noise ratio. Intermediate stimulus contrasts around 3\,\% seem to be optimal, because there, most cells still have a triangular structure in their susceptibility and the signal-to-noise ratio is better. At RAM stimulus contrasts of 10\,\% or higher the signal-to-noise ratio is even better, but only few cells remain with weak triangularly shaped susceptibilities that might be missed as a false positives. Note that increasing the number of segments used for estimating the susceptibilities to 100 or 1000 improves the situation only marginally (not shown).
\begin{figure*}[tp]
\includegraphics[width=\columnwidth]{dataoverview}
\caption{\label{fig:dataoverview} Nonlinear responses in P-units and ampullary afferents. The second-order susceptibility is condensed into the susceptibility index, SI($r$) \eqnref{eq:nli_equation}, that quantifies the relative amplitude of the projected susceptibility at a cell's baseline firing rate (see \subfigrefb{fig:punit}{G}). Each of the recorded neurons contributes on average two stimulus contrasts. Black squares and circles highlight recordings conducted in a single cell. Squares in \panel{A, C, E} correspond to the cell in \figrefb{fig:punit} and circles to the cell in \figrefb{fig:punithighcv}. Squares in \panel{B, D, F} correspond to the cell in \figrefb{fig:ampullary}. \figitem{A, B} There is a negative correlation between the CV during baseline and \nli. \figitem{C, D} There is a negative correlation between the CV during stimulation and \nli. \figitem{E, F} \nli{} is plotted against the response modulation, (see methods), an indicator of the subjective stimulus strength for a cell. There is a negative correlation between response modulation and \nli. Restricting the analysis to the weakest stimulus that was presented to each unique neuron, does not change the results. The number of unique neurons is 221 for P-units and 45 for ampullary cells.
% The two example P-units shown before are highlighted with dark markers in \subfigrefb{fig:dataoverview}{A, C, E} (squares -- \figrefb{fig:punit}, circles -- \figrefb{fig:punithighcv}).
% Several of the recorded neurons contribute with two samples to the population analysis as their responses have been recorded to two different contrasts of the same RAM stimulus. Higher stimulus contrasts lead to a stronger drive and thus stronger response modulations (see color code bar in \subfigref{fig:dataoverview}{A}, see methods).
% The example cell shown above (\figref{fig:ampullary}) was recorded at two different stimulus intensities and the \nli{} values are highlighted with black squares.
}
\caption{\label{fig:dataoverview} Nonlinear responses in P-units and ampullary afferents. The second-order susceptibility is condensed into the susceptibility index, SI($r$) \eqnref{eq:nli_equation}, that quantifies the relative amplitude of the ridge where the two stimulus frequencies add up to the cell's baseline firing rate (see \subfigrefb{fig:punit}{G}). The SI($r$) is plotted against the cells' CV of its baseline interspike intervals (left column), the response modulation (the standard deviation of firing rate evoked by the band-limited white-noise stimulus) --- a measure of effective stimulus strenght (center column), and the CV of the interspike intervals during stimulation with the white-noise stimulus (right column). Pearson's correlation coefficient $R$ and the number of data points $n$ are indicated; all correlations are significant at a level below $p=0.0002$. Kernel-density estimates of the distributions of the displayed quantities are plotted on top and right. Data points are color coded by a third quantity as indicated by the color bars. The horizontal dashed line marks a threshold for SI($r$) values at 1.8 and the percentages to the right denote the fractions above and below this threshold. \figitem{A} The SI($r$) of all 39 model P-units (table~\ref{modelparams}) measured at contrasts of 1, 3, and 10\,\% of RAM stimuli with a cutoff frequency of 300\,Hz. The SI($r$) was estimated based on 100 FFT segments. The black square marks the cell from \subfigrefb{fig:noisesplit}{C}, the circles the four cells shown in \subfigref{fig:modelsusceptcontrasts}{A--D}, and the triangle the cell from \subfigref{fig:modelsusceptlown}{A--B}. \figitem{B} Electrophysiological data from 159 P-units. Each cell contributes on average with 2 (min. 1, max. 10) RAM stimulus presentations to the $n=382$ data points. The RAMs with cutoff frequency of 300\,Hz were presented at contrasts ranging from 0.1\,\% to 20\,\% (median 5\,\%). The number of available FFT segements ranged from 105 to 2560 (median 235). The two black triangles mark the responses of the example P-unit from \subfigrefb{fig:punit}{E,F}, the circles the other four examples from \subfigrefb{fig:punit}{H}, and the triangle the unit from \subfigrefb{fig:noisesplit}{A}. \figitem{C} Recordings from 30 ampullary afferents, each contributing on average 3 RAM stimulus presentations to $n=89$ data points. Stimuli had a cutoff frequency of 150\,Hz and their contrasts ranged from 2.5\,\% to 20\,\% (median 5\,\%). 105 to 3648 FFT segements were available per stimulus (median 722). The two black triangles mark the responses of the example ampullary afferent from \subfigrefb{fig:ampullary}{E,F}, and the circles the other four examples from \subfigrefb{fig:ampullary}{H}.}
\end{figure*}
\subsection{Low CVs and weak stimuli are associated with distinct nonlinearity in recorded electroreceptive neurons}
@ -830,6 +825,7 @@ The P-unit models were integrated by the Euler forward method with a time-step o
%\paragraph{Fitting the model to recorded P-units}
The eight free parameters of the P-unit model $\beta$, $\tau_m$, $\mu$, $D$, $\tau_A$, $\Delta_A$, $\tau_d$, and $t_{ref}$, were fitted to both the baseline activity (baseline firing rate, CV of ISIs, serial correlation of ISIs at lag one, and vector strength of spike coupling to EOD) and the responses to step increases and decreases in EOD amplitude (onset and steady-state responses, effective adaptation time constant, \citealp{Benda2005}) of recorded P-units (table~\ref{modelparams}).
\notejb{add table with all 39 cells}
\begin{table*}[tp]
\caption{\label{modelparams} Model parameters of LIF models, fitted to 3 electrophysiologically recorded P-units \citep{Ott2020}.}
\begin{tabular}{lrrrrrrrr}