fixed figure reference
This commit is contained in:
parent
9e4f23e0db
commit
47ad15909e
@ -476,7 +476,7 @@ The afferents of the passive electrosensory system, the ampullary cells, exhibit
|
||||
|
||||
Ampullary stimuli originate from the muscle potentials induced by prey movement \citep{Kalmijn1974, Engelmann2010, Neiman2011fish}. For a single prey items such as \textit{Daphnia}, these potentials are often periodic but the simultaneous activity of a swarm of prey resembles Gaussian white noise \citep{Neiman2011fish}. Linear and nonlinear encoding in ampullary cells has been studied in great detail in the paddlefish \citep{Neiman2011fish}. The power spectrum of the baseline response shows two main peaks: One peak at the baseline firing frequency, a second one at the oscillation frequency of primary receptor cells in the epithelium, plus interactions of both. Linear encoding in the paddlefish shows a gap at the epithelial oscillation frequency, instead, nonlinear responses are very pronounced there.
|
||||
|
||||
Ampullary stimulus encoding is somewhat different in \lepto{}. The power spectrum of the spontaneous response is dominated by only the baseline firing rate and its harmonics, a second oscillator is not visible. The baseline firing frequency, however, is outside the linear coding range \citep{Grewe2017} while it is within the linear coding range in paddlefish \citep{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullary cells increases with stimulus intensity while it disappears in our case (\subfigrefb{fig:dataoverview}{F}) indicating that paddlefish data have been recorded above the weakly-nonlinear regime.
|
||||
Ampullary stimulus encoding is somewhat different in \lepto{}. The power spectrum of the spontaneous response is dominated by only the baseline firing rate and its harmonics, a second oscillator is not visible. The baseline firing frequency, however, is outside the linear coding range \citep{Grewe2017} while it is within the linear coding range in paddlefish \citep{Neiman2011fish}. Interestingly, the nonlinear response in the paddlefish ampullary cells increases with stimulus intensity while it disappears in our case (\figrefb{fig:dataoverview}~\panel[ii]{C}) indicating that paddlefish data have been recorded above the weakly-nonlinear regime.
|
||||
|
||||
The population of ampullary cells is very homogeneous with respect to the baseline rate (131$\pm$29\,Hz) and stimulus encoding properties \citep{Grewe2017}. This implies that, if the stimulus contains the appropriate frequency components that sum up to the baseline rate, the resulting nonlinear response appears at the baseline rate that is similar in the full population of ampullary cells and that is outside the linear coding range. Postsynaptic cells integrating ampullary input might be able to extract such nonlinear responses. How such nonlinear effects might influence prey detection should be addressed in future studies.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user