[calibration] moving calibration to own folder, rewriting run method

This commit is contained in:
wendtalexander 2024-10-23 11:06:26 +02:00
parent 7c4b5098c1
commit 110629dae0
2 changed files with 275 additions and 0 deletions

View File

@ -0,0 +1,275 @@
import faulthandler
import time
import nixio as nix
import uldaq
from IPython import embed
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import welch, find_peaks
import pyqtgraph as pg
from pyrelacs.devices.mccdaq import MccDaq
from pyrelacs.util.logging import config_logging
log = config_logging()
# for more information on seg faults
faulthandler.enable()
class Calibration:
def __init__(self, config, mccdaq: MccDaq) -> None:
self.config = config
self.mccdaq = mccdaq
self.SAMPLERATE = 40_000.0
self.DURATION = 5
self.AMPLITUDE = 1
self.SINFREQ = 750
@staticmethod
def run(*args, **kwargs):
nix_block = args[0]
figure = args[1]
mccdaq = args[2]
config = args[3]
calb = Calibration(config, mccdaq)
calb.check_beat(nix_block)
calb.plot(figure, nix_block)
return "finished"
def check_amplitude(self):
db_values = [0.0, -5.0, -10.0, -20.0, -50.0]
colors = ["red", "green", "blue", "black", "yellow"]
self.mccdaq.set_attenuation_level(db_channel1=0.0, db_channel2=0.0)
# write to ananlog 1
t = np.arange(0, self.DURATION, 1 / self.SAMPLERATE)
data = self.AMPLITUDE * np.sin(2 * np.pi * self.SINFREQ * t)
fig, ax = plt.subplots()
for i, db_value in enumerate(db_values):
self.mccdaq.set_attenuation_level(
db_channel1=db_value, db_channel2=db_value
)
log.debug(f"{db_value}")
stim = self.mccdaq.write_analog(
data,
[0, 0],
self.SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
data_channel_one = self.mccdaq.read_analog(
[0, 0],
self.DURATION,
self.SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
time.sleep(1)
log.debug("Starting the Scan")
self.mccdaq.digital_trigger()
try:
self.mccdaq.ao_device.scan_wait(uldaq.WaitType.WAIT_UNTIL_DONE, 15)
log.debug("Scan finished")
self.mccdaq.write_bit(channel=0, bit=0)
time.sleep(1)
self.mccdaq.set_analog_to_zero()
except uldaq.ul_exception.ULException:
log.debug("Operation timed out")
# reset the diggital trigger
self.mccdaq.write_bit(channel=0, bit=0)
time.sleep(1)
self.mccdaq.set_analog_to_zero()
# self.mccdaq.disconnect_daq()
if i == 0:
ax.plot(t, stim, label=f"Input_{db_value}", color=colors[i])
ax.plot(t, data_channel_one, label=f"Reaout {db_value}", color=colors[i])
ax.legend()
plt.show()
# self.mccdaq.disconnect_daq()
def check_beat(self, nix_block: nix.Block):
self.mccdaq.set_attenuation_level(db_channel1=-10.0, db_channel2=0.0)
t = np.arange(0, self.DURATION, 1 / self.SAMPLERATE)
data = self.AMPLITUDE * np.sin(2 * np.pi * self.SINFREQ * t)
# data = np.concatenate((data, data))
db_values = [0.0, -5.0, -8.5, -10.0]
colors = ["red", "blue", "black", "green"]
colors_in = ["lightcoral", "lightblue", "grey", "lightgreen"]
# fig, axes = plt.subplots(2, 2, sharex="col")
for i, db_value in enumerate(db_values):
self.mccdaq.set_attenuation_level(db_channel1=db_value)
stim = self.mccdaq.write_analog(
data,
[0, 0],
self.SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
readout = self.mccdaq.read_analog(
[0, 1],
self.DURATION,
self.SAMPLERATE,
ScanOption=uldaq.ScanOption.EXTTRIGGER,
)
self.mccdaq.digital_trigger()
log.info(self.mccdaq.ao_device)
ai_status = uldaq.ScanStatus.RUNNING
ao_status = uldaq.ScanStatus.RUNNING
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
while (ai_status != uldaq.ScanStatus.IDLE) and (
ao_status != uldaq.ScanStatus.IDLE
):
# log.debug("Scanning")
time.time_ns()
ai_status = self.mccdaq.ai_device.get_scan_status()[0]
ao_status = self.mccdaq.ao_device.get_scan_status()[0]
self.mccdaq.write_bit(channel=0, bit=0)
log.debug(
f"Status Analog_output {ao_status}\n, Status Analog_input {ai_status}"
)
channel1 = np.array(readout[::2])
channel2 = np.array(readout[1::2])
stim_data = nix_block.create_data_array(
f"stimulus_{db_value}",
"nix.regular_sampled",
shape=data.shape,
data=channel1,
label="Voltage",
unit="V",
)
stim_data.append_sampled_dimension(
self.SAMPLERATE,
label="time",
unit="s",
)
fish_data = nix_block.create_data_array(
f"fish_{db_value}",
"Array",
shape=data.shape,
data=channel2,
label="Voltage",
unit="V",
)
fish_data.append_sampled_dimension(
self.SAMPLERATE,
label="time",
unit="s",
)
time.time_ns()
self.mccdaq.set_analog_to_zero()
def plot(self, figure, block):
self.figure = figure
self.figure.setBackground("w")
self.beat_plot = self.figure.addPlot(row=0, col=0)
self.power_plot = self.figure.addPlot(row=1, col=0)
self.beat_plot.addLegend()
self.power_plot.addLegend()
# self.power_plot.setLogMode(x=False, y=True)
colors = ["red", "green", "blue", "black", "yellow"]
for i, (stim, fish) in enumerate(
zip(list(block.data_arrays)[::2], list(block.data_arrays)[1::2])
):
f_stim, stim_power = welch(
stim[:],
fs=40_000.0,
window="flattop",
nperseg=100_000,
)
stim_power = decibel(stim_power)
stim_max_power_index = np.argmax(stim_power)
freq_stim = f_stim[stim_max_power_index]
f_fish, fish_power = welch(
fish[:],
fs=40_000.0,
window="flattop",
nperseg=100_000,
)
fish_power = decibel(fish_power)
fish_max_power_index = np.argmax(fish_power)
freq_fish = f_fish[fish_max_power_index]
beat_frequency = np.abs(freq_fish - freq_stim)
beat = stim[:] + fish[:]
beat_squared = beat**2
f, powerspec = welch(
beat_squared,
window="flattop",
fs=40_000.0,
nperseg=100_000,
)
powerspec = decibel(powerspec)
padding = 20
integration_window = powerspec[
(f > beat_frequency - padding) & (f < beat_frequency + padding)
]
peaks = find_peaks(powerspec, prominence=40)[0]
pen = pg.mkPen(colors[i])
self.beat_plot.plot(
np.arange(0, len(beat)) / 40_000.0,
beat,
pen=pen,
name=stim.name,
)
self.power_plot.plot(f, powerspec, pen=pen, name=stim.name)
self.power_plot.plot(f[peaks], powerspec[peaks], pen=None, symbol="x")
def decibel(power, ref_power=1.0, min_power=1e-20):
"""Transform power to decibel relative to ref_power.
\\[ decibel = 10 \\cdot \\log_{10}(power/ref\\_power) \\]
Power values smaller than `min_power` are set to `-np.inf`.
Parameters
----------
power: float or array
Power values, for example from a power spectrum or spectrogram.
ref_power: float or None or 'peak'
Reference power for computing decibel.
If set to `None` or 'peak', the maximum power is used.
min_power: float
Power values smaller than `min_power` are set to `-np.inf`.
Returns
-------
decibel_psd: array
Power values in decibel relative to `ref_power`.
"""
if np.isscalar(power):
tmp_power = np.array([power])
decibel_psd = np.array([power])
else:
tmp_power = power
decibel_psd = power.copy()
if ref_power is None or ref_power == "peak":
ref_power = np.max(decibel_psd)
decibel_psd[tmp_power <= min_power] = float("-inf")
decibel_psd[tmp_power > min_power] = 10.0 * np.log10(
decibel_psd[tmp_power > min_power] / ref_power
)
if np.isscalar(power):
return decibel_psd[0]
else:
return decibel_psd

View File