213 lines
6.3 KiB
Plaintext
213 lines
6.3 KiB
Plaintext
---
|
|
title: Calibration
|
|
format:
|
|
html:
|
|
toc: true
|
|
toc-title: Contents
|
|
code-block-bg: true
|
|
code-block-border-left: "#31BAE9"
|
|
code-line-numbers: true
|
|
highlight-style: atom-one
|
|
link-external-icon: true
|
|
link-external-newwindow: true
|
|
eqn-number: true
|
|
---
|
|
|
|
### Calibration of the Amplitude
|
|
Lets look at the calibration and the first trial of the recording.
|
|
|
|
```{python}
|
|
|
|
import pathlib
|
|
|
|
import rlxnix as rlx
|
|
import plotly.graph_objects as go
|
|
import numpy as np
|
|
import scipy.signal as signal
|
|
from plotly.subplots import make_subplots
|
|
|
|
|
|
dataset_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2-recording.nix")
|
|
relacs_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2_relacs/2025-10-08-aa-invivo-2.nix")
|
|
|
|
dataset = rlx.Dataset(str(dataset_path))
|
|
relacs = rlx.Dataset(str(relacs_path))
|
|
|
|
#INFO: Select the first stimulus of the calibration repro
|
|
repro_d = dataset.repro_runs("CalibEfield_1")[0].stimuli[2]
|
|
repro_r = relacs.repro_runs("CalibEfield_1")[0].stimuli[2]
|
|
|
|
sinus, t = repro_d.trace_data("sinus")
|
|
sinus_r, t_r = repro_r.trace_data("V-1")
|
|
|
|
stimulus_oe, t = repro_d.trace_data("stimulus")
|
|
stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus")
|
|
|
|
local_eod_oe, t = repro_d.trace_data("local-eod")
|
|
local_eod_re, t_r = repro_r.trace_data("LocalEOD-1")
|
|
|
|
global_eod_oe, t = repro_d.trace_data("global-eod")
|
|
global_eod_re, t_r = repro_r.trace_data("EOD")
|
|
|
|
ttl, t = repro_d.trace_data("ttl-line")
|
|
```
|
|
### Plotting the First trial
|
|
If you zoom in you can see a little delay between the different recording systems. It seems that open-ephys is before the relacs recording.
|
|
|
|
```{python}
|
|
#| echo: False
|
|
# 2. Add traces to the FIRST subplot (row=1, col=1)
|
|
# Note: Plotly rows and columns are 1-indexed
|
|
fig = make_subplots( rows=5, cols=1, shared_xaxes=True, subplot_titles=("TTL-Line",
|
|
"Stimulus Comparison", "Local EOD Comparison", "Global EOD Comparison",
|
|
"Sinus Comparison"))
|
|
|
|
fig.add_trace(
|
|
go.Scatter(x=t, y=ttl, name="ttl-line", line_color="magenta"),
|
|
row=1,
|
|
col=1,
|
|
)
|
|
|
|
fig.add_trace(
|
|
go.Scatter(x=t_r, y=stimulus_re, name="stimulus (relacs)", line_color="blue"),
|
|
row=2,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=t,
|
|
y=stimulus_oe - np.mean(stimulus_oe), # The same data transformation
|
|
name="stimulus (open-ephys)",
|
|
line_color="red",
|
|
),
|
|
row=2,
|
|
col=1,
|
|
)
|
|
|
|
|
|
# 3. Add traces to the SECOND subplot (row=2, col=1)
|
|
fig.add_trace(
|
|
go.Scatter(x=t_r, y=local_eod_re, name="local EOD (relacs)", line_color="blue"),
|
|
row=3,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scatter(x=t, y=local_eod_oe, name="local EOD (open-ephys)", line_color="red"),
|
|
row=3,
|
|
col=1,
|
|
)
|
|
|
|
|
|
# 4. Add traces to the THIRD subplot (row=3, col=1)
|
|
fig.add_trace(
|
|
go.Scatter(x=t_r, y=global_eod_re, name="global EOD (relacs)", line_color="blue"),
|
|
row=4,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=t, y=global_eod_oe, name="global EOD (open-ephys)", line_color="red"
|
|
),
|
|
row=4,
|
|
col=1,
|
|
)
|
|
|
|
# 5. Add traces to the FOURTH subplot (row=4, col=1)
|
|
fig.add_trace(
|
|
go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue"),
|
|
row=5,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scatter(x=t, y=sinus, name="sinus (open-ephys)", line_color="red"),
|
|
row=5,
|
|
col=1,
|
|
)
|
|
|
|
# 6. Update the layout for a cleaner look
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=800, # Set the figure height in pixels
|
|
# Control the legend
|
|
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6") # matches plotly_dark foreground
|
|
)
|
|
)
|
|
# Add a label to the shared x-axis (targeting the last subplot)
|
|
fig.update_xaxes(title_text="Time (s)", row=4, col=1)
|
|
|
|
# 7. Show the figure
|
|
fig.show()
|
|
```
|
|
### Correlation between the Signals
|
|
|
|
```{python}
|
|
print(f"Duration of the dataset {repro_d.duration}")
|
|
print(f"Duration of the relacs {repro_r.duration}")
|
|
# Resample the open-ephys data
|
|
sinus_resampled = signal.resample(sinus, len(sinus_r))
|
|
|
|
```
|
|
|
|
```{python}
|
|
#| echo: False
|
|
fig = go.Figure()
|
|
fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers"))
|
|
fig.add_trace( go.Scatter(x=t_r, y=sinus_resampled, name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers"))
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=500, # Set the figure height in pixels
|
|
# Control the legend
|
|
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6") # matches plotly_dark foreground
|
|
)
|
|
)
|
|
fig.update_xaxes(range=[0, 0.01])
|
|
```
|
|
We need to scale the two signals
|
|
|
|
```{python}
|
|
oephys_lanes = [sinus, local_eod_oe, global_eod_oe, stimulus_oe]
|
|
relacs_lanes = [sinus_r, local_eod_re, global_eod_re, stimulus_re]
|
|
names_lanes = ["sinus", "local-eod", "global-eod", "stimulus"]
|
|
lags_lanes = []
|
|
for oephys_lane, relacs_lane, names_lane in zip(oephys_lanes, relacs_lanes, names_lanes, strict=True):
|
|
print(oephys_lane.shape)
|
|
print(relacs_lane.shape)
|
|
oephys_lane_resampled = signal.resample(oephys_lane, len(relacs_lane))
|
|
correlation = signal.correlate(oephys_lane_resampled, relacs_lane, mode="full")
|
|
lags = signal.correlation_lags(oephys_lane_resampled.size, relacs_lane.size, mode="full")
|
|
lag = lags[np.argmax(correlation)]
|
|
lags_lanes.append(lag)
|
|
print(f"{names_lane} has a lag of {lag}")
|
|
```
|
|
|
|
```{python}
|
|
#| echo: False
|
|
fig = go.Figure()
|
|
fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers"))
|
|
fig.add_trace( go.Scatter(x=t_r, y=np.roll(sinus_resampled, -lags_lanes[0]), name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers"))
|
|
fig.update_layout(
|
|
title="Sinus",
|
|
template="plotly_dark",
|
|
height=500, # Set the figure height in pixels
|
|
# Control the legend
|
|
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6") # matches plotly_dark foreground
|
|
)
|
|
)
|
|
fig.update_xaxes(range=[0, 0.01])
|
|
```
|