oephys2nix/doc/calibration.qmd

213 lines
6.3 KiB
Plaintext

---
title: Calibration
format:
html:
toc: true
toc-title: Contents
code-block-bg: true
code-block-border-left: "#31BAE9"
code-line-numbers: true
highlight-style: atom-one
link-external-icon: true
link-external-newwindow: true
eqn-number: true
---
### Calibration of the Amplitude
Lets look at the calibration and the first trial of the recording.
```{python}
import pathlib
import rlxnix as rlx
import plotly.graph_objects as go
import numpy as np
import scipy.signal as signal
from plotly.subplots import make_subplots
dataset_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2-recording.nix")
relacs_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2_relacs/2025-10-08-aa-invivo-2.nix")
dataset = rlx.Dataset(str(dataset_path))
relacs = rlx.Dataset(str(relacs_path))
#INFO: Select the first stimulus of the calibration repro
repro_d = dataset.repro_runs("CalibEfield_1")[0].stimuli[2]
repro_r = relacs.repro_runs("CalibEfield_1")[0].stimuli[2]
sinus, t = repro_d.trace_data("sinus")
sinus_r, t_r = repro_r.trace_data("V-1")
stimulus_oe, t = repro_d.trace_data("stimulus")
stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus")
local_eod_oe, t = repro_d.trace_data("local-eod")
local_eod_re, t_r = repro_r.trace_data("LocalEOD-1")
global_eod_oe, t = repro_d.trace_data("global-eod")
global_eod_re, t_r = repro_r.trace_data("EOD")
ttl, t = repro_d.trace_data("ttl-line")
```
### Plotting the First trial
If you zoom in you can see a little delay between the different recording systems. It seems that open-ephys is before the relacs recording.
```{python}
#| echo: False
# 2. Add traces to the FIRST subplot (row=1, col=1)
# Note: Plotly rows and columns are 1-indexed
fig = make_subplots( rows=5, cols=1, shared_xaxes=True, subplot_titles=("TTL-Line",
"Stimulus Comparison", "Local EOD Comparison", "Global EOD Comparison",
"Sinus Comparison"))
fig.add_trace(
go.Scatter(x=t, y=ttl, name="ttl-line", line_color="magenta"),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(x=t_r, y=stimulus_re, name="stimulus (relacs)", line_color="blue"),
row=2,
col=1,
)
fig.add_trace(
go.Scatter(
x=t,
y=stimulus_oe - np.mean(stimulus_oe), # The same data transformation
name="stimulus (open-ephys)",
line_color="red",
),
row=2,
col=1,
)
# 3. Add traces to the SECOND subplot (row=2, col=1)
fig.add_trace(
go.Scatter(x=t_r, y=local_eod_re, name="local EOD (relacs)", line_color="blue"),
row=3,
col=1,
)
fig.add_trace(
go.Scatter(x=t, y=local_eod_oe, name="local EOD (open-ephys)", line_color="red"),
row=3,
col=1,
)
# 4. Add traces to the THIRD subplot (row=3, col=1)
fig.add_trace(
go.Scatter(x=t_r, y=global_eod_re, name="global EOD (relacs)", line_color="blue"),
row=4,
col=1,
)
fig.add_trace(
go.Scatter(
x=t, y=global_eod_oe, name="global EOD (open-ephys)", line_color="red"
),
row=4,
col=1,
)
# 5. Add traces to the FOURTH subplot (row=4, col=1)
fig.add_trace(
go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue"),
row=5,
col=1,
)
fig.add_trace(
go.Scatter(x=t, y=sinus, name="sinus (open-ephys)", line_color="red"),
row=5,
col=1,
)
# 6. Update the layout for a cleaner look
fig.update_layout(
template="plotly_dark",
height=800, # Set the figure height in pixels
# Control the legend
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
legend=dict(
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
bordercolor="#444",
borderwidth=0,
font=dict(color="#e5ecf6") # matches plotly_dark foreground
)
)
# Add a label to the shared x-axis (targeting the last subplot)
fig.update_xaxes(title_text="Time (s)", row=4, col=1)
# 7. Show the figure
fig.show()
```
### Correlation between the Signals
```{python}
print(f"Duration of the dataset {repro_d.duration}")
print(f"Duration of the relacs {repro_r.duration}")
# Resample the open-ephys data
sinus_resampled = signal.resample(sinus, len(sinus_r))
```
```{python}
#| echo: False
fig = go.Figure()
fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers"))
fig.add_trace( go.Scatter(x=t_r, y=sinus_resampled, name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers"))
fig.update_layout(
template="plotly_dark",
height=500, # Set the figure height in pixels
# Control the legend
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
legend=dict(
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
bordercolor="#444",
borderwidth=0,
font=dict(color="#e5ecf6") # matches plotly_dark foreground
)
)
fig.update_xaxes(range=[0, 0.01])
```
We need to scale the two signals
```{python}
oephys_lanes = [sinus, local_eod_oe, global_eod_oe, stimulus_oe]
relacs_lanes = [sinus_r, local_eod_re, global_eod_re, stimulus_re]
names_lanes = ["sinus", "local-eod", "global-eod", "stimulus"]
lags_lanes = []
for oephys_lane, relacs_lane, names_lane in zip(oephys_lanes, relacs_lanes, names_lanes, strict=True):
print(oephys_lane.shape)
print(relacs_lane.shape)
oephys_lane_resampled = signal.resample(oephys_lane, len(relacs_lane))
correlation = signal.correlate(oephys_lane_resampled, relacs_lane, mode="full")
lags = signal.correlation_lags(oephys_lane_resampled.size, relacs_lane.size, mode="full")
lag = lags[np.argmax(correlation)]
lags_lanes.append(lag)
print(f"{names_lane} has a lag of {lag}")
```
```{python}
#| echo: False
fig = go.Figure()
fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers"))
fig.add_trace( go.Scatter(x=t_r, y=np.roll(sinus_resampled, -lags_lanes[0]), name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers"))
fig.update_layout(
title="Sinus",
template="plotly_dark",
height=500, # Set the figure height in pixels
# Control the legend
#legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
legend=dict(
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
bordercolor="#444",
borderwidth=0,
font=dict(color="#e5ecf6") # matches plotly_dark foreground
)
)
fig.update_xaxes(range=[0, 0.01])
```