210 lines
5.7 KiB
Python
210 lines
5.7 KiB
Python
import numpy as np
|
|
import plotly.graph_objects as go
|
|
import scipy.signal as signal
|
|
from plotly.subplots import make_subplots
|
|
|
|
|
|
def trial_plot(repro_d, repro_r, x_lim: int = 1.0):
|
|
sinus, t = repro_d.trace_data("sinus")
|
|
sinus_r, t_r = repro_r.trace_data("V-1")
|
|
|
|
stimulus_oe, t = repro_d.trace_data("stimulus")
|
|
stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus")
|
|
|
|
local_eod_oe, t = repro_d.trace_data("local-eod")
|
|
local_eod_re, t_r = repro_r.trace_data("LocalEOD-1")
|
|
|
|
global_eod_oe, t = repro_d.trace_data("global-eod")
|
|
global_eod_re, t_r = repro_r.trace_data("EOD")
|
|
|
|
ttl, t = repro_d.trace_data("ttl-line")
|
|
|
|
mask = t < x_lim
|
|
mask_r = t_r < x_lim
|
|
|
|
t = t[mask]
|
|
t_r = t_r[mask_r]
|
|
sinus = sinus[mask]
|
|
sinus_r = sinus_r[mask_r]
|
|
stimulus_oe = stimulus_oe[mask]
|
|
stimulus_re = stimulus_re[mask_r]
|
|
local_eod_oe = local_eod_oe[mask]
|
|
local_eod_re = local_eod_re[mask_r]
|
|
global_eod_oe = global_eod_oe[mask]
|
|
global_eod_re = global_eod_re[mask_r]
|
|
ttl = ttl[mask]
|
|
|
|
fig = make_subplots(
|
|
rows=5,
|
|
cols=1,
|
|
shared_xaxes=True,
|
|
subplot_titles=(
|
|
"TTL-Line",
|
|
"Stimulus",
|
|
"Local EOD",
|
|
"Global EOD",
|
|
"Sinus",
|
|
),
|
|
)
|
|
|
|
fig.add_trace(
|
|
go.Scattergl(x=t, y=ttl, name="ttl-line", line_color="magenta"),
|
|
row=1,
|
|
col=1,
|
|
)
|
|
|
|
fig.add_trace(
|
|
go.Scattergl(x=t_r, y=stimulus_re, line_color="blue"),
|
|
row=2,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scattergl(
|
|
x=t,
|
|
y=stimulus_oe - np.mean(stimulus_oe), # The same data transformation
|
|
name="stimulus (open-ephys)",
|
|
line_color="red",
|
|
),
|
|
row=2,
|
|
col=1,
|
|
)
|
|
|
|
# 3. Add traces to the SECOND subplot (row=2, col=1)
|
|
fig.add_trace(
|
|
go.Scattergl(x=t_r, y=local_eod_re, line_color="blue", showlegend=False),
|
|
row=3,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scattergl(x=t, y=local_eod_oe, showlegend=False, line_color="red"),
|
|
row=3,
|
|
col=1,
|
|
)
|
|
|
|
# 4. Add traces to the THIRD subplot (row=3, col=1)
|
|
fig.add_trace(
|
|
go.Scattergl(x=t_r, y=global_eod_re, showlegend=False, line_color="blue"),
|
|
row=4,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scattergl(x=t, y=global_eod_oe, showlegend=False, line_color="red"),
|
|
row=4,
|
|
col=1,
|
|
)
|
|
|
|
fig.add_trace(
|
|
go.Scattergl(x=t_r, y=sinus_r, showlegend=False, line_color="blue"),
|
|
row=5,
|
|
col=1,
|
|
)
|
|
fig.add_trace(
|
|
go.Scattergl(x=t, y=sinus, showlegend=False, line_color="red"),
|
|
row=5,
|
|
col=1,
|
|
)
|
|
|
|
# 6. Update the layout for a cleaner look
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=800, # Set the figure height in pixels
|
|
# Control the legend
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg)
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6"), # matches plotly_dark foreground
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=1.05,
|
|
xanchor="right",
|
|
x=0.72,
|
|
),
|
|
)
|
|
# Add a label to the shared x-axis (targeting the last subplot)
|
|
fig.update_xaxes(title_text="Time (s)", row=4, col=1)
|
|
fig.update_xaxes(range=[0, x_lim])
|
|
|
|
return fig
|
|
|
|
|
|
def plot_line_comparision(
|
|
time_relacs,
|
|
time_oephys,
|
|
data_relacs,
|
|
data_oephys,
|
|
labels,
|
|
):
|
|
x_lim = 1.0
|
|
mask = time_oephys < x_lim
|
|
mask_r = time_relacs < x_lim
|
|
|
|
time_oephys = time_oephys[mask]
|
|
time_relacs = time_relacs[mask_r]
|
|
|
|
data_oephys = data_oephys[mask]
|
|
data_relacs = data_relacs[mask_r]
|
|
|
|
fig = go.Figure()
|
|
fig.add_trace(
|
|
go.Scattergl(
|
|
x=time_relacs,
|
|
y=data_relacs,
|
|
name=labels[0],
|
|
line_color="blue",
|
|
mode="lines+markers",
|
|
)
|
|
)
|
|
fig.add_trace(
|
|
go.Scattergl(
|
|
x=time_oephys,
|
|
y=data_oephys,
|
|
name=labels[1],
|
|
line_color="red",
|
|
mode="lines+markers",
|
|
)
|
|
)
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=500, # Set the figure height in pixels
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)",
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font_color="#e5ecf6",
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=1.05,
|
|
xanchor="right",
|
|
x=0.72,
|
|
),
|
|
)
|
|
fig.update_xaxes(title_text="Time (s)", range=[0, 0.01])
|
|
return fig
|
|
|
|
|
|
def calc_lag(repro_d, repro_r):
|
|
sinus, t = repro_d.trace_data("sinus")
|
|
sinus_r, t_r = repro_r.trace_data("V-1")
|
|
|
|
stimulus_oe, t = repro_d.trace_data("stimulus")
|
|
stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus")
|
|
|
|
local_eod_oe, t = repro_d.trace_data("local-eod")
|
|
local_eod_re, t_r = repro_r.trace_data("LocalEOD-1")
|
|
|
|
global_eod_oe, t = repro_d.trace_data("global-eod")
|
|
global_eod_re, t_r = repro_r.trace_data("EOD")
|
|
|
|
oephys_lanes = [sinus, local_eod_oe, global_eod_oe, stimulus_oe]
|
|
relacs_lanes = [sinus_r, local_eod_re, global_eod_re, stimulus_re]
|
|
lags_lanes = []
|
|
for oephys_lane, relacs_lane in zip(oephys_lanes, relacs_lanes, strict=True):
|
|
oephys_lane_resampled = signal.resample(oephys_lane, len(relacs_lane))
|
|
correlation = signal.correlate(oephys_lane_resampled, relacs_lane, mode="full")
|
|
lags = signal.correlation_lags(oephys_lane_resampled.size, relacs_lane.size, mode="full")
|
|
lag = lags[np.argmax(correlation)]
|
|
lags_lanes.append(lag)
|
|
|
|
return lags_lanes
|