183 lines
6.6 KiB
Plaintext
183 lines
6.6 KiB
Plaintext
---
|
|
title: Differences between sample rates
|
|
format:
|
|
html:
|
|
toc: true
|
|
toc-title: Contents
|
|
code-block-bg: true
|
|
code-block-border-left: "#31BAE9"
|
|
code-line-numbers: true
|
|
highlight-style: atom-one
|
|
link-external-icon: true
|
|
link-external-newwindow: true
|
|
eqn-number: true
|
|
---
|
|
|
|
### 1. General Idea
|
|
The two aquisition systems have a different default sampling rate and currently
|
|
there is a delay and maybe this is due to the different sampling rates.
|
|
|
|
`open-ephys` has a sample-rate of 30 kHz and `relacs` one of 20 kHz. In this
|
|
test we have two different recordings with one where the open-epyhs has 30 kHz
|
|
and the other with 20 kHz.
|
|
|
|
### 2. Loading the data
|
|
|
|
```{python}
|
|
from pathlib import Path
|
|
|
|
import rlxnix as rlx
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
import scipy.signal as signal
|
|
import numpy as np
|
|
|
|
# Path to test recording with different samplerate open-epyhs 30kHz and relacs 20kHz
|
|
dataset_path_diff_fs = Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2-recording.nix")
|
|
relacs_path_diff_fs = Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2_relacs/2025-10-08-aa-invivo-2.nix")
|
|
|
|
# Path to test recording with same samplerate open-epyhs 20kHz and relacs 20kHz
|
|
dataset_path_same_fs = Path("../oephys2nix/test/Test2/2025-10-08-ab-invivo-2-recording.nix")
|
|
relacs_path_same_fs = Path("../oephys2nix/test/Test2/2025-10-08-ab-invivo-2_relacs/2025-10-08-ab-invivo-2.nix")
|
|
|
|
|
|
dataset_diff_fs = rlx.Dataset(str(dataset_path_diff_fs))
|
|
relacs_diff_fs = rlx.Dataset(str(relacs_path_diff_fs))
|
|
|
|
dataset_same_fs = rlx.Dataset(str(dataset_path_same_fs))
|
|
relacs_same_fs = rlx.Dataset(str(relacs_path_same_fs))
|
|
|
|
|
|
repro_diff_fs_d = dataset_diff_fs.repro_runs("FileStimulus_1")[0].stimuli[2]
|
|
repro_diff_fs_r = relacs_diff_fs.repro_runs("FileStimulus_1")[0].stimuli[2]
|
|
|
|
repro_same_fs_d = dataset_same_fs.repro_runs("FileStimulus_1")[0].stimuli[2]
|
|
repro_same_fs_r = relacs_same_fs.repro_runs("FileStimulus_1")[0].stimuli[2]
|
|
|
|
#sinus, t = repro_diff_fs_d.trace_data("sinus")
|
|
#sinus_r, t_r = repro_diff_fs_r.trace_data("V-1")
|
|
|
|
stimulus_diff_oe, t_diff = repro_diff_fs_d.trace_data("stimulus")
|
|
stimulus_diff_re, t_diff_r = repro_diff_fs_r.trace_data("GlobalEFieldStimulus")
|
|
|
|
stimulus_same_oe, t_same = repro_same_fs_d.trace_data("stimulus")
|
|
stimulus_same_re, t_same_r = repro_same_fs_r.trace_data("GlobalEFieldStimulus")
|
|
|
|
```
|
|
|
|
### 3. Samples in the different recordings for one stimulus
|
|
```{python}
|
|
#| echo: False
|
|
|
|
print(f"Samples open-epyhs [30 kHz] for one trial: {stimulus_diff_oe.shape}")
|
|
print(f"Samples relacs for one trial: {stimulus_diff_re.shape}")
|
|
|
|
print(f"Samples open-epyhs [20 kHz] for one trial: {stimulus_same_oe.shape}")
|
|
print(f"Samples relacs for one trial: {stimulus_same_re.shape}")
|
|
```
|
|
|
|
### 4. Plotting first trial
|
|
Here we plot the different output stimulus, different sample rates
|
|
|
|
```{python}
|
|
#| echo: False
|
|
x_lim = 0.05
|
|
fig = make_subplots( rows=2, cols=1, shared_xaxes=True, subplot_titles=("Different fs [30 khz and 20 kHz]", "Same fs [20kHz]"))
|
|
|
|
|
|
fig.add_trace( go.Scattergl(x=t_diff_r[t_diff_r<x_lim],
|
|
y=stimulus_diff_re[t_diff_r<x_lim],
|
|
showlegend=False, line_color="blue",
|
|
mode="markers+lines"), row=1, col=1)
|
|
fig.add_trace( go.Scattergl(x=t_diff[t_diff<x_lim],
|
|
y=stimulus_diff_oe[t_diff<x_lim],
|
|
showlegend=False,
|
|
line_color="red", mode="markers+lines"), row=1, col=1)
|
|
|
|
fig.add_trace( go.Scattergl(x=t_same_r[t_same_r<x_lim],
|
|
y=stimulus_same_re[t_same_r<x_lim],
|
|
name="GlobalStimulus (relacs)", line_color="blue",
|
|
mode="markers+lines") , row=2, col=1)
|
|
fig.add_trace( go.Scattergl(x=t_same[t_same<x_lim],
|
|
y=stimulus_same_oe[t_same<x_lim],
|
|
name="GlobalStimulus (open-ephys)",
|
|
line_color="red", mode="markers+lines"),row=2, col=1)
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=400,
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)",
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6"),
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=1.06,
|
|
xanchor="right",
|
|
x=0.72,
|
|
)
|
|
)
|
|
|
|
fig.update_xaxes(range=[0, 0.01])
|
|
```
|
|
|
|
### 5. Lags in recodings
|
|
|
|
```{python}
|
|
# resample to 20 kHz
|
|
stimulus_diff_oe_resampled = signal.resample(stimulus_diff_oe, len(stimulus_same_re))
|
|
correlation_diff = signal.correlate(stimulus_diff_oe_resampled, stimulus_diff_re, mode="full")
|
|
lags_diff = signal.correlation_lags(stimulus_diff_oe_resampled.size, stimulus_diff_re.size, mode="full")
|
|
lag_diff = lags_diff[np.argmax(correlation_diff)]
|
|
|
|
correlation_same = signal.correlate(stimulus_same_oe, stimulus_same_re, mode="full")
|
|
lags_same = signal.correlation_lags(stimulus_same_oe.size, stimulus_same_re.size, mode="full")
|
|
lag_same = lags_same[np.argmax(correlation_same)]
|
|
|
|
print(f"The lag in with different sampling rates is {lag_diff}, and with the same sample rate is {lag_same}")
|
|
```
|
|
|
|
```{python}
|
|
#| echo: False
|
|
fig = make_subplots( rows=2, cols=1, shared_xaxes=True, subplot_titles=("Different fs [30 khz and 20 kHz]", "Same fs [20kHz]"))
|
|
|
|
fig.add_trace( go.Scattergl(x=t_diff_r[t_diff_r<x_lim],
|
|
y=np.roll(stimulus_diff_re[t_diff_r<x_lim], lag_diff),
|
|
line_color="blue",
|
|
showlegend=False,
|
|
mode="markers+lines"), row=1, col=1)
|
|
fig.add_trace( go.Scattergl(x=t_diff[t_diff<x_lim],
|
|
y=stimulus_diff_oe[t_diff<x_lim], showlegend=False,
|
|
line_color="red", mode="markers+lines"), row=1,
|
|
col=1)
|
|
|
|
fig.add_trace( go.Scattergl(x=t_same_r[t_same_r<x_lim],
|
|
y=np.roll(stimulus_same_re[t_same_r<x_lim], lag_same),
|
|
name="GlobalStimulus (relacs)", line_color="blue",
|
|
mode="markers+lines") , row=2, col=1)
|
|
fig.add_trace( go.Scattergl(x=t_same[t_same<x_lim],
|
|
y=stimulus_same_oe[t_same<x_lim],
|
|
name="GlobalStimulus (open-ephys)",
|
|
line_color="red", mode="markers+lines"),row=2, col=1)
|
|
fig.update_layout(
|
|
template="plotly_dark",
|
|
height=400,
|
|
legend=dict(
|
|
bgcolor="rgba(0,0,0,0)",
|
|
bordercolor="#444",
|
|
borderwidth=0,
|
|
font=dict(color="#e5ecf6"),
|
|
orientation="h",
|
|
yanchor="bottom",
|
|
y=1.06,
|
|
xanchor="right",
|
|
x=0.72,
|
|
)
|
|
)
|
|
|
|
fig.update_xaxes(range=[0, 0.01])
|
|
```
|
|
### 6. Conculsion
|
|
|
|
Lags of simuliar magnitude exists in both recordings therefor the sample rate is not the problem!
|