--- title: Calibration format: html: toc: true toc-title: Contents code-block-bg: true code-block-border-left: "#31BAE9" code-line-numbers: true highlight-style: atom-one link-external-icon: true link-external-newwindow: true eqn-number: true --- ### Calibration of the Amplitude Lets look at the calibration and the first trial of the recording. ```{python} import pathlib import rlxnix as rlx import plotly.graph_objects as go import numpy as np import scipy.signal as signal from plotly.subplots import make_subplots dataset_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2-recording.nix") relacs_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2_relacs/2025-10-08-aa-invivo-2.nix") dataset = rlx.Dataset(str(dataset_path)) relacs = rlx.Dataset(str(relacs_path)) #INFO: Select the first stimulus of the calibration repro repro_d = dataset.repro_runs("CalibEfield_1")[0].stimuli[2] repro_r = relacs.repro_runs("CalibEfield_1")[0].stimuli[2] sinus, t = repro_d.trace_data("sinus") sinus_r, t_r = repro_r.trace_data("V-1") stimulus_oe, t = repro_d.trace_data("stimulus") stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus") local_eod_oe, t = repro_d.trace_data("local-eod") local_eod_re, t_r = repro_r.trace_data("LocalEOD-1") global_eod_oe, t = repro_d.trace_data("global-eod") global_eod_re, t_r = repro_r.trace_data("EOD") ttl, t = repro_d.trace_data("ttl-line") ``` ### Plotting the First trial If you zoom in you can see a little delay between the different recording systems. It seems that open-ephys is before the relacs recording. ```{python} #| echo: False # 2. Add traces to the FIRST subplot (row=1, col=1) # Note: Plotly rows and columns are 1-indexed fig = make_subplots( rows=5, cols=1, shared_xaxes=True, subplot_titles=("TTL-Line", "Stimulus Comparison", "Local EOD Comparison", "Global EOD Comparison", "Sinus Comparison")) fig.add_trace( go.Scatter(x=t, y=ttl, name="ttl-line", line_color="magenta"), row=1, col=1, ) fig.add_trace( go.Scatter(x=t_r, y=stimulus_re, name="stimulus (relacs)", line_color="blue"), row=2, col=1, ) fig.add_trace( go.Scatter( x=t, y=stimulus_oe - np.mean(stimulus_oe), # The same data transformation name="stimulus (open-ephys)", line_color="red", ), row=2, col=1, ) # 3. Add traces to the SECOND subplot (row=2, col=1) fig.add_trace( go.Scatter(x=t_r, y=local_eod_re, name="local EOD (relacs)", line_color="blue"), row=3, col=1, ) fig.add_trace( go.Scatter(x=t, y=local_eod_oe, name="local EOD (open-ephys)", line_color="red"), row=3, col=1, ) # 4. Add traces to the THIRD subplot (row=3, col=1) fig.add_trace( go.Scatter(x=t_r, y=global_eod_re, name="global EOD (relacs)", line_color="blue"), row=4, col=1, ) fig.add_trace( go.Scatter( x=t, y=global_eod_oe, name="global EOD (open-ephys)", line_color="red" ), row=4, col=1, ) # 5. Add traces to the FOURTH subplot (row=4, col=1) fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue"), row=5, col=1, ) fig.add_trace( go.Scatter(x=t, y=sinus, name="sinus (open-ephys)", line_color="red"), row=5, col=1, ) # 6. Update the layout for a cleaner look fig.update_layout( template="plotly_dark", height=800, # Set the figure height in pixels # Control the legend #legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), legend=dict( bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg) bordercolor="#444", borderwidth=0, font=dict(color="#e5ecf6") # matches plotly_dark foreground ) ) # Add a label to the shared x-axis (targeting the last subplot) fig.update_xaxes(title_text="Time (s)", row=4, col=1) # 7. Show the figure fig.show() ``` ### Correlation between the Signals ```{python} print(f"Duration of the dataset {repro_d.duration}") print(f"Duration of the relacs {repro_r.duration}") # Resample the open-ephys data sinus_resampled = signal.resample(sinus, len(sinus_r)) ``` ```{python} #| echo: False fig = go.Figure() fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers")) fig.add_trace( go.Scatter(x=t_r, y=sinus_resampled, name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers")) fig.update_layout( template="plotly_dark", height=500, # Set the figure height in pixels # Control the legend #legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), legend=dict( bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg) bordercolor="#444", borderwidth=0, font=dict(color="#e5ecf6") # matches plotly_dark foreground ) ) fig.update_xaxes(range=[0, 0.01]) ``` We need to scale the two signals ```{python} oephys_lanes = [sinus, local_eod_oe, global_eod_oe, stimulus_oe] relacs_lanes = [sinus_r, local_eod_re, global_eod_re, stimulus_re] names_lanes = ["sinus", "local-eod", "global-eod", "stimulus"] lags_lanes = [] for oephys_lane, relacs_lane, names_lane in zip(oephys_lanes, relacs_lanes, names_lanes, strict=True): print(oephys_lane.shape) print(relacs_lane.shape) oephys_lane_resampled = signal.resample(oephys_lane, len(relacs_lane)) correlation = signal.correlate(oephys_lane_resampled, relacs_lane, mode="full") lags = signal.correlation_lags(oephys_lane_resampled.size, relacs_lane.size, mode="full") lag = lags[np.argmax(correlation)] lags_lanes.append(lag) print(f"{names_lane} has a lag of {lag}") ``` ```{python} #| echo: False fig = go.Figure() fig.add_trace( go.Scatter(x=t_r, y=sinus_r, name="sinus (relacs)", line_color="blue", mode="lines+markers")) fig.add_trace( go.Scatter(x=t_r, y=np.roll(sinus_resampled, -lags_lanes[0]), name="sinus-resampled (open-ephys)", line_color="red", mode="lines+markers")) fig.update_layout( title="Sinus", template="plotly_dark", height=500, # Set the figure height in pixels # Control the legend #legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1), legend=dict( bgcolor="rgba(0,0,0,0)", # transparent dark (or use "#1f2630" to match bg) bordercolor="#444", borderwidth=0, font=dict(color="#e5ecf6") # matches plotly_dark foreground ) ) fig.update_xaxes(range=[0, 0.01]) ```