[docs] adding delays overview

This commit is contained in:
wendtalexander 2025-10-21 11:54:23 +02:00
parent 3da1a323c2
commit 9ed6d44c4e

147
doc/delays.qmd Normal file
View File

@ -0,0 +1,147 @@
---
title: Delays anaylsis
format:
html:
toc: true
toc-title: Contents
code-block-bg: true
code-block-border-left: "#31BAE9"
code-line-numbers: true
highlight-style: atom-one
link-external-icon: true
link-external-newwindow: true
eqn-number: true
---
### 1. Delays
We noticed a delay in the recodings if you were to plot a comparision between
the base relacs recording and the new generated open-ephys.
```{python}
# | echo: False
import pathlib
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import rlxnix as rlx
import scipy.signal as signal
from plotly.subplots import make_subplots
from rich.progress import track
from rich.table import Table
from util import calc_lag, plot_line_comparision, trial_plot
dataset_path = pathlib.Path("../oephys2nix/test/Test1/2025-10-08-aa-invivo-2-recording.nix")
relacs_path = pathlib.Path(
"../oephys2nix/test/Test1/2025-10-08-aa-invivo-2_relacs/2025-10-08-aa-invivo-2.nix"
)
dataset = rlx.Dataset(str(dataset_path))
relacs = rlx.Dataset(str(relacs_path))
# INFO: Select the first stimulus of the calibration repro
repro_d = dataset.repro_runs("FileStimulus_1")[0].stimuli[2]
repro_r = relacs.repro_runs("FileStimulus_1")[0].stimuli[2]
sinus, t = repro_d.trace_data("sinus")
sinus_r, t_r = repro_r.trace_data("V-1")
stimulus_oe, t = repro_d.trace_data("stimulus")
stimulus_re, t_r = repro_r.trace_data("GlobalEFieldStimulus")
local_eod_oe, t = repro_d.trace_data("local-eod")
local_eod_re, t_r = repro_r.trace_data("LocalEOD-1")
global_eod_oe, t = repro_d.trace_data("global-eod")
global_eod_re, t_r = repro_r.trace_data("EOD")
ttl, t = repro_d.trace_data("ttl-line")
fig = plot_line_comparision(
t_r,
t,
stimulus_re,
stimulus_oe - np.mean(stimulus_oe),
["stimulus-relacs", "stimulus-open-ephys"],
)
fig.show()
```
### 2. Look at differnt RePros
Currently implemented repros are:
- [x] [Baseline](baseline.qmd)
- [x] [Calibration](calibration.qmd)
- [x] [FI Curve](fi_curve.qmd)
- [x] [File Stimulus](filestimulus.qmd)
- [ ] Sams
- [ ] Chrips
- [ ] Beats
### 3. General Delay in detail
```{python}
rich_tabel = Table("Repro Run", "Signal", "Lag (samples)")
names_lanes = ["sinus", "local-eod", "global-eod", "stimulus"]
dataframe = []
for repro_idx, (repro_d, repro_r) in enumerate(
zip(dataset.repro_runs(), relacs.repro_runs(), strict=True)
):
if not repro_d.stimuli:
lags = calc_lag(repro_d, repro_r)
for lag, names_lane in zip(lags, names_lanes, strict=True):
rich_tabel.add_row(f"{repro_d.name}", f"{names_lane}", f"{lag}")
dataframe.append(
{"ReproName": repro_d.name, "Line": names_lane, "Lag": lag, "Trial": 0}
)
else:
lags_lanes = {f"{key}": [] for key in names_lanes}
for trial, (stim_oe, stim_re) in enumerate(
zip(repro_d.stimuli, repro_r.stimuli, strict=True)
):
lags = calc_lag(stim_oe, stim_re)
for lag, names_lane in zip(lags, names_lanes):
lags_lanes[names_lane].append(lag)
dataframe.append(
{"ReproName": repro_d.name, "Line": names_lane, "Lag": lag, "Trial": trial}
)
for lane in lags_lanes:
mean_lag = np.mean(lags_lanes[lane])
std_lag = np.std(lags_lanes[lane])
rich_tabel.add_row(f"{repro_d.name}", f"{lane}", f"{mean_lag:.2f}\u00b1{std_lag:.2f}")
rich_tabel
```
```{python}
repros = dataset.repro_runs("Baseline")
print(repros)
exclude = []
for rep in repros:
exclude.append(rep.name)
df = pd.DataFrame(dataframe)
df = df[~df["ReproName"].isin(exclude)]
fig = px.box(
df,
x="Line",
y="Lag",
color="Line",
title="Lag Distribution Across Different Signals",
labels={"Line": "Signal", "Lag": "Lag (samples)"},
)
fig.update_layout(template="plotly_dark")
fig.show()
fig = px.box(
df,
x="Line",
y="Lag",
color="ReproName",
title="Lag Distribution by Signal and Repro Run",
labels={"Line": "Signal", "Lag": "Lag (samples)"},
)
fig.update_layout(template="plotly_dark")
fig.show()
```