highbeats_pdf/rotated.py
2020-12-01 12:00:50 +01:00

558 lines
24 KiB
Python

import nixio as nix
import os
from IPython import embed
#from utility import *
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib.mlab as ml
import scipy.integrate as si
from scipy.ndimage import gaussian_filter
from IPython import embed
from myfunctions import *
from myfunctions import auto_rows
from functionssimulation import default_settings
import matplotlib.gridspec as gridspec
from myfunctions import remove_tick_marks
import string
from myfunctions import load_cell
def ps_df(data, d = '2019-09-23-ad-invivo-1', wish_df = 310, window = 'no',sampling_rate = 40000):
#nfft = 4096
#trial_cut = 0.1
#freq_step = sampling_rate / nfft
#d = load_cell(data[0], fname='singlecellexample5_2', big_file='beat_results_smoothed')
data_cell = data[data['dataset'] == d]#
dfs = np.unique(data_cell['df'])
df_here = dfs[np.argmin(np.abs(dfs - wish_df))]
dfs310 = data_cell[data_cell['df'] == df_here]
#pp = [[]]*len(dfs310)
pp = []
ppp = []
trial_cut = 0.1
for i in range(len(dfs310)):
duration = dfs310.iloc[i]['durations']
#cut_vec = np.arange(0, duration, trial_cut)
cut_vec = np.arange(0, duration, trial_cut)
#spikes_cut = spikes[(spikes > 0.05) & (spikes < 0.95)]
#for j, cut in enumerate(cut_vec):
# # print(j)
# spike_times = dfs310.iloc[i]['spike_times']
# spikes = spike_times - spike_times[0]
# spikes_cut = spikes[(spikes > cut) & (spikes < cut_vec[j + 1])]
# if cut == cut_vec[-2]:
# #counter_cut += 1
# break
# if len(spikes_cut) < 10:
# #counter_spikes += 1
# break
# spikes_mat = np.zeros(int(trial_cut * sampling_rate) + 1)
# spikes_idx = np.round((spikes_cut - trial_cut * j) * sampling_rate)
# for spike in spikes_idx:
# spikes_mat[int(spike)] = 1#
#
# #spikes_mat = np.zeros(int(spikes[-1]* sampling_rate + 5))
# #spikes_idx = np.round((spikes) * sampling_rate)
# #for spike in spikes_idx:
# # spikes_mat[int(spike)] = 1
# spikes_mat = spikes_mat * sampling_rate
# if type(window) != str:
# spikes_mat = gaussian_filter(spikes_mat, sigma=window)
# # smoothened_spikes_mat05 = gaussian_filter(spikes_mat, sigma=window05) * sampling_rate
# # smoothened_spikes_mat2 = gaussian_filter(spikes_mat, sigma=window2) * sampling_rate
# else:
# smoothened = spikes_mat * 1
# nfft = 4096
# p, f = ml.psd(spikes_mat - np.mean(spikes_mat), Fs=sampling_rate, NFFT=nfft, noverlap=nfft / 2)
# pp.append(p)
spike_times = dfs310.iloc[i]['spike_times']
if len(spike_times) < 3:
counter_spikes += 1
break
spikes = spike_times - spike_times[0]
spikes_cut = spikes[(spikes > 0.05) & (spikes < 0.95)]
if len(spikes_cut) < 3:
counter_cut += 1
break
spikes_mat = np.zeros(int(spikes[-1] * sampling_rate + 5))
spikes_idx = np.round((spikes) * sampling_rate)
for spike in spikes_idx:
spikes_mat[int(spike)] = 1
spikes_mat = spikes_mat * sampling_rate
if type(window) != str:
spikes_mat = gaussian_filter(spikes_mat, sigma=window)
# smoothened_spikes_mat05 = gaussian_filter(spikes_mat, sigma=window05) * sampling_rate
# smoothened_spikes_mat2 = gaussian_filter(spikes_mat, sigma=window2) * sampling_rate
else:
spikes_mat = spikes_mat*1
nfft = 4096
p, f = ml.psd(spikes_mat - np.mean(spikes_mat), Fs=sampling_rate, NFFT=nfft, noverlap=nfft / 2)
ppp.append(p)
#spike_times = data_cell.iloc[i]['spike_times']#
#if len(spike_times) < 3:
# counter_spikes += 1
# break
#spikes = spike_times - spike_times[0]
# cut trial into snippets of 100 ms
#cut_vec = np.arange(0, duration, trial_cut)
#spikes_cut = spikes[(spikes > 0.05) & (spikes < 0.95)]
#if len(spikes_cut) < 3:
# counter_cut += 1
# break
#spikes_new = spikes_cut - spikes_cut[0]
#spikes_mat = np.zeros(int(spikes_new[-1] * sampling_rate) + 2)
# spikes_mat = np.zeros(int(trial_cut * sampling_rate) + 1)
#spikes_idx = np.round((spikes_new) * sampling_rate)
#for spike in spikes_idx:
# spikes_mat[int(spike)] = 1
#spikes_mat = spikes_mat * sampling_rate
#nfft = 4096
#p, f = ml.psd(smoothened - np.mean(smoothened), Fs=sampling_rate, NFFT=nfft, noverlap=nfft / 2)
#ppp.append(p)
#p_mean = np.mean(pp,axis = 0)
p_mean2 = np.mean(ppp, axis=0)
#ref = (np.max(p_mean2))
#
db = 10 * np.log10(p_mean2 / np.max(p_mean2))
#ref = (np.max(p_mean2))
#db2 = 10 * np.log10(p_mean2 / ref)
#embed()
return df_here,p_mean2,f,db
def plot_example_ps(grid,lw_hline = 0.8,line_style = (0,(1,10)), hs = 0.5,hr = [1,1], multiples = 1.1,colors = ['brown'],fc = 'lightgrey',line_col = 'black',input = ['2019-10-21-aa-invivo-1'],sigma = [0.00005,0.00025,0.0005, 0.002],wish_df = 150, color_eod = 'orange',color_stim = 'red', color_df = 'green'):
sampling_rate = 40000
#colors = ['#BA2D22', '#F47F17', '#AAB71B', '#3673A4', '#53379B']
plt.rcParams['lines.linewidth'] = 1.5
plt.rcParams['lines.markersize'] = 6
#data = pd.read_pickle('../pictures_highbeats/data_beat.pkl')
#iter = np.unique(data['dataset'])
iter = ['2019-05-07-by-invivo-1']
iter = ['2019-09-23-ad-invivo-1']
iter = input
for cell in iter:
data = pd.read_pickle('data_beat.pkl')
beat_results = pd.read_pickle('beat_results_smoothed.pkl')
#embed()
eodf = int(beat_results[beat_results['dataset'] == cell]['eodf'].iloc[0])
df = [[]] * (len(sigma) + 1)
p = [[]] * (len(sigma) + 1)
f = [[]] * (len(sigma) + 1)
db = [[]] * (len(sigma) + 1)
sigmaf = [[]] * (len(sigma) + 1)
gauss = [[]] * (len(sigma) + 1)
df[0], p[0], f[0], db[0] = ps_df(data, d=cell, wish_df= wish_df, window='no', sampling_rate=sampling_rate)
for i in range(len(sigma)):
df[1+i], p[1+i], f[1+i], db[1+i] = ps_df(data, d=cell, wish_df= wish_df, window = sigma[i]*sampling_rate,sampling_rate = sampling_rate)
sigmaf[i + 1] = 1 / (2 * np.pi * sigma[i])
gauss[i + 1] = np.exp(-(f[1+i] ** 2 / (2 * sigmaf[i + 1] ** 2)))
db = 'no'
stepsize = f[0][1] - f[0][0]
if db == 'db':
p = db
# fig.suptitle(d, labelpad = 25)
#print(d)
ax = {}
ec = 'grey'
#fc = 'moccasin'
#ec = 'wheat'
scale = 1
#ax = plot_whole_ps(f, ax, grid, colors, eodf, stepsize, p, df, scale = scale, ax_nr = 0,nr=0, filter='whole' ,color_eod = color_eod,color_stim = color_stim , color_df = color_df,fc = fc, ec = ec)
#ax[0].legend( loc=(0,1),
# ncol=3, mode="expand", borderaxespad=0.)#bbox_to_anchor=(0.4, 1, 0.6, .1),
#ax[0] = remove_tick_marks(ax[0])
plots = gridspec.GridSpecFromSubplotSpec(2,1,
subplot_spec=grid[0], height_ratios = hr,wspace=0.4, hspace=hs)
ax = plot_whole_ps(f,ax, plots, colors, eodf, stepsize, p, df,mult = multiples, scale = scale, ax_nr = 0,nr = 0, filter = 'original',color_eod = color_eod,color_stim = color_stim , color_df = color_df,fc = fc, ec = ec)
ax[0].legend( loc=(0,1),
ncol=3, mode="expand", borderaxespad=0.)#bbox_to_anchor=(0.4, 1, 0.6, .1),
ax[0] = remove_tick_marks(ax[0])
nr_size = 10
ax[0].text(-0.1, 1.1, string.ascii_uppercase[0], transform=ax[0].transAxes,
size=nr_size, weight='bold')
#ax[0].set_ylim([0, 2000])
wide = 2
#embed()
for i in range(len(sigma)):
plots = gridspec.GridSpecFromSubplotSpec(2, 1,
subplot_spec=grid[i+1],height_ratios = hr, wspace=0.4, hspace=hs)
ax[i+2] = plt.subplot( plots[0])
plot_filter(ax, i+2, f[1+i], p,i+1, colors, gauss[1+i], eodf, stepsize, wide, df[1+i],scale = scale,color_eod = color_eod,color_stim = color_stim , color_df = color_df,fc = fc, ec = ec)
ax[i+2].set_ylim([0, eodf*multiples])
ax[2].text(-0.1, 1.1, string.ascii_uppercase[1], transform=ax[2].transAxes,
size=nr_size, weight='bold')
ax[3].text(-0.1, 1.1, string.ascii_uppercase[2], transform=ax[3].transAxes,
size=nr_size, weight='bold')
ax[2] = remove_tick_marks(ax[2])
#embed()
#if db == 'db':
# ax[0].set_ylim([np.min([p]),0])#p[0][,p[1][0:2000],p[2][0:2000],p[3][0:2000]
#else:
# ax[0].set_ylim([ 0,np.max([p])])
ax[int(len(df))].set_ylabel('Frequency [Hz]')
# ax[1].set_ylabel(r'power [Hz$^2$/Hz]')
#ax[0].ticklabel_format(axis='y', style='sci', scilimits=[0, 0])
#print(df[3])
for i in [0,2,3]:
ax[i].spines['right'].set_visible(False)
ax[i].spines['top'].set_visible(False)
cols = grid.ncols
rows = grid.nrows
ax[int(len(df))].set_xlabel(' psd [Hz²/Hz]')
#ax[2].set_ylabel('Hz²/Hz')
#ax[3].set_ylabel('Hz²/Hz')
#ax[0].set_ylabel('Hz²/Hz')
for i in [0,2,3]:
ax[i].axhline(y = eodf/2, color = line_col, linestyle = line_style, linewidth = lw_hline)
plt.tight_layout()
#embed()
#fig.label_axes()
def plot_whole_ps(f,ax,grid, colors, eodf, stepsize, p, df, mult = 1.05,ax_nr = 0,nr = 0, filter = 'original', scale = 1, color_eod = 'orange',color_stim = 'red', color_df = 'green',fc = 'lightgrey', ec = 'grey',):
ax[ax_nr] = plt.subplot(grid[ax_nr])
if filter == 'whole':
#ax[nr].set_facecolor('lightgrey')
ax[ax_nr].plot(p[nr], f[nr], color=colors[0])
ax[ax_nr].fill_between([np.min(p), np.max(p)], [f[0][-1],f[0][-1]], color=fc,edgecolor=ec)
ax[ax_nr].plot(np.max(p[nr][int(abs(df[nr]) / stepsize) - 5:int(abs(df[nr]) / stepsize) + 5]) * scale, df[0],
color=color_df, marker='o', linestyle='None', label='Df')
ax[ax_nr].plot(p[nr][int((df[nr] + eodf) / stepsize) + 1], df[nr] + eodf, color=color_stim, marker='o',
linestyle='None',
label='stimulus')
ax[ax_nr].plot(np.max(p[nr][int(eodf / stepsize) - 5:int(eodf / stepsize) + 5]) * scale, eodf - 1, color=color_eod,
marker='o', linestyle='None', label='EODf') # = '+str(int(eodf))+' Hz')
elif filter == 'original':
#ax[nr].fill_between([eodf] * len(p[nr]), p[nr], color='lightgrey')
#ax[nr].fill_between([max(p[0])]*len(f[nr]),f[nr], color = 'lightgrey')
#embed()
ax[ax_nr].plot(p[nr], f[nr], color=colors[0])
#ax[ax_nr].plot(p[nr][f[nr]<eodf/2], f[nr][f[nr]<eodf/2], color=colors[0])
#ax[ax_nr].plot(np.zeros(len(f[nr][f[nr] > eodf / 2])), f[nr][f[nr] > eodf / 2], color=colors[0])
#embed()
ax[ax_nr].plot(np.max(p[nr][int(abs(df[nr]) / stepsize) - 5:int(abs(df[nr]) / stepsize) + 5]) * scale, df[0],
color=color_df, marker='o', linestyle='None', label='Df')
ax[ax_nr].plot(p[nr][int((df[nr] + eodf) / stepsize) + 1], df[nr] + eodf, color=color_stim, marker='o',
linestyle='None',
label='stimulus')
ax[ax_nr].plot(np.max(p[nr][int(eodf / stepsize) - 5:int(eodf / stepsize) + 5]) * scale, eodf - 1, color=color_eod,
marker='o', linestyle='None', label='EODf') # = '+str(int(eodf))+' Hz')
ax[ax_nr].fill_between([np.min(p),np.max(p)], [eodf/2,eodf/2], color=fc,edgecolor=ec)
#ax[ax_nr].plot(np.max(p[nr][int(abs(df[nr]) / stepsize) - 5:int(abs(df[nr]) / stepsize) + 5]) * scale, df[0],
# color=color_df, marker='o',zorder = 2, linestyle='None', label='Df')#edgecolors = 'black'
#ax[ax_nr].plot(0, df[nr] + eodf, color=color_stim, marker='o',
# linestyle='None',
# label='stimulus',zorder = 2)#,edgecolors = 'black'
#ax[ax_nr].plot(0, eodf - 1, color=color_eod,
# marker='o', linestyle='None', label='EODf',zorder = 2) #edgecolors = 'black', # = '+str(int(eodf))+' Hz')
#plt.plot([np.min(p),np.max(p)],[eodf,eodf], color = 'red')
#embed()
#ax[nr].plot([0]*5)
#ax[nr].plot([1000]*5)
# ax[0].fill_between( [max(p[0])]*len(f[1]),f[0], facecolor='lightgrey', edgecolor='grey')
ax[ax_nr].set_ylim([0, eodf * mult])
ax[ax_nr].set_xlim(ax[ax_nr].get_xlim()[::-1])
return ax
def plot_filter(ax, ax_nr, f, p4,array_nr, colors, gauss3, eodf, stepsize, wide, df, fc = 'lightgrey', scale = 1, ec = 'grey',color_eod = 'orange',color_stim = 'red', color_df = 'green'):
ax[ax_nr].plot( p4[array_nr],f, color=colors[0])
prev_height = np.max((p4[0][int(abs(df) / stepsize) - wide:int(abs(df) / stepsize) + wide]) * scale)
now_height = np.max((p4[array_nr][int(abs(df) / stepsize) - wide:int(abs(df) / stepsize) + wide]) *scale)
ax[ax_nr].plot([prev_height, now_height+440],[np.abs(df), np.abs(df)], color = 'black')
ax[ax_nr].scatter( now_height+440, np.abs(df), marker = '>', color='black', zorder = 2)
#embed()
ax[ax_nr].fill_between(max(p4[0]) * gauss3 ** 2,f, facecolor=fc, edgecolor=ec)
ax[ax_nr].plot(np.max(p4[array_nr][int(eodf / stepsize) - wide:int(eodf / stepsize) + wide]) * scale, eodf, color=color_eod, marker='o',
linestyle='None')
ax[ax_nr].plot( np.max(p4[array_nr][int(abs(df) / stepsize) - wide:int(abs(df) / stepsize) + wide]) * scale,abs(df),
color=color_df, marker='o', linestyle='None')
ax[ax_nr].plot(
np.max(p4[array_nr][int((df + eodf) / stepsize) - wide:int((df + eodf) / stepsize) + wide]) * scale,df + eodf,
color=color_stim, marker='o', linestyle='None')
#p[nr][int((df[nr] + eodf) / stepsize) + 1], df[nr] + eodf,
#np.max(p4[array_nr][int((df + eodf) / stepsize) - wide:int((df + eodf) / stepsize) + wide]) * scale, df + eodf
#embed()
ax[ax_nr].set_xlim(ax[ax_nr].get_xlim()[::-1])
return ax
def plot_amp(ax, mean1, dev,name = 'amp',nr = 1):
np.unique(mean1['type'])
all_means = mean1[mean1['type'] == name +' mean']
original = all_means[all_means['dev'] == 'original']
#m005 = all_means[all_means['dev'] == '005']
m05 = all_means[all_means['dev'] == '05']
m2 = all_means[all_means['dev'] == '2']
# fig, ax = plt.subplots(nrows=4, ncols = 3, sharex=True)
versions = [original, m05, m2] #m005,
for i in range(len(versions)):
keys = [k for k in versions[i]][2::]
try:
data = np.array(versions[i][keys])[0]
except:
break
axis = np.arange(0, len(data), 1)
axis_new = axis * 1
similarity = [keys, data]
sim = np.argsort(similarity[0])
# similarity[sim]
all_means = mean1[mean1['type'] == name+' std']
std = all_means[all_means['dev'] == dev[i]]
std = np.array(std[keys])[0]
#ax[1, 1].set_ylabel('Modulation depth')
#ax[nr,i].set_title(dev[i] + ' ms')
all_means = mean1[mean1['type'] == name+' 95']
std95 = all_means[all_means['dev'] == dev[i]]
std95 = np.array(std95[keys])[0]
all_means = mean1[mean1['type'] == name+' 05']
std05 = all_means[all_means['dev'] == dev[i]]
std05 = np.array(std05[keys])[0]
ax[nr,i].fill_between(np.array(keys)[sim], list(std95[sim]), list(std05[sim]),
color='gainsboro')
ax[nr,i].fill_between(np.array(keys)[sim], list(data[sim] + std[sim]), list(data[sim] - std[sim]),
color='darkgrey')
# ax[i].plot(data_tob.ff, data_tob.fe, color='grey', linestyle='--', label='AMf')
ax[nr,i].plot(np.array(keys)[sim], data[sim], color='black')
# ax[0].plot(data1.x, data1.freq20, color=colors[1], label='20 %')
#embed()
return ax
def create_beat_corr(hz_range, eod_fr):
beat_corr = hz_range%eod_fr
beat_corr[beat_corr>eod_fr/2] = eod_fr[beat_corr>eod_fr/2] - beat_corr[beat_corr>eod_fr/2]
return beat_corr
def plot_mean_cells( grid,lw_hline = 0.8, hs = 0.5,line_style = (0,(1,10)), multiples = 1.1,data = ['2019-10-21-aa-invivo-1'],hr = [1,1],line_col = 'black',lw = 0.5, sigma = ['original','05','2'],colors = ['#BA2D22', '#F47F17', '#AAB71B', '#3673A4', '#53379B'], wish_df = 150, color_eod = 'black',color_df = 'orange', size = 17, color_modul = ['steelblue']):
#mean1 = pd.read_pickle('mean.pkl')
data_all = pd.read_pickle('beat_results_smoothed.pkl')
d = data_all[data_all['dataset'] == data[0]]
#embed()
inch_factor = 2.54
plt.rcParams['lines.markersize'] = 8
plt.rcParams['legend.loc'] = 'upper right'
plt.rcParams["legend.frameon"] = False
# load data for plot
# data1 = pd.read_csv('ma_allcells_unsmoothed.csv')
# data2 = pd.read_csv('ma_allcells_05.csv')
# data3 = pd.read_csv('ma_allcells_2.csv')
# data_tob = pd.read_csv('ma_toblerone.csv')
# smothed = df_beat[df_beat['dev'] == 'original']
# data1 = smothed[smothed['type'] == 'amp']
x = np.arange(0, 2550, 50)
corr = create_beat_corr(x, np.array([500] * len(x)))
#np.unique(mean1['type'])
#all_means = mean1[mean1['type'] == 'max mean']
#versions = [[]]*len(dev)
#for i in range(len(dev)):
version =[[]]*len(sigma)
version2 = [[]] * len(sigma)
dev = [[]] * len(sigma)
limits = [[]]*len(sigma)
minimum = [[]] * len(sigma)
y_max = [[]] * len(sigma)
y_min = [[]] * len(sigma)
ax ={}
for i, e in enumerate(sigma):
y2 = d['result_amplitude_max_' + e]
y_max[i] = np.max(y2)
y_min[i] = np.min(y2)
for i,e in enumerate(sigma):
dev[i] = sigma[i]
plots = gridspec.GridSpecFromSubplotSpec(2,1,
subplot_spec=grid[i], height_ratios = hr,wspace=0.4, hspace=hs)
d = data_all[data_all['dataset'] == data[0]]
x = d['delta_f'] / d['eodf'] + 1
#embed()
data = ['2019-10-21-aa-invivo-1']
#end = ['original', '005', '05', '2']
y = d['result_frequency_' + e]
#embed()
y2 = d['result_amplitude_max_' + e]
#y_sum[i] = np.nanmax(y)
ff = d['delta_f'] / d['eodf'] + 1
fe = d['beat_corr']
#fig.suptitle(set)
ax[0] = plt.subplot(plots[0])
#if e != sigma[-1]:
ax[0] = remove_tick_marks(ax[0])
tob_col = 'black'
tob_lw = 0.8
ax[0].plot(ff, fe, color=tob_col, linestyle='--', linewidth=tob_lw, zorder=1)
ax[0].plot(x, y, color=colors[0], zorder = 2,linewidth = lw)
#embed()
eod = d['eodf'].iloc[0]
ax[0].axhline(y=eod / 2, color=line_col, linestyle=line_style,linewidth = lw_hline)
if np.max(y)<d['eodf'].iloc[0]*0.6:
color_chosen = color_df
else:
color_chosen = color_eod
#embed()
x_scatter = x.iloc[np.argmin(np.abs(np.array(x) - (wish_df / eod + 1)))]
#ax[0].scatter(x_scatter, y.iloc[np.argmin(np.abs(np.array(x) - (wish_df/eod+1)))], zorder=3, color=color_chosen, s = size)
#ax[0].set_ylabel('MPF [EODf]')
#ax[0].set_ylabel('Modulation ')
#ax[0, dd].set_title(e + ' ms')
ax[0].set_xlim([0, 4])
ax[1] = plt.subplot(plots[1])
if e != sigma[-1]:
ax[1] = remove_tick_marks(ax[1])
else:
ax[1].set_ylabel('F. height')
ax[1].plot(x, y2, color=color_modul[0],zorder = 2, linewidth = lw)
mod_tob = d['result_toblerone_max_' + e]
ax[1].plot(x, mod_tob, color=tob_col, linestyle='--', linewidth=tob_lw, zorder=1)
height = y2.iloc[np.argmin(np.abs(np.array(x)-(wish_df/eod+1)))]
if e == 'original':
whole_height = height
whole_height = np.max(y2)
if (e != 'whole') and (e!= 'original'):
ax[1].scatter(x_scatter, height+70, zorder=2, marker = 'v', color='black', s=size)
ax[1].plot([x_scatter,x_scatter], [whole_height,height +70], zorder=3,
color = 'black')
for ii in [1,2,3]:
ax[1].scatter(x_scatter+ii, height + 70, zorder=2, marker='v', color='black', s=size)
ax[1].plot([x_scatter+ii, x_scatter+ii], [whole_height, height + 70], zorder=3,
color='black')
#ax[1].scatter(x_scatter,height,zorder = 2, color = color_chosen, s =size)
#y_all[i] = np.max(y2)
#if i == len(sigma)-1:
# ax[1].set_xlabel('stimulus frequency [EODf]')
ax[1].set_ylim([np.min(y_min)*0.8, np.max(y_max)*1.2])
ax[1].spines['top'].set_visible(False)
ax[1].spines['right'].set_visible(False)
ax[0].spines['right'].set_visible(False)
ax[0].spines['top'].set_visible(False)
ax[0].spines['left'].set_visible(False)
#ax[1].spines['right'].set_visible(False)
#ax[1].spines['top'].set_visible(False)
ax[0].set_xlim([0, 5])
ax[1].set_xlim([0, 5])
#embed()
ax[0].set_ylim([0, d['eodf'].iloc[0]* multiples])
ax[0].set_yticks([])
# fig.tight_layout()
# fig.label_axes()
print(sigma[i])
ax[1].set_xlabel('EOD multiples')
#embed()
plt.subplots_adjust(bottom = 0.1)
#fig.tight_layout()
# fig.label_axes()
if __name__ == "__main__":
data = ['2019-10-21-aa-invivo-1']
trans = False
sigma = [0.0005, 0.002] # 0.00005,0.00025,
if trans == True:
col = 1
row = 2
col_small = len(sigma)+1
row_small = 1
l = 6
t = 'horizontal'
wd = [1]
hd = [1,2.5]
left = 1
right = 0
else:
col = 2
row = 1
row_small = len(sigma)+1
col_small = 1
t = 'vertical'
l = 9
wd = [3, 4]
hd = [1]
left = 0
right = 1
default_settings(data, intermediate_width=6.28, intermediate_length=6, ts=6, ls=9, fs=9)
grid = gridspec.GridSpec(row, col, right = 0.95,wspace=0.02,top = 0.97,height_ratios = hd, width_ratios=wd, hspace=0.2)#,
hs = 0.03
axis = gridspec.GridSpecFromSubplotSpec(row_small,col_small,
subplot_spec=grid[0,0], wspace=0.15, hspace=hs)
wish_df = -220#324
color_eod = 'darkgreen'#'orange'
color_stim = 'navy'
color_df = 'orange'#'green'
colors = ['brown']
colors_mpf = ['crimson']
colors_mod = ['steelblue']
line_col = 'darkgrey'
line_style = 'dashdot'
hr = [2,1]
mult = 1.1
hss = 0.29
lw_hline = 1
plot_example_ps(axis,lw_hline = lw_hline, line_style = line_style,hs = hss,multiples = mult,hr = hr,input = ['2019-10-21-aa-invivo-1'],fc = 'lightgrey',line_col = line_col,colors = colors,sigma = sigma,wish_df = wish_df,color_eod = color_eod,color_stim = color_stim , color_df = color_df)
#plt.show()
#embed()
#fig.savefig()
left = 0
right = 1
#embed()
axis = gridspec.GridSpecFromSubplotSpec(row_small,col_small,
subplot_spec=grid[left,right], wspace=0.25, hspace=hs)
#embed()
plot_mean_cells(axis, lw_hline = lw_hline, hs = hss,multiples = mult,hr = hr, line_style = line_style,data = ['2019-10-21-aa-invivo-1'],line_col = line_col,lw = 1.23,size = 22, sigma = ['original','05','2'],colors = colors_mpf, wish_df = wish_df,color_eod = color_eod,color_df = color_df, color_modul = colors_mod )#'005','025',
plt.savefig('rotated.pdf')
plt.savefig('../highbeats_pdf/rotated.pdf')
#plt.savefig('.pdf')
plt.show()
# plt.savefig('../results/Ramona/ma_powerspecs_negative_df' + d + '.pdf')
# plt.show()
# plt.close()
# embed()
# plot_single_tublerones() # original beat_activity