highbeats_pdf/isi_model.py
2020-12-01 12:00:50 +01:00

95 lines
2.9 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from IPython import embed
from model import simulate, load_models
import matplotlib.gridspec as gridspec
from myfunctions import default_settings
"""
Dependencies:
numpy
matplotlib
numba (optional, speeds simulation up: pre-compiles functions to machine code)
"""
def main():
# tiny example program:
#embed()
parameters = load_models("models.csv")
freq_all = [[]]*len(parameters)
isis_all = [[]] * len(parameters)
spikes_all = [[]] * len(parameters)
period_all = [[]]* len(parameters)
#for i in range(4):
for i in range(len(parameters)):
model_params = parameters[i]
cell = model_params.pop('cell')
print(cell)
EODf = model_params.pop('EODf')
# generate EOD-like stimulus
deltat = model_params["deltat"]
stimulus_length = 11.0 # in seconds
time = np.arange(0, stimulus_length,deltat)
# baseline EOD with amplitude 1:
stimulus = np.sin(2 * np.pi * EODf * time)
# das lasse ich eine sekunde integrieren dann weitere 10 sekunden integrieren und das nehmen
spikes = simulate(stimulus, **model_params)
period_all[i] = 1/EODf
# cut off first second of response
new_spikes = spikes[spikes >1]
#spikes_all[i] = new_spikes*1
freq,isis = calculate_isi_frequency(new_spikes, deltat)
freq_all[i] = freq
isis_all[i] = isis
#embed()
default_settings([0], intermediate_width=6.29*2, intermediate_length=10, ts=9, ls=9, fs=7)
row = int(np.sqrt(len(parameters)))
col = int(np.ceil(np.sqrt(len(parameters))))
grid = gridspec.GridSpec(row,col,hspace = 1, wspace = 0.5)
ax = {}
for i in range(len(freq_all)):
ax[i] = plt.subplot(grid[i])
plt.title('#'+str(i) +'B: '+str(int(np.mean(freq_all[i])))+'Hz')
plt.hist(isis_all[i]/(1/EODf), bins = 100, density = True)
ax[int(row*col-row/2)].set_xlabel('EOD multiples')
plt.savefig('isi_model.pdf')
plt.savefig('../highbeats_pdf/isi_model.pdf')
plt.show()
embed()
def calculate_isi_frequency(spikes, deltat):
"""
calculates inter-spike interval frequency
(wasn't tested a lot may give different length than time = np.arange(spikes[0], spikes[-1], deltat),
or raise an index error for some inputs)
:param spikes: spike time points
:param deltat: integration time step of the model
:return: the frequency trace:
starts at the time of first spike
ends at the time of the last spike.
"""
isis = np.diff(spikes)
freq_points = 1 / isis
freq = np.zeros(int((spikes[-1] - spikes[0]) / deltat))
current_idx = 0
for i, isi in enumerate(isis):
end_idx = int(current_idx + np.rint(isi / deltat))
freq[current_idx:end_idx] = freq_points[i]
current_idx = end_idx
return freq,isis
if __name__ == '__main__':
main()