highbeats_pdf/differentcells_trans.py
2020-12-01 12:00:50 +01:00

206 lines
9.1 KiB
Python

import nixio as nix
import os
from IPython import embed
#from utility import *
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib.mlab as ml
import scipy.integrate as si
from scipy.ndimage import gaussian_filter
from IPython import embed
from myfunctions import *
#from axes import label_axes, labelaxes_params
from myfunctions import auto_rows
from myfunctions import default_settings
from myfunctions import remove_tick_marks
import matplotlib.gridspec as gridspec
import string
def plot_single_cells(ax, data = ['2019-10-21-aa-invivo-1','2019-11-18-af-invivo-1','2019-10-28-aj-invivo-1']):
colors = ['#BA2D22', '#F47F17', '#AAB71B', '#3673A4', '#53379B']
# labelaxes_params(xoffs=-3, yoffs=0, labels='A', font=dict(fontweight='bold'))
#baseline = pd.read_pickle('data_baseline.pkl')
#data_beat = pd.read_pickle('data_beat.pkl')
data_all = pd.read_pickle('beat_results_smoothed.pkl')
#data = np.unique(data_all['dataset'])[0]
#data = np.unique(data_all['dataset'])
end = ['original', '005','05', '2' ]
end = ['original','005']
y_sum = [[]]*len(data)*len(end)
counter = 0
for dd,set in enumerate(data):
for ee, e in enumerate(end):
d = data_all[data_all['dataset'] == set]
#x = d['delta_f'] / d['eodf'] + 1
#embed()
#y = d['result_frequency_' + e]
y = d['result_amplitude_max_' + e]
#y2 = d['result_amplitude_max_' + e]
y_sum[counter] = np.nanmax(y)
counter += 1
#print(np.nanmax(y))
#embed()
lim = np.max(y_sum)
#embed()
grid = gridspec.GridSpec(1,3,width_ratios = [0.2,4,4],)
grid0 = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=grid[0], wspace=0.02, hspace=0.1) # ,
label1 = plt.subplot(grid0[0])
label2 = plt.subplot(grid0[1])
label3 = plt.subplot(grid0[2])
labels = [label1,label2,label3]
titels = ['Cell 1','Cell 2','Cell 3']# < 0.5 EODf,with 0.5 ms wide
fs_big = 11
weight = 'bold'
for ll,l in enumerate(labels):
#embed()
l.spines['right'].set_visible(False)
l.spines['left'].set_visible(False)
l.spines['top'].set_visible(False)
l.spines['bottom'].set_visible(False)
l.set_yticks([])
l.set_xticks([])
l.set_ylabel(titels[ll],labelpad = 15, fontsize = fs_big, fontweight=weight, rotation = 0)
hd = 0.3
grid1 = gridspec.GridSpecFromSubplotSpec(3,1,subplot_spec=grid[1], wspace=0.02, hspace=0.3)#,
end = ['original']
color_modul1 = 'steelblue'
color_mpf = 'red'
y_sum1,moduls = plot_single(lim, data, end, data_all, grid1, color_mpf, color_modul1,arrows = False,nrs = [0,1,2], title = 'Binary spike trains',xlabel = True,yticks = False)
grid2 = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=grid[2], wspace=0.02, hspace=0.4)#,
end = ['05']
end = ['2']
#y_sum = [[]] * len(data)
color_mpf = 'red'
color_modul = 'royalblue'
color_modul = 'steelblue'
color_mpf = 'darkred'
color_mpf = 'tomato'
color_mpf = 'red'
alpha = 1
y_sum2, moduls = plot_single(lim, data, end, data_all, grid2, color_mpf, color_modul,color_upper = color_modul1, alpha = alpha, arrows = True, mods = moduls, nrs = [3,4,5], title = '2 ms Gaussian',xlabel = False)
#for dd, d in enumerate(data):
# embed()
#embed()
#ax[1].set_ylim([0, np.nanmax([y_sum1,y_sum2])])
#ax[1, dd].set_ylim([0, 350])
plt.subplots_adjust(wspace = 0.4,left = 0.1,top = 0.94, right = 0.96,bottom = 0.1)
def plot_single(lim, data, end, data_all, grid1, color_mpf, color_modul,alpha = 1, color_upper = 'grey',mods = [],tob_col = 'black', tob_lw = '0.8', arrows = True, nr_size = 12, nrs = [0,1,2], xlabel = True,title = '',yticks =True):
baseline = pd.read_pickle('data_baseline.pkl')
y_sum = [[]] * len(data)
ax = {}
moduls = [[]]*len(data)
for dd,set in enumerate(data):
for ee, e in enumerate(end):
d = data_all[data_all['dataset'] == set]
x = d['delta_f'] / d['eodf'] + 1
#embed()
y = d['result_frequency_' + e]
y2 = d['result_amplitude_max_' + e]
y_sum[dd] = np.nanmax(y)
ff = d['delta_f'] / d['eodf'] + 1
fe = d['beat_corr']
#fig.suptitle(set)
grid2 = gridspec.GridSpecFromSubplotSpec(2, 1, height_ratios = [1,2], subplot_spec=grid1[dd], wspace=0.02, hspace=0.2) # ,
ax[0] = plt.subplot(grid2[0])
ax[0].plot(ff, fe, color=tob_col,linestyle = '--', linewidth = tob_lw, zorder = 2)
ax[0].plot(x, y, color=color_mpf, zorder = 3,alpha = alpha)
ax[0].text(-0.1, 1.1, string.ascii_uppercase[nrs[dd]], transform=ax[0].transAxes,
size=nr_size, weight='bold')
b = baseline[baseline['dataset'] == set]['spike_rate']
ax[0].axhline(y = b.iloc[0], color = 'grey', linestyle = 'dotted', zorder = 1)
if dd == 0:
plt.title(title)
ax[set+e+str(1)] = plt.subplot(grid2[1])
#ax[0, dd].set_title(e + ' ms')
ax[0].set_xlim([0, 4])
#if (e == 2) and xlabel == True:
ax[set+e+str(1)].plot(x, y2, color=color_modul,alpha = alpha,zorder = 2)
mod_tob = d['result_toblerone_max_' + e]
ax[set + e + str(1)].plot(x, mod_tob, color=tob_col,linestyle = '--', alpha = alpha,linewidth = tob_lw, zorder = 1)
if arrows == True:
plt.fill_between(x, y2,mods[dd], color = 'gainsboro', edgecolor= 'grey',zorder = 1)
plt.plot(x, mods[dd], alpha = 0.6, color = color_upper)#linewidth = 0.4,
array = [0.65, ]#2.651.65,
small_arrows = True
if small_arrows == True:
for a in range(len(array)):
#embed()
pos = np.argmin(np.abs(np.array(x)-array[a]))
x_present = np.array(x)[pos]
y2 = np.array(y2)
#embed()
pos_change = 2
nr = 19
nr2 = 5
#embed()
if (np.array(mods[dd])[pos]-y2[pos])>nr:
plt.plot([x_present, x_present],
[y2[pos] + nr, np.max(np.array(mods[dd])[pos - pos_change:pos + pos_change])-nr2],
color='black')
plt.scatter([x_present],[y2[pos]+nr], marker = 'v',s = 10, color='black')
moduls[dd] = y2
# ax[1,0].set_ylabel('modulation depth [Hz]')
#ax[2, ee].plot(x, y2, color=colors[0])
#ax[2, 0].set_ylabel(' modulation depth [Hz]')
# ax[1,ee].annotate("", xy=(0.53, 16.83), xytext=(0.53, 17.33), arrowprops=dict(arrowstyle="->"))
# ax[1,ee].annotate("", xy=(1.51, 16.83), xytext=(1.51, 17.33), arrowprops=dict(arrowstyle="->"))
#ax[1, 0].set_xlabel('stimulus frequency [EODf]')
if (dd == 2) and xlabel == True:
ax[set+e+str(1)].set_xlabel('stimulus frequency [EODf]')
ax[0].set_ylabel('[Hz]')
ax[set + e + str(1)].set_ylabel('Modulation ')
#ax[1, 2].set_xlabel('stimulus frequency [EODf]')
#ax[2, 3].set_xlabel('stimulus frequency [EODf]')
ax[0].spines['right'].set_visible(False)
ax[0].spines['top'].set_visible(False)
ax[set+e+str(1)].spines['right'].set_visible(False)
ax[set+e+str(1)].spines['top'].set_visible(False)
#ax[2, ee].spines['right'].set_visible(False)
#ax[2, ee].spines['top'].set_visible(False)
ax[0].set_xlim([0, 5])
ax[set+e+str(1)].set_xlim([0, 5])
#plt.tight_layout()
# fig.label_axes()
ax[set+e+str(1)].set_ylim([0, lim])
#ax[0].set_ylim([0, 240])
ax[0] = remove_tick_marks(ax[0])
if set != data[-1]:
ax[set+e+str(1)] = remove_tick_marks(ax[set+e+str(1)])
if yticks == True:
remove_tick_ymarks(ax[set+e+str(1)])
remove_tick_ymarks(ax[0])
#ax[0].set_ylim([0, lim])
return y_sum, moduls
if __name__ == "__main__":
data = ['2019-10-21-aa-invivo-1','2019-11-18-af-invivo-1','2019-10-28-aj-invivo-1']
data = ['2019-10-21-aa-invivo-1', '2019-10-21-au-invivo-1', '2019-10-28-aj-invivo-1']
data = ['2019-09-23-ad-invivo-1', '2019-10-21-au-invivo-1', '2019-10-28-aj-invivo-1']
data = ['2019-10-21-aa-invivo-1','2019-11-18-ac-invivo-1', '2019-10-28-aj-invivo-1']#'2019-11-18-ag-invivo-1''2019-11-18-ab-invivo-1'
data = ['2019-11-18-ac-invivo-1','2019-11-08-aa-invivo-1', '2019-10-28-aj-invivo-1']
default_settings(data,intermediate_width = 6.28,intermediate_length = 6)
#fig, ax = plt.subplots(nrows=2, ncols=3, sharex=True)
ax = {}
plot_single_cells(ax, data = data)
#fig.savefig()
plt.savefig('differentcells_trans.pdf')
plt.savefig('../highbeats_pdf/differentcells_trans.pdf')
# plt.subplots_adjust(left = 0.25)
plt.show()
#plt.close()