highbeats_pdf/MPFmodulation.py
2020-12-01 12:00:50 +01:00

214 lines
8.4 KiB
Python

import nixio as nix
import os
from IPython import embed
#from utility import *
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib.mlab as ml
import scipy.integrate as si
from scipy.ndimage import gaussian_filter
from IPython import embed
from myfunctions import *
from myfunctions import auto_rows
from myfunctions import remove_tick_ymarks
import string
def plot_amp(ax, mean1, dev,nrs = [3,4,5],nr_size = 12,name = 'amp',nr = 1, wide = 'gainsboro', middle = 'darkgrey', narrow = 'black'):
np.unique(mean1['type'])
all_means = mean1[mean1['type'] == name +' mean']
original = all_means[all_means['dev'] == 'original']
#m005 = all_means[all_means['dev'] == '005']
m05 = all_means[all_means['dev'] == '05']
m2 = all_means[all_means['dev'] == '2']
# fig, ax = plt.subplots(nrows=4, ncols = 3, sharex=True)
versions = [original, m05, m2] #m005,
lim = [[]]*len(versions)
for i in range(len(versions)):
keys = [k for k in versions[i]][2::]
try:
data = np.array(versions[i][keys])[0]
except:
break
axis = np.arange(0, len(data), 1)
axis_new = axis * 1
similarity = [keys, data]
sim = np.argsort(similarity[0])
# similarity[sim]
all_means = mean1[mean1['type'] == name+' std']
std = all_means[all_means['dev'] == dev[i]]
std = np.array(std[keys])[0]
#ax[1, 1].set_ylabel('Modulation depth')
#ax[nr,i].set_title(dev[i] + ' ms')
all_means = mean1[mean1['type'] == name+' 95']
std95 = all_means[all_means['dev'] == dev[i]]
std95 = np.array(std95[keys])[0]
all_means = mean1[mean1['type'] == name+' 05']
std05 = all_means[all_means['dev'] == dev[i]]
std05 = np.array(std05[keys])[0]
ax[nr, i].text(-0.1, 1.1, string.ascii_uppercase[nrs[i]], transform=ax[nr,i].transAxes,
size=nr_size, weight='bold')
ax[nr,i].fill_between(np.array(keys)[sim], list(std95[sim]), list(std05[sim]),
color=wide)
ax[nr,i].fill_between(np.array(keys)[sim], list(data[sim] + std[sim]), list(data[sim] - std[sim]),
color=middle)
if i != 0:
ax[nr, i] = remove_tick_ymarks(ax[nr,i])
# ax[i].plot(data_tob.ff, data_tob.fe, color='grey', linestyle='--', label='AMf')
ax[nr,i].plot(np.array(keys)[sim], data[sim], color=narrow)
lim[i] = np.nanmax(std95[sim])
# ax[0].plot(data1.x, data1.freq20, color=colors[1], label='20 %')
for i in range(len(versions)):
ax[nr, i].set_ylim(0,np.nanmax(lim))
#embed()
return ax
def create_beat_corr(hz_range, eod_fr):
beat_corr = hz_range%eod_fr
beat_corr[beat_corr>eod_fr/2] = eod_fr[beat_corr>eod_fr/2] - beat_corr[beat_corr>eod_fr/2]
return beat_corr
def plot_mean_cells():
mean1 = pd.read_pickle('mean.pkl')
colors = ['#BA2D22', '#F47F17', '#AAB71B', '#3673A4', '#53379B']
inch_factor = 2.54
whole_page_width = 6.28
intermediate_length = 3.7
plt.rcParams['figure.figsize'] = (whole_page_width, intermediate_length)
plt.rcParams['font.size'] = 11
plt.rcParams['axes.titlesize'] = 12
plt.rcParams['axes.labelsize'] = 12
plt.rcParams['lines.linewidth'] = 1.5
plt.rcParams['lines.markersize'] = 8
plt.rcParams['legend.loc'] = 'upper right'
plt.rcParams["legend.frameon"] = False
# load data for plot
# data1 = pd.read_csv('ma_allcells_unsmoothed.csv')
# data2 = pd.read_csv('ma_allcells_05.csv')
# data3 = pd.read_csv('ma_allcells_2.csv')
# data_tob = pd.read_csv('ma_toblerone.csv')
# smothed = df_beat[df_beat['dev'] == 'original']
# data1 = smothed[smothed['type'] == 'amp']
x = np.arange(0, 2550, 50)
corr = create_beat_corr(x, np.array([500] * len(x)))
np.unique(mean1['type'])
all_means = mean1[mean1['type'] == 'max mean']
#versions = [[]]*len(dev)
#for i in range(len(dev)):
original = all_means[all_means['dev'] == 'original']
m005 = all_means[all_means['dev'] == '005']
m05 = all_means[all_means['dev'] == '05']
m2 = all_means[all_means['dev'] == '2']
dev = ['original', '05', '2']#'005',
titels = ['binary','0.5 ms','2 ms']
fig, ax = plt.subplots(nrows=2, ncols=3, sharex=True)
versions = [original, m05, m2]#m005,
nrs = [0,1,2]
nr_size = 12
for i in range(len(versions)):
keys = [k for k in versions[i]][2::]
try:
data = np.array(versions[i][keys])[0]
except:
#embed()
break
axis = np.arange(0, len(data), 1)
axis_new = axis * 1
similarity = [keys, data]
sim = np.argsort(similarity[0])
# similarity[sim]
all_means = mean1[mean1['type'] == 'max std']
std = all_means[all_means['dev'] == dev[i]]
std = np.array(std[keys])[0]
#ax[0,i].set_title(dev[i] +' ms')
ax[0, i].set_title(titels[i])
ax[ 0,0].set_ylabel('MPF [EODf]')
all_means = mean1[mean1['type'] == 'max 95']
std95 = all_means[all_means['dev'] == dev[i]]
std95 = np.array(std95[keys])[0]
all_means = mean1[mean1['type'] == 'max 05']
std05 = all_means[all_means['dev'] == dev[i]]
std05 = np.array(std05[keys])[0]
#std[np.where(list(data[sim] + std[sim])>std95[sim])] = std95[sim][np.where(list(data[sim] + std[sim])>std95[sim])]
#embed()
middle = 'pink'#'LightSalmon'
wide='lightpink'#mistyrose'
narrow = 'crimson'
ax[0,i].fill_between(np.array(keys)[sim], list(std95[sim]), list(std05[sim]),
color=wide, alpha = 0.45)#
#embed()
ax[0,i].fill_between(np.array(keys)[sim], list(data[sim] + std[sim]), list(data[sim] - std[sim]), color=middle)
ax[0,i].plot(x / 500, corr / 500 + 1, color='grey', linestyle='--', label='AMf')
ax[0,i].plot(np.array(keys)[sim], data[sim], color=narrow)
# plt.fill_between(np.array([0,1]),np.array([0,0]),np.array([1,1]))
ax[0, i].text(-0.1, 1.1, string.ascii_uppercase[nrs[i]], transform=ax[0,i].transAxes,
size=nr_size, weight='bold')
if i != 0:
ax[0, i] = remove_tick_ymarks(ax[0, i])
# ax[0].plot(data1.x, data1.freq20, color=colors[1], label='20 %')
ax[0, 2].legend(bbox_to_anchor=(0.7, 1, 0.7, .1), loc='lower left',
ncol=3, mode="expand", borderaxespad=0.)
#ax = plot_amp(ax, mean1, dev,name = 'amp',nr = 2)
ax[ 1,0].legend(bbox_to_anchor=(0.3, 1, 0.7, .1), loc='lower left',
ncol=3, mode="expand", borderaxespad=0.)
ax = plot_amp(ax,mean1, dev,nrs = [3,4,5],nr_size = nr_size,name='amp max', nr=1,wide = 'gainsboro', middle = 'lightblue', narrow = 'steelblue')
# ax[1].plot(data_tob.ff, data_tob.fe, color='grey', linestyle='--')
# ax[1].plot(data2.x, transfer_array, color=colors[0])
# ax[1].plot(data2.x, data2.freq20, color=colors[1])
# ax[2].plot(data_tob.ff, data_tob.fe, color='grey', linestyle='--')
# ax[2].plot(data3.x, transfer_array, color=colors[0])
# ax[2].plot(data3.x, color=colors[1])
# ax[2].plot(data_tob.ff, transfer_array, color='grey', linestyle='--')
# ax[2].plot(data4.x, transfer_array, color=colors[0])
# ax[2].plot(data3.x, color=colors[1])
ax[ 0,0].set_ylabel('MPF [EODf]')
#ax[1, 0].set_ylabel('Modulation depth')
ax[1, 0].set_ylabel('Modulation Peak')
#ax[2, 0].set_ylabel('Whole modulation ')
plt.subplots_adjust(hspace = 0.35)
for i in range(2):
ax[i,0].spines['right'].set_visible(False)
ax[i,0].spines['top'].set_visible(False)
ax[i,1].spines['right'].set_visible(False)
ax[i,1].spines['top'].set_visible(False)
ax[i,2].spines['right'].set_visible(False)
ax[i,2].spines['top'].set_visible(False)
#ax[i,3].spines['right'].set_visible(False)
#ax[i,3].spines['top'].set_visible(False)
#for i in range(3):
ax[1, 1].set_xlabel('stimulus frequency [EODf]')
#ax[2, i].set_ylim([0, 370])
#ax[2,i].set_ylim([0, 4700])
#ax[2, 1].set_xlabel('stimulus frequency [EODf]')
plt.subplots_adjust(bottom = 0.13)
#fig.tight_layout()f
# fig.label_axes()
return fig
if __name__ == "__main__":
fig = plot_mean_cells()
#fig.savefig()
plt.savefig('MPFmodulation.pdf')
plt.savefig('../highbeats_pdf/MPFmodulation.pdf')
plt.show()
# plt.close()