86 lines
2.5 KiB
Python
86 lines
2.5 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import nixio as nix
|
|
import glob
|
|
import os
|
|
from IPython import embed
|
|
|
|
|
|
def stimulus_collector(filename):
|
|
try:
|
|
stims = []
|
|
f = nix.File.open(filename, nix.FileMode.ReadOnly)
|
|
b = f.blocks[0]
|
|
for g in b.groups:
|
|
# embed()
|
|
# exit()
|
|
stims.append(g.multi_tags[0].name)
|
|
except KeyError:
|
|
embed()
|
|
exit()
|
|
return stims
|
|
|
|
|
|
def analyze_sams(filename):
|
|
f = nix.File.open(filename, nix.FileMode.ReadOnly)
|
|
b = f.blocks[0]
|
|
b.metadata.pprint(max_depth=-1) # max_depth=-1: alles rausschreiben
|
|
for g in b.groups:
|
|
|
|
if 'sam' in g.name.lower(): # go through loop, until 'sam' is found
|
|
break
|
|
# embed()
|
|
# exit()
|
|
rtag_data = g.tags[0]
|
|
rtag_data.metadata.pprint(max_depth=-1)
|
|
|
|
print(40*'*')
|
|
|
|
stim_tag = g.multi_tags[0]
|
|
stim_type = g.multi_tags[0].name
|
|
stim_pos = stim_tag.positions[:] # beginnings of stimulations
|
|
stim_extent = stim_tag.extents[:] # duration of stimulations
|
|
# for r in rtag_data.references:
|
|
# print(r.name, r.type)
|
|
|
|
voltage_trace = rtag_data.references['V-1']
|
|
|
|
spike_data = []
|
|
|
|
for idx in range(len(stim_pos)):
|
|
spike_data.append(stim_tag.retrieve_data(idx, 'Spikes-1')[:])
|
|
|
|
dims = voltage_trace.dimensions[0].axis(len(voltage_trace))
|
|
plt.plot(dims[:-1], voltage_trace[:-1])
|
|
for i in range(len(stim_pos)):
|
|
stim_y = [np.max(voltage_trace)+10, np.max(voltage_trace)+10]
|
|
plt.plot([stim_pos[i], stim_pos[i] + stim_extent[i]], stim_y, 'k')
|
|
|
|
for j in range(len(spike_data)):
|
|
for k in range(len(spike_data[j])):
|
|
plt.plot(spike_data[j][k], np.max(voltage_trace)+5, 'o', color='k')
|
|
plt.xlim([stim_pos[0]-1, stim_extent[-1]+1])
|
|
plt.title(filename[-26:-13] + ': ' + stim_type)
|
|
# plt.show()
|
|
print('saving...')
|
|
os.chdir('/home/lisa/Dropbox/Masterarbeit/')
|
|
plt.savefig(filename[-26:-13] + ': ' + stim_type + '.png')
|
|
plt.close()
|
|
# f.close()
|
|
# embed()
|
|
# exit()
|
|
|
|
return
|
|
|
|
|
|
if __name__ == '__main__':
|
|
data_dir = '/home/lisa/data/'
|
|
os.chdir(data_dir)
|
|
data_set = glob.glob('2019-*')
|
|
for i in range(len(data_set)):
|
|
# data_set = '2019-08-22-aa-invivo-1'
|
|
print(data_dir + data_set[i] + '/' + data_set[i])
|
|
analyze_sams(data_dir + data_set[i] + '/' + data_set[i] + '.nix')
|
|
# analyze_sams(data_dir + data_set + '/' + data_set + '.nix')
|
|
|