32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import glob
|
|
import os
|
|
import NixFrame as nf
|
|
from IPython import embed
|
|
|
|
if __name__ == '__main__':
|
|
data_dir = '/home/lisa/data/'
|
|
os.chdir(data_dir)
|
|
data_sets = glob.glob('2019-*')
|
|
for data_set in data_sets:
|
|
print(data_set)
|
|
df = nf.load_data(data_dir + data_set + '/' + data_set + '_dataframe.pickle')
|
|
embed()
|
|
exit()
|
|
for i in range(len(df)):
|
|
|
|
stim_type = df['tag_meta']['RePro'][i]
|
|
smpl_rt = df['samplingrate'][i]
|
|
# t = df['time'][i+1]
|
|
voltage = df['V-1'][i]
|
|
t = np.arange(0, len(voltage)*1./smpl_rt, 1./smpl_rt)
|
|
print(len(t))
|
|
spiketimes = df['Spikes-1'][i]
|
|
stim_onset = df['onset_times'][i]
|
|
stim_dur = df['durations'][i]
|
|
|
|
plt.plot(t, voltage, color='#BA2D22')
|
|
plt.plot([stim_onset, stim_dur], [np.max(voltage)+0.75, np.max(voltage)+0.75], color='#53379B')
|
|
plt.plot([spiketimes, spiketimes], [np.max(voltage)+1, np.max(voltage)+1.5], color='black')
|
|
plt.show() |