P-unit_model/models/AbstractModel.py

99 lines
3.2 KiB
Python

from stimuli.AbstractStimulus import AbstractStimulus
from warnings import warn
class AbstractModel:
# TODO what information about the model does the ModelParser need to be able to simulate the right kind of data
# for further analysis in cell_data/fi_curve etc.
DEFAULT_VALUES = {}
def __init__(self, params: dict = None):
self.parameters = {}
if params is None:
self._set_default_parameters()
else:
self.set_parameters(params)
def simulates_voltage_trace(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulates_frequency(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulates_spiketimes(self) -> bool:
raise NotImplementedError("NOT IMPLEMENTED")
def simulate(self, stimulus: AbstractStimulus, total_time_s):
"""
Simulate the given stimulus in the model
and simulate up to the given total time
and saves the simulated data in the model.
:param stimulus: given stimulus
:param total_time_s: time to simulate
:return: depending on availability: [voltage, spiketimes, frequency]
"""
raise NotImplementedError("NOT IMPLEMENTED")
def get_voltage_trace(self):
raise NotImplementedError("NOT IMPLEMENTED")
def get_spiketimes(self):
raise NotImplementedError("NOT IMPLEMENTED")
def get_frequency(self):
raise NotImplementedError("NOT IMPLEMENTED")
def min_stimulus_strength_to_spike(self):
"""
return the minimal stimulus strength needed for the model to spike
:return: min stimulus strength to spike
"""
raise NotImplementedError("NOT IMPLEMENTED")
def get_sampling_interval(self):
"""
return the "sampling" interval of the model: the time step the model simulates by
:return: the sampling interval
"""
raise NotImplementedError("NOT IMPLEMENTED")
def set_parameters(self, params):
self._test_given_parameters(params)
for k in params.keys():
self.parameters[k] = params[k]
for key in self.DEFAULT_VALUES.keys():
if key not in self.parameters.keys():
self.parameters[key] = self.DEFAULT_VALUES[key]
def get_parameters(self):
return self.parameters
def set_variable(self, key, value):
if key not in self.DEFAULT_VALUES.keys():
raise ValueError("Given key is unknown!\n"
"Please check spelling and refer to list LIFAC.KEYS.")
if "tau" in key and value < 0:
warn("Time constants cannot be negative! Setting it to 0.5ms")
self.parameters[key] = 0.00005
return
self.parameters[key] = value
def _set_default_parameters(self):
self.parameters = self.DEFAULT_VALUES
def _test_given_parameters(self, params):
for k in params.keys():
if k not in self.DEFAULT_VALUES.keys():
err_msg = "Unknown key in the given parameters:" + str(k)
raise ValueError(err_msg)
if "tau" in k and params[k] < 0:
warn("Time constants cannot be negative setting" + str(k) + "0.5ms")
params[k] = 0.00005