P-unit_model/unittests/testSinusAmplitudeModulation.py
2021-01-09 23:59:34 +01:00

116 lines
4.4 KiB
Python

from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus
import unittest
import numpy as np
import matplotlib.pyplot as plt
class SinusoidalStimulusTester(unittest.TestCase):
base_frequencies = [0, 10, 100, 1000]
contrasts = [0, 0.5, 1, 1.5]
modulation_frequencies = [0, 5, 10, 100]
step_sizes = [1, 0.5, 0.00005]
time_starts = [0, 2, -2]
durations = [2]
def setUp(self):
pass
def tearDown(self):
pass
def test_consistency_base_frequency(self):
contrast = 0.1
mod_freq = 5
time_start = -1
duration = 10
step_size = 0.00005
for base_freq in self.base_frequencies:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size),
msg="Stimulus values inconsistent with base freq: {:.2f}".format(base_freq))
def test_consistency_contrast(self):
base_freq = 700
mod_freq = 5
time_start = -1
duration = 10
step_size = 0.00005
for contrast in self.contrasts:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size),
msg="Stimulus values inconsistent with contrast: {:.2f}".format(contrast))
def test_consistency_modulation_frequency(self):
contrast = 0.1
base_freq = 700
time_start = -1
duration = 10
step_size = 0.00005
for mod_freq in self.modulation_frequencies:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 1)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size),
msg="Stimulus values inconsistent with mod freq: {:.2f}".format(mod_freq))
def test_consistency_step_size(self):
contrast = 0.1
base_freq = 700
time_start = -1
duration = 10
mod_freq = 10
for step_size in self.step_sizes:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size),
msg="Stimulus values inconsistent with step_size: {:.3f}ms".format(step_size)*1000)
def test_consistency_time_start(self):
contrast = 0.1
base_freq = 700
mod_freq = 10
duration = 10
step_size = 0.00005
for time_start in self.time_starts:
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, mod_freq, 0, 8)
self.assertTrue(array_and_time_points_equal(stimulus, time_start, duration, step_size),
msg="Stimulus values inconsistent when the time starts at: {:.2f}s".format(time_start))
def array_and_time_points_equal(stimulus, start, duration, step_size):
precision = 15
array = np.around(stimulus.as_array(start, duration, step_size), precision)
time = np.arange(start, start+duration, step_size)
for i, time_point in enumerate(time):
value = stimulus.value_at_time_in_s(time_point)
if array[i] != np.round(value, precision):
stim_per_point = []
for t in time:
stim_per_point.append(stimulus.value_at_time_in_s(t))
stim_per_point = np.around(np.array(stim_per_point), precision)
fig, axes = plt.subplots(2, 1, sharex="all")
axes[0].plot(time, array, label="array")
axes[0].plot(time, stim_per_point, label="individual")
axes[0].set_title("stimulus values")
axes[0].legend()
axes[1].plot(time, np.array(stim_per_point)-array)
axes[1].set_title("difference")
plt.show()
return False
# stim_per_point = []
# for t in time:
# stim_per_point.append(stimulus.value_at_time_in_s(t))
#
# stim_per_point = np.around(np.array(stim_per_point), precision)
# fig, axes = plt.subplots(1, 1, sharex="all")
# axes.plot(time, array, label="array")
# axes.plot(time, stim_per_point, label="individual")
# axes.set_title("stimulus values")
# axes.legend()
#
# plt.show()
return True