P-unit_model/unittests/testHelperFunctions.py
2021-01-09 23:59:34 +01:00

90 lines
3.3 KiB
Python

import unittest
import numpy as np
from my_util import helperFunctions as hF
from parser.CellData import icelldata_of_dir
from experiments.Baseline import BaselineCellData
import os
class HelperFunctionsTester(unittest.TestCase):
reference_base_spikes = {'2012-12-21-an-invivo-1': 39, '2012-07-12-ag-invivo-1': 21, '2012-12-13-ac-invivo-1': 19,
'2012-12-20-ac-invivo-1': 43, '2013-01-08-ad-invivo-1': 29, '2012-06-27-an-invivo-1': 19,
'2012-12-13-ah-invivo-1': 35, '2012-12-13-ag-invivo-1': 26, '2012-12-13-an-invivo-1': 29,
'2012-12-21-ai-invivo-1': 55, '2012-12-20-aa-invivo-1': 24, '2012-12-21-am-invivo-1': 26,
'2012-06-27-ah-invivo-1': 27, '2012-07-12-ap-invivo-1': 35, '2012-12-21-ak-invivo-1': 30}
noise_levels = [0, 0.05, 0.1, 0.2]
frequencies = [0, 1, 5, 30, 100, 500, 750, 1000]
def setUp(self):
pass
def tearDown(self):
pass
def test__vector_strength__is_1(self):
length = 2000
rel_spike_times = np.full(length, 0.3)
eod_durations = np.full(length, 0.14)
self.assertEqual(1, round(hF.__vector_strength__(rel_spike_times,eod_durations), 2))
def test__vector_strength__is_0(self):
length = 2000
period = 0.14
rel_spike_times = np.arange(0, period, period/length)
eod_durations = np.full(length, period)
self.assertEqual(0, round(hF.__vector_strength__(rel_spike_times, eod_durations), 5))
def test_detect_spiketimes(self):
count = 0
for cell_data in icelldata_of_dir("../data/"):
if os.path.basename(cell_data.get_data_path()) not in self.reference_base_spikes:
continue
print(cell_data.get_data_path())
# if "21-ai" not in cell_data.get_data_path() and "20-ac" not in cell_data.get_data_path():
# continue
spikes = np.array(cell_data.get_base_spikes()[0])
time_length = 0.2
time = cell_data.get_base_traces(cell_data.TIME)[0]
length_data_points = int(time_length / cell_data.get_sampling_interval())
start_idx = 0
end_idx = length_data_points + 1
end_idx = end_idx if end_idx <= len(time) else len(time)
bot_lim_spikes = spikes[spikes > time[start_idx]]
top_lim_spikes = bot_lim_spikes[bot_lim_spikes < time[end_idx]]
expected = self.reference_base_spikes[os.path.basename(cell_data.get_data_path())]
if len(top_lim_spikes) == expected:
print("yay")
else:
print("detected: {:}, reference: {:}".format(len(top_lim_spikes), expected))
print("nay")
baseline = BaselineCellData(cell_data)
baseline.plot_baseline(position=0, time_length=0.2)
count += 1
def test_automatic_splitting(self):
for cell_data in icelldata_of_dir("../data/"):
print(cell_data.get_data_path())
v1 = cell_data.get_base_traces(cell_data.V1)[0]
hF.detect_spike_indices_automatic_split(v1, 2.8)
# todo
# search_eod_start_and_end_times ? (not used anymore ?)
# eods_around_spikes
# calculate_phases
# def test(self):
# test_distribution()