116 lines
3.2 KiB
Python
116 lines
3.2 KiB
Python
|
|
from fitting.ModelFit import get_best_fit
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
SAVE_DIR = "results/lab_rotation/"
|
|
|
|
|
|
def main():
|
|
|
|
res_folder = "results/final_2/"
|
|
|
|
# save_model_parameters(res_folder)
|
|
# save_cell_info(res_folder)
|
|
|
|
# test_save_cell_info()
|
|
|
|
|
|
def save_model_parameters(res_folder):
|
|
cells = []
|
|
eod_freqs = []
|
|
parameters = []
|
|
|
|
for cell in sorted(os.listdir(res_folder)):
|
|
cell_dir = res_folder + cell
|
|
|
|
model = get_best_fit(cell_dir, use_comparable_error=False)
|
|
cells.append(cell)
|
|
eod_freqs.append(model.get_cell_data().get_eod_frequency())
|
|
parameters.append(model.get_final_parameters())
|
|
|
|
save_csv(SAVE_DIR + "models.csv", cells, eod_freqs, parameters)
|
|
|
|
|
|
def test_save_cell_info():
|
|
for cell in sorted(os.listdir(SAVE_DIR)):
|
|
cell_dir = SAVE_DIR + cell + "/"
|
|
if not os.path.isdir(cell_dir):
|
|
continue
|
|
|
|
fi_frame = pd.read_csv(cell_dir + "fi_curve_info.csv")
|
|
|
|
plt.plot(fi_frame["contrast"], fi_frame["f_inf"], 'o')
|
|
plt.plot(fi_frame["contrast"], fi_frame["f_zero"], '+')
|
|
plt.show()
|
|
plt.close()
|
|
|
|
count = 1
|
|
spike_file = "baseline_spikes_trial_{}.npy".format(count)
|
|
while os.path.exists(cell_dir + spike_file):
|
|
spiketimes = np.load(cell_dir + spike_file) * 1000
|
|
|
|
plt.hist(np.diff(spiketimes), bins=np.arange(0, 50, 0.1))
|
|
plt.show()
|
|
plt.close()
|
|
|
|
count += 1
|
|
spike_file = "baseline_spikes_trial_{}.npy".format(count)
|
|
|
|
|
|
def save_cell_info(res_folder):
|
|
for cell in sorted(os.listdir(res_folder)):
|
|
cell_dir = res_folder + cell
|
|
|
|
fit = get_best_fit(cell_dir, use_comparable_error=False)
|
|
|
|
save_path = SAVE_DIR + cell + "/"
|
|
|
|
if not os.path.exists(save_path):
|
|
os.mkdir(save_path)
|
|
|
|
# fi-curve
|
|
cell_data = fit.get_cell_data()
|
|
f_zeros = fit.get_cell_f_zero_values()
|
|
f_infs = fit.get_cell_f_inf_values()
|
|
contrasts = cell_data.get_fi_contrasts()
|
|
|
|
data_array = np.array([contrasts, f_infs, f_zeros]).T
|
|
fi_frame = pd.DataFrame(data_array, columns=["contrast", "f_inf", "f_zero"])
|
|
fi_frame.to_csv(save_path + "fi_curve_info.csv")
|
|
|
|
spikes = cell_data.get_base_spikes()
|
|
for i, spike_list in enumerate(spikes):
|
|
spike_array = np.array(spike_list)
|
|
np.save(save_path + "baseline_spikes_trial_{}.npy".format(i+1), spike_array)
|
|
|
|
|
|
def save_csv(file, cells, eod_freqs, parameters):
|
|
keys = sorted(parameters[0].keys())
|
|
with open(file, "w") as file:
|
|
header = "cell,EODf"
|
|
for k in keys:
|
|
if k == "refractory_period":
|
|
header += ",ref_period"
|
|
elif k == "step_size":
|
|
header += ",deltat"
|
|
else:
|
|
header += ",{}".format(k)
|
|
file.write(header + "\n")
|
|
|
|
for i in range(len(cells)):
|
|
line = "{},{:.2f}".format(cells[i], eod_freqs[i])
|
|
for k in keys:
|
|
line += ",{}".format(parameters[i][k])
|
|
file.write(line + "\n")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|
|
|
|
|