471 lines
17 KiB
Python
471 lines
17 KiB
Python
|
|
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus as SAM
|
|
from models.LIFACnoise import LifacNoiseModel
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from my_util import helperFunctions as hF
|
|
from parser.CellData import CellData
|
|
from fitting.ModelFit import get_best_fit
|
|
import os
|
|
|
|
|
|
def main():
|
|
run_sam_analysis_for_all_cells("results/final_sam")
|
|
|
|
# sam_analysis("results/final_2/2011-10-25-ad-invivo-1/")
|
|
|
|
# plot_traces_with_spiketimes()
|
|
# plot_mean_of_cuts()
|
|
|
|
quit()
|
|
modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/")
|
|
cell_data = CellData(modelfit.get_cell_path())
|
|
|
|
eod_freq = cell_data.get_eod_frequency()
|
|
model = modelfit.get_model()
|
|
|
|
test_model_response(model, eod_freq, 0.1, np.arange(5, 2500, 5))
|
|
|
|
|
|
def run_sam_analysis_for_all_cells(folder):
|
|
count = 0
|
|
for item in os.listdir(folder):
|
|
cell_folder = os.path.join(folder, item)
|
|
# fit = get_best_fit(cell_folder, use_comparable_error=False)
|
|
# cell_data = fit.get_cell_data()
|
|
#
|
|
# if cell_data.has_sam_recordings():
|
|
# count += 1
|
|
# # print("Fit quality:", fit.get_fit_routine_error())
|
|
# sam_analysis(cell_folder)
|
|
sam_analysis(cell_folder)
|
|
print(count)
|
|
|
|
|
|
|
|
def test_model_response(model: LifacNoiseModel, eod_freq, contrast, modulation_frequencies):
|
|
|
|
stds = []
|
|
|
|
for m_freq in modulation_frequencies:
|
|
if (1/m_freq) / 10 <= model.parameters["step_size"]:
|
|
model.parameters["step_size"] = (1/m_freq) / 10
|
|
step_size = model.parameters["step_size"]
|
|
print("mode_freq:", m_freq, "- step size:", step_size)
|
|
stimulus = SAM(eod_freq, contrast / 100, m_freq)
|
|
duration = 30
|
|
v1, spikes_model = model.simulate(stimulus, duration)
|
|
prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size, kernel_width=0.005)
|
|
|
|
fig, ax = plt.subplots(1, 1)
|
|
ax.plot(prob_density_function_model)
|
|
ax.set_title("pdf with m_freq: {}".format(int(m_freq)))
|
|
|
|
plt.savefig("figures/sam/pdf_mfreq_{}.png".format(m_freq))
|
|
plt.close()
|
|
stds.append(np.std(prob_density_function_model))
|
|
|
|
plt.plot((np.array(modulation_frequencies)) / eod_freq, stds)
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def plot_traces_with_spiketimes():
|
|
modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/")
|
|
cell_data = modelfit.get_cell_data()
|
|
|
|
traces = cell_data.parser.__get_traces__("SAM")
|
|
# [time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces]
|
|
sam_spiketimes = cell_data.get_sam_spiketimes()
|
|
for i in range(len(traces[0])):
|
|
fig, axes = plt.subplots(2, 1, sharex=True)
|
|
axes[0].plot(traces[0][i], traces[1][i])
|
|
axes[0].plot(list(sam_spiketimes[i]), list([max(traces[1][i])] * len(sam_spiketimes[i])), 'o')
|
|
axes[1].plot(traces[0][i], traces[3][i])
|
|
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def plot_mean_of_cuts():
|
|
modelfit = get_best_fit("results/final_2/2018-05-08-ac-invivo-1/")
|
|
|
|
if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")):
|
|
print("Cell: {} \n Has no measured sam stimuli.")
|
|
return
|
|
cell_data = CellData(modelfit.get_cell_path())
|
|
|
|
eod_freq = cell_data.get_eod_frequency()
|
|
model = modelfit.get_model()
|
|
|
|
durations = cell_data.get_sam_durations()
|
|
u_durations = np.unique(durations)
|
|
mean_duration = np.mean(durations)
|
|
contrasts = cell_data.get_sam_contrasts()
|
|
u_contrasts = np.unique(contrasts)
|
|
contrast = contrasts[0] # are all the same in this test case
|
|
spiketimes = cell_data.get_sam_spiketimes()
|
|
delta_freqs = cell_data.get_sam_delta_frequencies()
|
|
step_size = cell_data.get_sampling_interval()
|
|
|
|
spikes_dictionary = {}
|
|
for i, m_freq in enumerate(delta_freqs):
|
|
if m_freq in spikes_dictionary:
|
|
spikes_dictionary[m_freq].append(spiketimes[i])
|
|
else:
|
|
spikes_dictionary[m_freq] = [spiketimes[i]]
|
|
|
|
for m_freq in sorted(spikes_dictionary.keys()):
|
|
if mean_duration < 2 * (1 / float(m_freq)):
|
|
print("meep")
|
|
continue
|
|
stimulus = SAM(eod_freq, contrast / 100, m_freq)
|
|
v1, spikes_model = model.simulate(stimulus, 4)
|
|
prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size)
|
|
|
|
fig, axes = plt.subplots(1, 4)
|
|
start_idx = int(2 / step_size)
|
|
cuts = cut_pdf_into_periods(prob_density_function_model[start_idx:], 1 / float(m_freq), step_size)
|
|
for c in cuts:
|
|
axes[0].plot(c, color="gray", alpha=0.2)
|
|
axes[0].set_title("model")
|
|
mean_model = np.mean(cuts, axis=0)
|
|
axes[0].plot(mean_model, color="black")
|
|
|
|
means_cell = []
|
|
for spikes_cell in spikes_dictionary[m_freq]:
|
|
prob_density_cell = spiketimes_calculate_pdf(spikes_cell[0], step_size)
|
|
|
|
cuts_cell = cut_pdf_into_periods(prob_density_cell, 1 / float(m_freq), step_size)
|
|
for c in cuts_cell:
|
|
axes[1].plot(c, color="gray", alpha=0.15)
|
|
print(cuts_cell.shape)
|
|
means_cell.append(np.mean(cuts_cell, axis=0))
|
|
if len(means_cell) == 0:
|
|
print("means cell length zero")
|
|
continue
|
|
means_cell = np.array(means_cell)
|
|
total_mean_cell = np.mean(means_cell, axis=0)
|
|
axes[1].set_title("cell")
|
|
axes[1].plot(total_mean_cell, color="black")
|
|
|
|
axes[2].set_title("difference")
|
|
diff = [(total_mean_cell[i] - mean_model[i]) for i in range(len(total_mean_cell))]
|
|
axes[2].plot(diff)
|
|
|
|
axes[3].plot(total_mean_cell)
|
|
axes[3].plot(mean_model)
|
|
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def sam_analysis(fit_path):
|
|
modelfit = get_best_fit(fit_path)
|
|
|
|
# if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")):
|
|
# print("Cell: {} \n Has no measured sam stimuli.")
|
|
# return
|
|
cell_data_path = modelfit.get_cell_path()
|
|
if "final_sam" in cell_data_path:
|
|
cell_data_path = cell_data_path.replace("final_sam", "final")
|
|
|
|
cell_data = CellData(cell_data_path)
|
|
model = modelfit.get_model()
|
|
|
|
# parameters = {'delta_a': 0.08820130374685671, 'refractory_period': 0.0006, 'a_zero': 15, 'step_size': 5e-05,
|
|
# 'v_base': 0, 'noise_strength': 0.03622523883042496, 'v_zero': 0, 'threshold': 1,
|
|
# 'input_scaling': 77.75367190909581, 'tau_a': 0.07623731247799118, 'v_offset': -10.546875,
|
|
# 'mem_tau': 0.008741976196676469, 'dend_tau': 0.0012058986118892773}
|
|
# model = LifacNoiseModel(parameters)
|
|
# cell_data = CellData("./data/test_data/2012-12-13-an-invivo-1/")
|
|
|
|
eod_freq = cell_data.get_eod_frequency()
|
|
step_size = cell_data.get_sampling_interval()
|
|
|
|
durations = cell_data.get_sam_durations()
|
|
u_durations = np.unique(durations)
|
|
contrasts = cell_data.get_sam_contrasts()
|
|
u_contrasts = np.unique(contrasts)
|
|
spiketimes = cell_data.get_sam_spiketimes()
|
|
delta_freqs = cell_data.get_sam_delta_frequencies()
|
|
u_delta_freqs = np.unique(delta_freqs)
|
|
|
|
cell_stds = []
|
|
model_stds = []
|
|
|
|
approx_offset = approximate_axon_delay_in_idx(cell_data, model)
|
|
print("Approx offset idx:", approx_offset)
|
|
print("Approx offset ms:", (approx_offset * step_size) * 1000)
|
|
|
|
for mod_freq in sorted(u_delta_freqs):
|
|
# TODO problem of cutting the pdf as in some cases the pdf is shorter than 1 modulation frequency period!
|
|
# length info wrong ? always at least one period?
|
|
|
|
# if 1/mod_freq > durations[0] / 4:
|
|
# print("skipped mod_freq: {}".format(mod_freq))
|
|
# print("Duration: {} while mod_freq period: {:.2f}".format(durations[0], 1/mod_freq))
|
|
# print("Maybe long enough duration? unique durations:", u_durations)
|
|
# continue
|
|
mfreq_data = {}
|
|
cell_means = []
|
|
model_means = []
|
|
for c in u_contrasts:
|
|
mfreq_data[c] = []
|
|
|
|
for i in range(len(delta_freqs)):
|
|
if delta_freqs[i] != mod_freq:
|
|
continue
|
|
if len(spiketimes[i]) == 0:
|
|
print("No spiketimes found at index!")
|
|
continue
|
|
if len(spiketimes[i]) > 1:
|
|
print("There are more spiketimes in one 'point'! Only the first was used! ")
|
|
|
|
|
|
spikes = spiketimes[i][0]
|
|
|
|
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
|
|
|
|
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size)
|
|
cell_mean = np.mean(cell_cuts, axis=0)
|
|
cell_means.append(cell_mean)
|
|
|
|
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
|
|
v1, spikes_model = model.simulate(stimulus, 10)
|
|
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
|
|
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size)
|
|
model_mean = np.mean(model_cuts, axis=0)
|
|
model_means.append(model_mean)
|
|
|
|
min_length = min(min([len(cm) for cm in cell_means]), min([len(mm) for mm in model_means]))
|
|
for i in range(len(cell_means)):
|
|
cell_means[i] = cell_means[i][:min_length]
|
|
model_means[i] = model_means[i][:min_length]
|
|
final_cell_mean = np.mean(cell_means, axis=0)
|
|
final_model_mean = np.mean(model_means, axis=0)
|
|
cell_stds.append(np.std(final_cell_mean))
|
|
model_stds.append(np.std(final_model_mean))
|
|
# offset, final_model_mean_phase_corrected = correct_phase(final_cell_mean, final_model_mean, step_size)
|
|
# print("Offset:", offset)
|
|
# print("modfreq:", mod_freq)
|
|
|
|
final_model_mean_phase_corrected = np.roll(final_model_mean, approx_offset)
|
|
|
|
# PLOT EVERY MOD FREQ
|
|
# fig, axes = plt.subplots(1, 5, figsize=(15, 5), sharex=True)
|
|
# for c in cell_means:
|
|
# axes[0].plot(c, color="grey", alpha=0.2)
|
|
# axes[0].plot(np.mean(cell_means, axis=0), color="black")
|
|
# axes[0].set_title("Cell response")
|
|
# axis_cell = axes[0].axis()
|
|
#
|
|
# for m in model_means:
|
|
# axes[1].plot(m, color="grey", alpha=0.2)
|
|
# axes[1].plot(np.mean(model_means, axis=0), color="black")
|
|
# axes[1].set_title("Model response")
|
|
# axis_model = axes[1].axis()
|
|
# ylim_top = max(axis_cell[3], axis_model[3])
|
|
# axes[1].set_ylim(0, ylim_top)
|
|
# axes[0].set_ylim(0, ylim_top)
|
|
# axes[2].set_ylim(0, ylim_top)
|
|
#
|
|
# axes[2].plot(final_cell_mean, label="cell")
|
|
# axes[2].plot(final_model_mean, label="model")
|
|
# axes[2].plot(final_model_mean_phase_corrected, label="model p-cor")
|
|
# axes[2].legend()
|
|
# axes[2].set_title("cell-model overlapped")
|
|
# axes[3].plot((final_model_mean - final_cell_mean) / final_cell_mean, label="normal")
|
|
# axes[3].plot((final_model_mean_phase_corrected- final_cell_mean) / final_cell_mean, label="phase cor")
|
|
# axes[3].set_title("rel. error")
|
|
# axes[3].legend()
|
|
# axes[4].plot(final_model_mean - final_cell_mean, label="normal")
|
|
# axes[4].plot(final_model_mean_phase_corrected - final_cell_mean, label="phase cor")
|
|
# axes[4].set_title("abs. error (Hz)")
|
|
# axes[4].legend()
|
|
#
|
|
# fig.suptitle("modulation frequency: {}".format(mod_freq))
|
|
#
|
|
# # plt.tight_layout()
|
|
# # plt.show()
|
|
# plt.close()
|
|
|
|
fig, ax = plt.subplots(1, 1)
|
|
|
|
ax.plot(u_delta_freqs[-len(cell_stds):], cell_stds, label="cell stds")
|
|
ax.plot(u_delta_freqs[-len(model_stds):], model_stds, label="model stds")
|
|
ax.set_title("response modulation depth")
|
|
ax.set_xlabel("Modulation frequency")
|
|
ax.set_ylabel("STD")
|
|
ax.legend()
|
|
plt.savefig("figures/sam/" + cell_data.get_cell_name() + ".png")
|
|
# plt.show()
|
|
plt.close()
|
|
|
|
|
|
def correct_phase(cell_mean, model_mean, step_size):
|
|
|
|
# test for every 0.2 ms roll in the total time:
|
|
lowest_err = np.inf
|
|
roll_idx = 0
|
|
for i in range(int(len(cell_mean) * step_size * 1000) * 5):
|
|
roll_by = int((i / 5 / 1000) / step_size)
|
|
rolled = np.roll(model_mean, roll_by)
|
|
# rms = np.sqrt(np.mean(np.power((cell_mean - rolled), 2)))
|
|
abs = np.sum(np.abs(cell_mean-rolled))
|
|
if abs < lowest_err:
|
|
lowest_err = abs
|
|
roll_idx = roll_by
|
|
|
|
return roll_idx, np.roll(model_mean, roll_idx)
|
|
|
|
|
|
def approximate_axon_delay_in_idx(cell_data, model):
|
|
|
|
lowest_mod_freq = 80
|
|
highest_mod_freq = 150
|
|
|
|
eod_freq = cell_data.get_eod_frequency()
|
|
step_size = cell_data.get_sampling_interval()
|
|
|
|
durations = cell_data.get_sam_durations()
|
|
contrasts = cell_data.get_sam_contrasts()
|
|
u_contrasts = np.unique(contrasts)
|
|
spiketimes = cell_data.get_sam_spiketimes()
|
|
delta_freqs = cell_data.get_sam_delta_frequencies()
|
|
u_delta_freqs = np.unique(delta_freqs)
|
|
|
|
used_mod_freqs = []
|
|
axon_delays = []
|
|
|
|
for mod_freq in sorted(u_delta_freqs):
|
|
# Only use "stable" mod_freqs to approximate the axon delay
|
|
if not lowest_mod_freq <= mod_freq <= highest_mod_freq:
|
|
continue
|
|
|
|
if 1/mod_freq > durations[0] / 4:
|
|
print("skipped mod_freq: {}".format(mod_freq))
|
|
print("Duration: {} while mod_freq period: {:.2f}".format(durations[0], 1/mod_freq))
|
|
continue
|
|
mfreq_data = {}
|
|
cell_means = []
|
|
model_means = []
|
|
for c in u_contrasts:
|
|
mfreq_data[c] = []
|
|
|
|
for i in range(len(delta_freqs)):
|
|
if delta_freqs[i] != mod_freq:
|
|
continue
|
|
|
|
if len(spiketimes[i]) > 1:
|
|
print("There are more spiketimes in one 'point'! Only the first was used! ")
|
|
spikes = spiketimes[i][0]
|
|
|
|
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
|
|
|
|
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size)
|
|
if len(cell_cuts) == 0:
|
|
continue
|
|
cell_mean = np.mean(cell_cuts, axis=0)
|
|
cell_means.append(cell_mean)
|
|
|
|
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
|
|
v1, spikes_model = model.simulate(stimulus, durations[i] * 4)
|
|
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
|
|
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size)
|
|
model_mean = np.mean(model_cuts, axis=0)
|
|
model_means.append(model_mean)
|
|
|
|
final_cell_mean = np.mean(cell_means, axis=0)
|
|
final_model_mean = np.mean(model_means, axis=0)
|
|
|
|
offset, final_model_mean_phase_corrected = correct_phase(final_cell_mean, final_model_mean, step_size)
|
|
|
|
used_mod_freqs.append(mod_freq)
|
|
axon_delays.append(offset)
|
|
|
|
mean_delay = np.mean(axon_delays)
|
|
if np.isnan(mean_delay):
|
|
return 0
|
|
else:
|
|
return int(round(mean_delay))
|
|
|
|
|
|
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
|
|
|
|
trials_rate_list = []
|
|
step_size = model.get_parameters()["step_size"]
|
|
for _ in range(trials):
|
|
v1, spikes = model.simulate_slow(stimulus, total_time_s=sim_length)
|
|
|
|
binary = np.zeros(int(sim_length/step_size))
|
|
spikes = [int(s / step_size) for s in spikes]
|
|
for s_idx in spikes:
|
|
binary[s_idx] = 1
|
|
|
|
kernel = gaussian_kernel(kernel_width, step_size)
|
|
rate = np.convolve(binary, kernel, mode='same')
|
|
trials_rate_list.append(rate)
|
|
|
|
times = [np.arange(0, sim_length, step_size) for _ in range(trials)]
|
|
t, mean_rate = hF.calculate_mean_of_frequency_traces(times, trials_rate_list, step_size)
|
|
|
|
return mean_rate
|
|
|
|
|
|
def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.001):
|
|
length = int(spikes[len(spikes)-1] / step_size)+1
|
|
binary = np.zeros(length)
|
|
spikes = [int(s / step_size) for s in spikes]
|
|
for s_idx in spikes:
|
|
binary[s_idx] = 1
|
|
|
|
kernel = gaussian_kernel(kernel_width, step_size)
|
|
rate = np.convolve(binary, kernel, mode='same')
|
|
|
|
return rate
|
|
|
|
|
|
def cut_pdf_into_periods(pdf, period, step_size, factor=0.0):
|
|
|
|
if period < 0:
|
|
# print("cut_pdf_into_periods(): Period was negative! Absolute value taken to continue")
|
|
period = abs(period)
|
|
|
|
idx_period_length = int(period / float(step_size))
|
|
offset_per_step = period / float(step_size) - idx_period_length
|
|
cut_length = idx_period_length + int(factor * idx_period_length)
|
|
num_of_cuts = int(len(pdf) / (idx_period_length + offset_per_step))
|
|
|
|
if len(pdf) - (num_of_cuts * idx_period_length + (num_of_cuts * offset_per_step)) < cut_length - idx_period_length:
|
|
num_of_cuts -= 1
|
|
|
|
if idx_period_length * 0.9 > len(pdf):
|
|
return []
|
|
# raise RuntimeError("SAM stimulus is too short for the given mod freq period.")
|
|
|
|
if cut_length > len(pdf) or num_of_cuts < 1:
|
|
return [pdf]
|
|
|
|
cuts = np.zeros((num_of_cuts-1, cut_length))
|
|
for i in np.arange(1, num_of_cuts, 1):
|
|
offset_correction = int(offset_per_step * i)
|
|
start_idx = i*idx_period_length + offset_correction
|
|
end_idx = (i*idx_period_length)+cut_length + offset_correction
|
|
cut = np.array(pdf[start_idx: end_idx])
|
|
cuts[i-1] = cut
|
|
|
|
if len(cuts.shape) < 2:
|
|
print("Fishy....")
|
|
return cuts
|
|
|
|
|
|
def gaussian_kernel(sigma, dt):
|
|
x = np.arange(-4. * sigma, 4. * sigma, dt)
|
|
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
|
|
return y
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|