366 lines
14 KiB
Python
366 lines
14 KiB
Python
from stimuli.AbstractStimulus import AbstractStimulus
|
|
from models.AbstractModel import AbstractModel
|
|
import numpy as np
|
|
from my_util import functions as fu
|
|
from numba import jit
|
|
from warnings import warn
|
|
from collections import OrderedDict
|
|
|
|
|
|
class LifacNoiseModel(AbstractModel):
|
|
# all times in milliseconds
|
|
# possible mem_res: 100 * 1000000 exact value unknown in p-units
|
|
DEFAULT_VALUES = OrderedDict([("mem_tau", 0.015),
|
|
("v_base", 0),
|
|
("v_zero", 0),
|
|
("threshold", 1),
|
|
("v_offset", -10),
|
|
("input_scaling", 60),
|
|
("delta_a", 0.08),
|
|
("tau_a", 0.1),
|
|
("a_zero", 2),
|
|
("noise_strength", 0.05),
|
|
("step_size", 0.00005),
|
|
("dend_tau", 0.001),
|
|
("refractory_period", 0.001)])
|
|
|
|
def __init__(self, params: dict = None):
|
|
super().__init__(params)
|
|
|
|
if self.parameters["step_size"] > 0.0001:
|
|
warn("LifacNoiseModel: The step size is quite big simulation could fail.")
|
|
self.voltage_trace = []
|
|
self.input_voltage = []
|
|
self.adaption_trace = []
|
|
self.spiketimes = []
|
|
self.stimulus = None
|
|
# self.frequency_trace = []
|
|
|
|
def simulate_slow(self, stimulus: AbstractStimulus, total_time_s):
|
|
|
|
self.stimulus = stimulus
|
|
time = np.arange(0, total_time_s, self.parameters["step_size"])
|
|
output_voltage = np.zeros(len(time), dtype='float64')
|
|
adaption = np.zeros(len(time), dtype='float64')
|
|
input_voltage = np.zeros(len(time), dtype='float64')
|
|
spiketimes = []
|
|
|
|
current_v = self.parameters["v_zero"]
|
|
current_a = self.parameters["a_zero"]
|
|
input_voltage[0] = fu.rectify(stimulus.value_at_time_in_s(time[0]))
|
|
output_voltage[0] = current_v
|
|
adaption[0] = current_a
|
|
|
|
for i in range(1, len(time), 1):
|
|
time_point = time[i]
|
|
# rectified input:
|
|
stimulus_strength = self._calculate_input_voltage_step(input_voltage[i - 1],
|
|
fu.rectify(stimulus.value_at_time_in_s(time_point)))
|
|
|
|
v_next = self._calculate_voltage_step(current_v, stimulus_strength - current_a)
|
|
a_next = self._calculate_adaption_step(current_a)
|
|
|
|
if len(spiketimes) > 0 and time[i] - spiketimes[-1] < self.parameters["refractory_period"] + self.parameters["step_size"]/2:
|
|
v_next = self.parameters["v_base"]
|
|
|
|
if v_next > self.parameters["threshold"]:
|
|
v_next = self.parameters["v_base"]
|
|
spiketimes.append(time_point)
|
|
a_next += self.parameters["delta_a"] / self.parameters["tau_a"]
|
|
|
|
output_voltage[i] = v_next
|
|
adaption[i] = a_next
|
|
input_voltage[i] = stimulus_strength
|
|
|
|
current_v = v_next
|
|
current_a = a_next
|
|
|
|
self.voltage_trace = output_voltage
|
|
self.adaption_trace = adaption
|
|
self.spiketimes = spiketimes
|
|
self.input_voltage = input_voltage
|
|
|
|
return output_voltage, spiketimes
|
|
|
|
def _calculate_voltage_step(self, current_v, input_v):
|
|
v_base = self.parameters["v_base"]
|
|
step_size = self.parameters["step_size"]
|
|
v_offset = self.parameters["v_offset"]
|
|
mem_tau = self.parameters["mem_tau"]
|
|
|
|
noise_strength = self.parameters["noise_strength"]
|
|
noise_value = np.random.normal()
|
|
noise = noise_strength * noise_value / np.sqrt(step_size)
|
|
|
|
return current_v + step_size * ((v_base - current_v + v_offset + input_v + noise) / mem_tau)
|
|
|
|
def _calculate_adaption_step(self, current_a):
|
|
step_size = self.parameters["step_size"]
|
|
return current_a + (step_size * (-current_a)) / self.parameters["tau_a"]
|
|
|
|
def _calculate_input_voltage_step(self, current_i, rectified_input):
|
|
# input_voltage[i] = input_voltage[i - 1] + (-input_voltage[i - 1] + rectified_stimulus_array[i] * input_scaling) / dend_tau
|
|
return current_i + (
|
|
(-current_i + rectified_input * self.parameters["input_scaling"]) / self.parameters["dend_tau"]) * \
|
|
self.parameters["step_size"]
|
|
|
|
def simulate(self, stimulus: AbstractStimulus, total_time_s, time_start=0):
|
|
|
|
v_zero = self.parameters["v_zero"]
|
|
a_zero = self.parameters["a_zero"]
|
|
step_size = self.parameters["step_size"]
|
|
threshold = self.parameters["threshold"]
|
|
v_base = self.parameters["v_base"]
|
|
delta_a = self.parameters["delta_a"]
|
|
tau_a = self.parameters["tau_a"]
|
|
v_offset = self.parameters["v_offset"]
|
|
mem_tau = self.parameters["mem_tau"]
|
|
noise_strength = self.parameters["noise_strength"]
|
|
input_scaling = self.parameters["input_scaling"]
|
|
dend_tau = self.parameters["dend_tau"]
|
|
ref_period = self.parameters["refractory_period"]
|
|
|
|
rectified_stimulus = rectify_stimulus_array(stimulus.as_array(time_start, total_time_s, step_size))
|
|
parameters = np.array(
|
|
[v_zero, a_zero, step_size, threshold, v_base, delta_a, tau_a, v_offset, mem_tau, noise_strength,
|
|
time_start, input_scaling, dend_tau, ref_period])
|
|
if dend_tau >= step_size:
|
|
voltage_trace, adaption, spiketimes, input_voltage = simulate_fast(rectified_stimulus, total_time_s, parameters)
|
|
else:
|
|
voltage_trace, adaption, spiketimes, input_voltage = simulate_fast_no_dend_tau(rectified_stimulus, total_time_s, parameters)
|
|
|
|
self.stimulus = stimulus
|
|
self.input_voltage = input_voltage
|
|
self.voltage_trace = voltage_trace
|
|
self.adaption_trace = adaption
|
|
self.spiketimes = spiketimes
|
|
|
|
return voltage_trace, spiketimes
|
|
|
|
def min_stimulus_strength_to_spike(self):
|
|
return self.parameters["threshold"] - self.parameters["v_base"]
|
|
|
|
def get_sampling_interval(self):
|
|
return self.parameters["step_size"]
|
|
|
|
def get_frequency(self):
|
|
# TODO also change simulates_frequency() if any calculation is added!
|
|
raise NotImplementedError("No calculation implemented yet for the frequency.")
|
|
|
|
def get_spiketimes(self):
|
|
return self.spiketimes
|
|
|
|
def get_voltage_trace(self):
|
|
return self.voltage_trace
|
|
|
|
def get_adaption_trace(self):
|
|
return self.adaption_trace
|
|
|
|
def simulates_frequency(self) -> bool:
|
|
return False
|
|
|
|
def simulates_spiketimes(self) -> bool:
|
|
return True
|
|
|
|
def simulates_voltage_trace(self) -> bool:
|
|
return True
|
|
|
|
def get_recording_times(self):
|
|
# [delay, stimulus_start, stimulus_duration, time_to_end]
|
|
self.stimulus = AbstractStimulus()
|
|
delay = 0
|
|
start = self.stimulus.get_stimulus_start_s()
|
|
duration = self.stimulus.get_stimulus_duration_s()
|
|
total_time = len(self.voltage_trace) / self.parameters["step_size"]
|
|
|
|
return [delay, start, duration, total_time]
|
|
|
|
def get_model_copy(self):
|
|
return LifacNoiseModel(self.parameters)
|
|
|
|
def get_eodf_scaled_parameters(self, factor):
|
|
scaled_parameters = self.parameters.copy()
|
|
time_param_keys = ["refractory_period", "tau_a", "mem_tau", "dend_tau", "delta_a"]
|
|
|
|
for key in time_param_keys:
|
|
scaled_parameters[key] = self.parameters[key] / factor
|
|
|
|
return scaled_parameters
|
|
|
|
def find_v_offset(self, goal_baseline_frequency, base_stimulus, threshold=2, border=50000):
|
|
test_model = self.get_model_copy()
|
|
simulation_length = 6
|
|
|
|
v_search_step_size = 100
|
|
|
|
current_v_offset = -400
|
|
|
|
current_freq = test_v_offset(test_model, current_v_offset, base_stimulus, simulation_length)
|
|
|
|
while current_freq < goal_baseline_frequency:
|
|
if current_v_offset >= border:
|
|
return border
|
|
current_v_offset += v_search_step_size
|
|
current_freq = test_v_offset(test_model, current_v_offset, base_stimulus, simulation_length)
|
|
|
|
lower_bound = current_v_offset - v_search_step_size
|
|
upper_bound = current_v_offset
|
|
|
|
return binary_search_base_freq(test_model, base_stimulus, goal_baseline_frequency, simulation_length,
|
|
lower_bound, upper_bound, threshold)
|
|
|
|
|
|
def binary_search_base_freq(model: LifacNoiseModel, base_stimulus, goal_frequency, simulation_length, lower_bound,
|
|
upper_bound, threshold):
|
|
counter = 0
|
|
if threshold <= 0:
|
|
raise ValueError("binary_search_base_freq() - LifacNoiseModel: threshold is not allowed to be negative!")
|
|
while True:
|
|
counter += 1
|
|
middle = upper_bound - (upper_bound - lower_bound) / 2
|
|
frequency = test_v_offset(model, middle, base_stimulus, simulation_length)
|
|
# print("offset: {:.1f}, freq: {:.0f}".format(middle, frequency))
|
|
# print('{:.1f}, {:.1f}, {:.1f}, {:.1f} vs {:.1f} '.format(lower_bound, middle, upper_bound, frequency, goal_frequency))
|
|
|
|
if abs(frequency - goal_frequency) < threshold:
|
|
return middle
|
|
elif frequency < goal_frequency:
|
|
lower_bound = middle
|
|
elif frequency > goal_frequency:
|
|
upper_bound = middle
|
|
else:
|
|
print('lower bound: {:.1f}, middle: {:.1f}, upper_bound: {:.1f}, frequency: {:.1f} vs goal: {:.1f} '.format(
|
|
lower_bound, middle, upper_bound, frequency, goal_frequency))
|
|
raise ValueError("binary_search_base_freq() - LifacNoiseModel: Goal frequency might be nan?")
|
|
|
|
if abs(upper_bound - lower_bound) < 0.0001:
|
|
print("v_offset search stopped. bounds converged! freq: {:.2f}, bounds: {:.0f}"
|
|
.format(frequency, lower_bound))
|
|
# print(model.parameters)
|
|
warn("Search was stopped. Upper and lower bounds converged without finding a value closer than threshold!")
|
|
return middle
|
|
|
|
|
|
def test_v_offset(model: LifacNoiseModel, v_offset, base_stimulus, simulation_length):
|
|
model.set_variable("v_offset", v_offset)
|
|
try:
|
|
v, spiketimes = model.simulate(base_stimulus, simulation_length)
|
|
# if len(spiketimes) > 0:
|
|
# print("sim length", simulation_length, "last spike", max(spiketimes), "num of spikes:", len(spiketimes))
|
|
rel_spikes = [s for s in spiketimes if s > simulation_length / 3]
|
|
|
|
return len(rel_spikes) / (2/3 * simulation_length)
|
|
except ZeroDivisionError:
|
|
print("divide by zero!")
|
|
freq = 0
|
|
# if freq > 10000:
|
|
# from IPython import embed
|
|
# import matplotlib.pyplot as plt
|
|
# embed()
|
|
|
|
return freq
|
|
|
|
|
|
@jit(nopython=True)
|
|
def rectify_stimulus_array(stimulus_array: np.ndarray):
|
|
return np.array([x if x > 0 else 0 for x in stimulus_array])
|
|
|
|
|
|
@jit(nopython=True)
|
|
def simulate_fast(rectified_stimulus_array, total_time_s, parameters: np.ndarray):
|
|
v_zero = parameters[0]
|
|
a_zero = parameters[1]
|
|
step_size = parameters[2]
|
|
threshold = parameters[3]
|
|
v_base = parameters[4]
|
|
delta_a = parameters[5]
|
|
tau_a = parameters[6]
|
|
v_offset = parameters[7]
|
|
mem_tau = parameters[8]
|
|
noise_strength = parameters[9]
|
|
time_start = parameters[10]
|
|
input_scaling = parameters[11]
|
|
dend_tau = parameters[12]
|
|
ref_period = parameters[13]
|
|
|
|
time = np.arange(time_start, total_time_s, step_size)
|
|
length = len(time)
|
|
output_voltage = np.zeros(length)
|
|
adaption = np.zeros(length)
|
|
input_voltage = np.zeros(length)
|
|
|
|
spiketimes = []
|
|
output_voltage[0] = v_zero
|
|
adaption[0] = a_zero
|
|
input_voltage[0] = rectified_stimulus_array[0]
|
|
|
|
for i in range(1, len(time), 1):
|
|
|
|
noise_value = np.random.normal()
|
|
noise = noise_strength * noise_value / np.sqrt(step_size)
|
|
|
|
input_voltage[i] = input_voltage[i - 1] + (
|
|
(-input_voltage[i - 1] + rectified_stimulus_array[i]) / dend_tau) * step_size
|
|
|
|
output_voltage[i] = output_voltage[i - 1] + ((v_base - output_voltage[i - 1] + v_offset + (
|
|
input_voltage[i] * input_scaling) - adaption[i - 1] + noise) / mem_tau) * step_size
|
|
|
|
adaption[i] = adaption[i - 1] + ((-adaption[i - 1]) / tau_a) * step_size
|
|
|
|
if len(spiketimes) > 0 and time[i] - spiketimes[-1] < ref_period + step_size/2:
|
|
output_voltage[i] = v_base
|
|
|
|
if output_voltage[i] > threshold:
|
|
output_voltage[i] = v_base
|
|
spiketimes.append((i * step_size) + time_start)
|
|
adaption[i] += delta_a / tau_a
|
|
|
|
return output_voltage, adaption, spiketimes, input_voltage
|
|
|
|
|
|
@jit(nopython=True)
|
|
def simulate_fast_no_dend_tau(rectified_stimulus_array, total_time_s, parameters: np.ndarray):
|
|
v_zero = parameters[0]
|
|
a_zero = parameters[1]
|
|
step_size = parameters[2]
|
|
threshold = parameters[3]
|
|
v_base = parameters[4]
|
|
delta_a = parameters[5]
|
|
tau_a = parameters[6]
|
|
v_offset = parameters[7]
|
|
mem_tau = parameters[8]
|
|
noise_strength = parameters[9]
|
|
time_start = parameters[10]
|
|
input_scaling = parameters[11]
|
|
dend_tau = parameters[12]
|
|
ref_period = parameters[13]
|
|
|
|
time = np.arange(time_start, total_time_s, step_size)
|
|
length = len(time)
|
|
output_voltage = np.zeros(length)
|
|
adaption = np.zeros(length)
|
|
input_voltage = rectified_stimulus_array
|
|
|
|
spiketimes = []
|
|
output_voltage[0] = v_zero
|
|
adaption[0] = a_zero
|
|
|
|
for i in range(1, len(time), 1):
|
|
|
|
noise_value = np.random.normal()
|
|
noise = noise_strength * noise_value / np.sqrt(step_size)
|
|
|
|
output_voltage[i] = output_voltage[i - 1] + ((v_base - output_voltage[i - 1] + v_offset + (
|
|
input_voltage[i] * input_scaling) - adaption[i - 1] + noise) / mem_tau) * step_size
|
|
|
|
adaption[i] = adaption[i - 1] + ((-adaption[i - 1]) / tau_a) * step_size
|
|
|
|
if len(spiketimes) > 0 and time[i] - spiketimes[-1] < ref_period + step_size/2:
|
|
output_voltage[i] = v_base
|
|
|
|
if output_voltage[i] > threshold:
|
|
output_voltage[i] = v_base
|
|
spiketimes.append((i * step_size) + time_start)
|
|
adaption[i] += delta_a / tau_a
|
|
|
|
return output_voltage, adaption, spiketimes, input_voltage |