P-unit_model/fitting/ModelFit.py
2021-01-09 23:59:34 +01:00

241 lines
9.6 KiB
Python

import os
from models.LIFACnoise import LifacNoiseModel
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from experiments.Baseline import get_baseline_class
from experiments.FiCurve import get_fi_curve_class
from parser.CellData import CellData
from my_util import helperFunctions as hF, functions as fu
import numpy as np
import matplotlib.pyplot as plt
def get_best_fit(folder_path, use_comparable_error=False):
min_err = np.inf
min_item = ""
for item in os.listdir(folder_path):
item_path = os.path.join(folder_path, item + "/")
err = ModelFit(item_path).get_fit_routine_error()
if err < min_err:
min_err = err
min_item = item
return ModelFit(os.path.join(folder_path, min_item))
class ModelFit:
def __init__(self, folder_path):
self.path = folder_path
self.parameter_file_name = "parameters_info.txt"
self.value_file = "value_comparision.tsv"
self.fi_comp_img = "fi_curve_comparision.png"
self.isi_hist_img = "isi-histogram.png"
self.isi_hist_comp_img = "isi-histogram_comparision.png"
self.model_f_inf_file = "model_fi_inf_values.npy"
self.cell_f_inf_file = "cell_fi_inf_values.npy"
self.model_f_zero_file = "model_fi_zero_values.npy"
self.cell_f_zero_file = "cell_fi_zero_values.npy"
def get_final_parameters(self):
par_file_path = os.path.join(self.path, self.parameter_file_name)
with open(par_file_path, 'r') as par_file:
for line in par_file:
line = line.strip().split('\t')
if line[0] == "final_parameters:":
return eval(line[1])
print("Final parameters not found! - ", self.path)
return {}
def get_start_parameters(self):
par_file_path = os.path.join(self.path, self.parameter_file_name)
with open(par_file_path, 'r') as par_file:
for line in par_file:
line = line.strip().split('\t')
if line[0] == "start_parameters:":
return dict(line[1])
print("Start parameters not found! - ", self.path)
return {}
def get_behaviour_values(self):
values_file_path = os.path.join(self.path, self.value_file)
cell_values = {}
model_values = {}
with open(values_file_path, 'r') as val_file:
line = val_file.readline() # ignore headers
for line in val_file:
line = line.strip().split('\t')
cell_values[line[0]] = float(line[1])
model_values[line[0]] = float(line[2])
return cell_values, model_values
def get_fi_curve_comparision_image(self):
path = os.path.join(self.path, self.fi_comp_img)
if os.path.exists(path):
return path
else:
raise FileNotFoundError("Fi-curve comparision image is missing. - " + self.path)
def get_isi_histogram_image(self):
path = os.path.join(self.path, self.isi_hist_img)
if os.path.exists(path):
return path
else:
raise FileNotFoundError("Isi-histogram image is missing. - " + self.path)
def get_model(self):
return LifacNoiseModel(self.get_final_parameters())
def get_cell_path(self):
with open(os.path.join(self.path, "cell_data_path.txt"), "r") as f:
cell_path = f.readline().strip()
return cell_path
def get_cell_data(self):
return CellData(self.get_cell_path())
def get_model_f_inf_values(self):
path = os.path.join(self.path, self.model_f_inf_file)
return np.load(path)
def get_model_f_zero_values(self):
path = os.path.join(self.path, self.model_f_zero_file)
return np.load(path)
def get_cell_f_inf_values(self):
path = os.path.join(self.path, self.cell_f_inf_file)
return np.load(path)
def get_cell_f_zero_values(self):
path = os.path.join(self.path, self.cell_f_zero_file)
return np.load(path)
def get_fit_routine_error(self):
path_parts = self.path.split("/")
if len(path_parts[-1]) != 0:
return float(path_parts[-1].split("_")[-1])
else:
return float(path_parts[-2].split("_")[-1])
def generate_master_plot(self, save_path=None):
model = self.get_model()
cell = self.get_cell_data()
fig, axes = plt.subplots(4, 1, figsize=(8, 12))
# isi histogram:
axes[0].set_title("ISI-Histogram")
axes[0].set_xlim((0, 50))
bins = np.arange(0, 50, 0.1)
for data, name in zip((cell, model), ("cell", "model")):
base = get_baseline_class(data, cell.get_eod_frequency(), trials=5)
isis = np.array(base.get_interspike_intervals()) * 1000
axes[0].hist(isis, bins=bins, label=name, alpha=0.5, density=True)
axes[0].legend()
# fi_curve
fi_curve = get_fi_curve_class(cell, cell.get_fi_contrasts(), save_dir=cell.get_data_path())
f_inf_slope = fi_curve.get_f_inf_slope()
contrasts = np.array(fi_curve.stimulus_values)
if f_inf_slope < 0:
contrasts = contrasts * -1
fi_curve_cell = get_fi_curve_class(cell, contrasts)
print("cell: {} , FI-Curve has saved contrasts that give negative f_inf slope!".format(cell.get_data_path()))
else:
fi_curve_cell = fi_curve
fi_curve_model = get_fi_curve_class(model, contrasts, eod_freq=cell.get_eod_frequency(), trials=15)
axes[1].set_title("Fi-Curve")
min_x = min(min(fi_curve_cell.stimulus_values), min(fi_curve_model.stimulus_values))
max_x = max(max(fi_curve_cell.stimulus_values), max(fi_curve_model.stimulus_values))
step = (max_x - min_x) / 5000
x_values = np.arange(min_x, max_x + step, step)
# plot baseline
f_base_color = ("blue", "deepskyblue")
f_inf_color = ("green", "limegreen")
f_zero_color = ("red", "orange")
median_baseline = np.median(fi_curve_cell.get_f_baseline_frequencies())
axes[1].plot((min_x, max_x), (median_baseline, median_baseline), color=f_base_color[0], label="cell med base")
axes[1].plot(fi_curve_model.stimulus_values, fi_curve_model.get_f_baseline_frequencies(),
'o', color=f_base_color[1], label='model base')
y_values = [fu.clipped_line(x, fi_curve_cell.f_inf_fit[0], fi_curve_cell.f_inf_fit[1]) for x in x_values]
axes[1].plot(x_values, y_values, color=f_inf_color[0], label='f_inf_fit cell')
axes[1].plot(fi_curve_model.stimulus_values, fi_curve_model.get_f_inf_frequencies(),
'o', color=f_inf_color[1], label='f_inf model')
popt = fi_curve_cell.f_zero_fit
axes[1].plot(x_values, [fu.full_boltzmann(x, popt[0], popt[1], popt[2], popt[3]) for x in x_values],
color=f_zero_color[0], label='f_0_fit cell')
axes[1].plot(fi_curve_model.stimulus_values, fi_curve_model.get_f_zero_frequencies(),
'o', color=f_zero_color[1], label='f_zero model')
axes[1].set_title("cell model comparision")
axes[1].set_xlabel("Stimulus value - contrast")
axes[1].legend()
# comparison of f_zero_curve:
max_contrast = max(contrasts)
test_contrast = 0.5 * max_contrast
diff_contrasts = np.abs(contrasts - test_contrast)
f_zero_curve_contrast_idx = np.argmin(diff_contrasts)
# model:
stimulus = SinusoidalStepStimulus(cell.get_eod_frequency(), contrasts[f_zero_curve_contrast_idx],
start_time=0, duration=cell.get_stimulus_duration())
freq_traces = []
time_traces = []
for i in range(10):
v1, spikes = model.simulate(stimulus, cell.get_time_end() - cell.get_time_start(), cell.get_time_start())
time, freq = hF.calculate_time_and_frequency_trace(spikes, model.get_sampling_interval())
freq_traces.append(freq)
time_traces.append(time)
time, freq = hF.calculate_mean_of_frequency_traces(time_traces, freq_traces, model.get_sampling_interval())
cell_times, cell_freqs = fi_curve_cell.get_mean_time_and_freq_traces()
axes[2].plot(cell_times[f_zero_curve_contrast_idx], cell_freqs[f_zero_curve_contrast_idx])
axes[2].plot(np.array(time) + 0.005, freq)
axes[2].set_title("blue: cell, orange: model")
axes[2].set_xlim(-0.15, 0.35)
start_idx = -1
end_idx = -1
for idx in range(len(cell_times[f_zero_curve_contrast_idx])):
if cell_times[f_zero_curve_contrast_idx][idx] < -0.15:
start_idx = idx
elif cell_times[f_zero_curve_contrast_idx][idx] > 0.35:
end_idx = idx
break
axes[2].set_ylim(0.9*min(cell_freqs[f_zero_curve_contrast_idx][start_idx:end_idx]),
1.1*max(cell_freqs[f_zero_curve_contrast_idx][start_idx:end_idx]))
# Value table:
cell_values, model_values = self.get_behaviour_values()
collabel = sorted(cell_values.keys())
clust_data = [[], []]
for k in collabel:
clust_data[0].append(cell_values[k])
clust_data[1].append(model_values[k])
axes[3].axis('tight')
axes[3].axis('off')
table = axes[3].table(cellText=clust_data, colLabels=collabel, rowLabels=("cell", "model"), loc='center')
fig.suptitle(cell.get_cell_name() + "_err: {:.2f}".format(self.get_fit_routine_error()))
plt.tight_layout()
if save_path is None:
plt.show()
else:
plt.savefig(save_path + cell.get_cell_name() + "_master_plot.pdf")
plt.close()