P-unit_model/experiments/Baseline.py
2021-01-09 23:59:34 +01:00

411 lines
15 KiB
Python

from parser.CellData import CellData
from models.LIFACnoise import LifacNoiseModel
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from my_util import helperFunctions as hF
import numpy as np
import matplotlib.pyplot as plt
import pickle
from os.path import join, exists
class Baseline:
def __init__(self):
self.save_file_name = "baseline_values.pkl"
self.baseline_frequency = -1
self.serial_correlation = []
self.vector_strength = -1
self.coefficient_of_variation = -1
self.burstiness = -1
def get_baseline_frequency(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_serial_correlation(self, max_lag):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_vector_strength(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_coefficient_of_variation(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_burstiness(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def __get_burstiness__(self, eod_freq):
isis = np.array(self.get_interspike_intervals())
if len(isis) == 0:
return 0
fullfilled = isis < (2.5 / eod_freq)
perc_bursts = np.sum(fullfilled) / len(fullfilled)
return perc_bursts * (np.mean(isis)*1000)
def get_interspike_intervals(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_spiketime_phases(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def plot_baseline(self, save_path=None, time_length=0.2):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
@staticmethod
def _get_baseline_frequency_given_data(spiketimes):
base_freqs = []
for st in spiketimes:
base_freqs.append(hF.calculate_mean_isi_freq(st))
return np.median(base_freqs)
@staticmethod
def _get_serial_correlation_given_data(max_lag, spikestimes):
serial_cors = []
for st in spikestimes:
sc = hF.calculate_serial_correlation(st, max_lag)
serial_cors.append(sc)
serial_cors = np.array(serial_cors)
res = np.mean(serial_cors, axis=0)
return res
@staticmethod
def _get_vector_strength_given_data(times, eods, spiketimes, sampling_interval):
vs_per_trial = []
for i in range(len(spiketimes)):
vs = hF.calculate_vector_strength_from_spiketimes(times[i], eods[i], spiketimes[i], sampling_interval)
vs_per_trial.append(vs)
return np.mean(vs_per_trial)
@staticmethod
def _get_coefficient_of_variation_given_data(spiketimes):
# CV (stddev of ISI divided by mean ISI (np.diff(spiketimes))
cvs = []
for st in spiketimes:
st = np.array(st)
cvs.append(hF.calculate_coefficient_of_variation(st))
return np.mean(cvs)
@staticmethod
def _get_interspike_intervals_given_data(spiketimes):
isis = []
for st in spiketimes:
st = np.array(st)
isis.extend(np.diff(st))
return isis
@staticmethod
def _plot_baseline_given_data(time, eod, v1, spiketimes, sampling_interval, eod_freq="", save_path=None, position=0.5, time_length=0.2):
"""
plots the stimulus / eod, together with the v1, spiketimes and frequency
:return:
"""
length_data_points = int(time_length / sampling_interval)
start_idx = int(len(time) * position)
start_idx = start_idx if start_idx >= 0 else 0
end_idx = int(len(time) * position + length_data_points) + 1
end_idx = end_idx if end_idx <= len(time) else len(time)
spiketimes = np.array(spiketimes)
spiketimes_part = spiketimes[(spiketimes >= time[start_idx]) & (spiketimes < time[end_idx])]
fig, axes = plt.subplots(3, 1, sharex="col", figsize=(12, 8))
fig.suptitle("Baseline middle part ({:.2f} seconds)".format(time_length))
axes[0].plot(time[start_idx:end_idx], eod[start_idx:end_idx])
axes[0].set_ylabel("Stimulus [mV] - Freq:" + eod_freq)
max_v1 = max(v1[start_idx:end_idx])
axes[1].plot(time[start_idx:end_idx], v1[start_idx:end_idx])
axes[1].plot(spiketimes_part, [max_v1 for _ in range(len(spiketimes_part))],
'o', color='orange')
axes[1].set_ylabel("V1-Trace [mV]")
t, f = hF.calculate_time_and_frequency_trace(spiketimes_part, sampling_interval)
axes[2].plot(t, f)
axes[2].set_ylabel("ISI-Frequency [Hz]")
axes[2].set_xlabel("Time [s]")
if save_path is not None:
plt.savefig(save_path + "baseline.png")
else:
plt.show()
plt.close()
@staticmethod
def plot_isi_histogram_comparision(cell_isis, model_isis, save_path=None):
cell_isis = np.array(cell_isis) * 1000
model_isis = np.array(model_isis) * 1000
maximum = max(max(cell_isis), max(model_isis))
bins = np.arange(0, maximum * 1.01, 0.1)
plt.title('Baseline ISIs')
plt.xlabel('ISI in ms')
plt.ylabel('Count')
plt.hist(cell_isis, bins=bins, label="cell", alpha=0.5, density=True)
plt.hist(model_isis, bins=bins, label="model", alpha=0.5, density=True)
plt.legend()
if save_path is not None:
plt.savefig(save_path + "isi-histogram_comparision.png")
else:
plt.show()
plt.close()
def plot_polar_vector_strength(self, save_path=None):
phases = self.get_spiketime_phases()
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
# r = np.arange(0, 1, 0.001)
# theta = 2 * 2 * np.pi * r
# line, = ax.plot(theta, r, color='#ee8d18', lw=3)
bins = np.arange(0, np.pi * 2, 0.1)
ax.hist(phases, bins=bins)
if save_path is not None:
plt.savefig(save_path + "vector_strength_polar_plot.png")
else:
plt.show()
plt.close()
def plot_interspike_interval_histogram(self, save_path=None):
isi = np.array(self.get_interspike_intervals()) * 1000 # change unit to milliseconds
if len(isi) == 0:
print("NON SPIKES IN BASELINE OF CELL/MODEL")
plt.title('Baseline ISIs - NO SPIKES!')
plt.xlabel('ISI in ms')
plt.ylabel('Count')
plt.hist(isi, bins=np.arange(0, 1, 0.1))
if save_path is not None:
plt.savefig(save_path + "isi-histogram.png")
else:
plt.show()
plt.close()
return
maximum = max(isi)
bins = np.arange(0, maximum * 1.01, 0.1)
plt.title('Baseline ISIs')
plt.xlabel('ISI in ms')
plt.ylabel('Count')
plt.hist(isi, bins=bins)
if save_path is not None:
plt.savefig(save_path + "isi-histogram.png")
else:
plt.show()
plt.close()
def plot_serial_correlation(self, max_lag, save_path=None):
plt.title("Baseline Serial correlation")
plt.xlabel("Lag")
plt.ylabel("Correlation")
plt.ylim((-1, 1))
plt.plot(np.arange(1, max_lag+1, 1), self.get_serial_correlation(max_lag))
if save_path is not None:
plt.savefig(save_path + "serial_correlation.png")
else:
plt.show()
plt.close()
def save_values(self, save_directory):
values = {}
values["baseline_frequency"] = self.get_baseline_frequency()
values["serial correlation"] = self.get_serial_correlation(max_lag=10)
values["vector strength"] = self.get_vector_strength()
values["coefficient of variation"] = self.get_coefficient_of_variation()
values["burstiness"] = self.get_burstiness()
with open(join(save_directory, self.save_file_name), "wb") as file:
pickle.dump(values, file)
print("Baseline: Values saved!")
def load_values(self, save_directory):
file_path = join(save_directory, self.save_file_name)
if not exists(file_path):
print("Baseline: No file to load")
return False
file = open(file_path, "rb")
values = pickle.load(file)
self.baseline_frequency = values["baseline_frequency"]
self.serial_correlation = values["serial correlation"]
self.vector_strength = values["vector strength"]
self.coefficient_of_variation = values["coefficient of variation"]
self.burstiness = values["burstiness"]
print("Baseline: Values loaded!")
return True
class BaselineCellData(Baseline):
def __init__(self, cell_data: CellData):
super().__init__()
self.data = cell_data
def get_baseline_frequency(self):
if self.baseline_frequency == -1:
spiketimes = self.data.get_base_spikes()
self.baseline_frequency = self._get_baseline_frequency_given_data(spiketimes)
return self.baseline_frequency
def get_vector_strength(self):
if self.vector_strength == -1:
times = self.data.get_base_traces(self.data.TIME)
eods = self.data.get_base_traces(self.data.EOD)
spiketimes = self.data.get_base_spikes()
sampling_interval = self.data.get_sampling_interval()
self.vector_strength = self._get_vector_strength_given_data(times, eods, spiketimes, sampling_interval)
return self.vector_strength
def get_serial_correlation(self, max_lag):
if len(self.serial_correlation) < max_lag:
self.serial_correlation = self._get_serial_correlation_given_data(max_lag, self.data.get_base_spikes())
return self.serial_correlation[:max_lag]
def get_coefficient_of_variation(self):
if self.coefficient_of_variation == -1:
self.coefficient_of_variation = self._get_coefficient_of_variation_given_data(self.data.get_base_spikes())
return self.coefficient_of_variation
def get_interspike_intervals(self):
return self._get_interspike_intervals_given_data(self.data.get_base_spikes())
def get_spiketime_phases(self):
times = self.data.get_base_traces(self.data.TIME)
spiketimes = self.data.get_base_spikes()
eods = self.data.get_base_traces(self.data.EOD)
sampling_interval = self.data.get_sampling_interval()
phase_list = []
for i in range(len(times)):
spiketime_indices = np.array(np.around((np.array(spiketimes[i]) + times[i][0]) / sampling_interval), dtype=int)
rel_spikes, eod_durs = hF.eods_around_spikes(times[i], eods[i], spiketime_indices)
phase_times = (rel_spikes / eod_durs) * 2 * np.pi
phase_list.extend(phase_times)
return phase_list
def get_burstiness(self):
if self.burstiness == -1:
self.burstiness = self.__get_burstiness__(self.data.get_eod_frequency())
return self.burstiness
def plot_baseline(self, save_path=None, position=0.5, time_length=0.2):
# eod, v1, spiketimes, frequency
time = self.data.get_base_traces(self.data.TIME)[0]
eod = self.data.get_base_traces(self.data.EOD)[0]
v1_trace = self.data.get_base_traces(self.data.V1)[0]
spiketimes = self.data.get_base_spikes()[0]
self._plot_baseline_given_data(time, eod, v1_trace, spiketimes,
self.data.get_sampling_interval(), "{:.0f}".format(self.data.get_eod_frequency()), save_path, position, time_length)
class BaselineModel(Baseline):
simulation_time = 30
def __init__(self, model: LifacNoiseModel, eod_frequency, trials=1):
super().__init__()
self.model = model
self.eod_frequency = eod_frequency
self.set_model_adaption_to_baseline()
self.stimulus = SinusoidalStepStimulus(eod_frequency, 0)
self.eod = self.stimulus.as_array(0, self.simulation_time, model.get_sampling_interval())
self.time = np.arange(0, self.simulation_time, model.get_sampling_interval())
self.v1_traces = []
self.spiketimes = []
for i in range(trials):
v, st = model.simulate(self.stimulus, self.simulation_time)
self.v1_traces.append(v)
self.spiketimes.append(st)
def set_model_adaption_to_baseline(self):
stimulus = SinusoidalStepStimulus(self.eod_frequency, 0, 0, 0)
self.model.simulate(stimulus, 1)
adaption = self.model.get_adaption_trace()
self.model.set_variable("a_zero", adaption[-1])
# print("Baseline: model a_zero set to", adaption[-1])
def get_baseline_frequency(self):
if self.baseline_frequency == -1:
self.baseline_frequency = self._get_baseline_frequency_given_data(self.spiketimes)
return self.baseline_frequency
def get_vector_strength(self):
if self.vector_strength == -1:
times = [self.time] * len(self.spiketimes)
eods = [self.eod] * len(self.spiketimes)
sampling_interval = self.model.get_sampling_interval()
self.vector_strength = self._get_vector_strength_given_data(times, eods, self.spiketimes, sampling_interval)
return self.vector_strength
def get_serial_correlation(self, max_lag):
if len(self.serial_correlation) != max_lag:
self.serial_correlation = self._get_serial_correlation_given_data(max_lag, self.spiketimes)
return self.serial_correlation
def get_coefficient_of_variation(self):
if self.coefficient_of_variation == -1:
self.coefficient_of_variation = self._get_coefficient_of_variation_given_data(self.spiketimes)
return self.coefficient_of_variation
def get_interspike_intervals(self):
return self._get_interspike_intervals_given_data(self.spiketimes)
def get_burstiness(self):
if self.burstiness == -1:
self.burstiness = self.__get_burstiness__(self.eod_frequency)
return self.burstiness
def get_spiketime_phases(self):
sampling_interval = self.model.get_sampling_interval()
phase_list = []
for i in range(len(self.spiketimes)):
spiketime_indices = np.array(np.around((np.array(self.spiketimes[i]) + self.time[0]) / sampling_interval), dtype=int)
rel_spikes, eod_durs = hF.eods_around_spikes(self.time, self.eod, spiketime_indices)
phase_times = (rel_spikes / eod_durs) * 2 * np.pi
phase_list.extend(phase_times)
return phase_list
def plot_baseline(self, save_path=None, position=0.5, time_length=0.2):
self._plot_baseline_given_data(self.time, self.eod, self.v1_traces[0], self.spiketimes[0],
self.model.get_sampling_interval(), "{:.0f}".format(self.eod_frequency),
save_path, position, time_length)
def get_baseline_class(data, eod_freq=None, trials=1) -> Baseline:
if isinstance(data, CellData):
return BaselineCellData(data)
if isinstance(data, LifacNoiseModel):
if eod_freq is None:
raise ValueError("The EOD frequency is needed for the BaselineModel Class.")
return BaselineModel(data, eod_freq, trials=trials)
raise ValueError("Unknown type: Cannot find corresponding Baseline class. data was type:" + str(type(data)))