P-unit_model/Figures_results.py
2021-01-09 23:59:34 +01:00

840 lines
34 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib as mpl
from analysis import get_filtered_fit_info, get_behaviour_values, get_parameter_values, behaviour_correlations, parameter_correlations
from fitting.ModelFit import get_best_fit
from experiments.Baseline import BaselineModel, BaselineCellData
from experiments.FiCurve import FICurveModel, FICurveCellData
from parser.CellData import CellData
from my_util import functions as fu
import Figure_constants as consts
from scipy.stats import pearsonr
parameter_titles = {"input_scaling": r"$\alpha$", "delta_a": r"$\Delta_A$",
"mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$",
"refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$",
"v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"}
parameter_xlabels = {"input_scaling": "cm", "delta_a": r"$\Delta_A$",
"mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$",
"refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$",
"v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"}
behaviour_titles = {"baseline_frequency": "Base Rate", "Burstiness": "Burst", "coefficient_of_variation": "CV",
"serial_correlation": "SC", "vector_strength": "VS",
"f_inf_slope": r"$f_{\infty}$ Slope", "f_zero_slope": r"$f_0$ Slope",
"f_zero_middle": r"$f_0$ middle", "eodf": "EODf"}
def main():
# run_all_images()
# quit()
dir_path = "results/final_2/"
# dend_tau_and_ref_effect()
# quit()
fits_info = get_filtered_fit_info(dir_path, filter=True)
# visualize_tested_correlations(fits_info)
quit()
print("Cells left:", len(fits_info))
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
# plot_cell_model_comp_baseline(cell_behaviour, model_behaviour)
# plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour)
plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
behaviour_correlations_plot(fits_info)
parameter_correlation_plot(fits_info)
#
# create_parameter_distributions(get_parameter_values(fits_info))
# create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
# errors = calculate_percent_errors(fits_info)
# create_boxplots(errors)
# example_bad_hist_fits(dir_path)
# example_good_fi_fits(dir_path)
# example_bad_fi_fits(dir_path)
def run_all_images():
dend_tau_and_ref_effect()
dir_path = "results/final_2/"
fits_info = get_filtered_fit_info(dir_path, filter=True)
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
plot_cell_model_comp_baseline(cell_behaviour, model_behaviour)
plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour)
behaviour_correlations_plot(fits_info)
parameter_correlation_plot(fits_info)
create_parameter_distributions(get_parameter_values(fits_info))
create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
example_good_hist_fits(dir_path)
example_bad_hist_fits(dir_path)
example_good_fi_fits(dir_path)
example_bad_fi_fits(dir_path)
def visualize_tested_correlations(fits_info):
for leave_out in range(1, 11, 1):
significance_count, total_count, labels = test_correlations(fits_info, leave_out, model_values=False)
percentages = significance_count / total_count
border = total_count * 0.01
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.4, left=0.2)
ax = fig.add_subplot(gs[0, 0])
# We want to show all ticks...
ax.imshow(percentages)
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels([behaviour_titles[l] for l in labels])
# remove frame:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ... and label them with the respective list entries
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels([behaviour_titles[l] for l in labels])
ax.set_title("Percent: removed {}".format(leave_out))
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(labels)):
for j in range(len(labels)):
if percentages[i, j] > 0.5:
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
color="black", size=6)
else:
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
color="white", size=6)
ax = fig.add_subplot(gs[0, 1])
ax.imshow(percentages)
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels([behaviour_titles[l] for l in labels])
# remove frame:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ... and label them with the respective list entries
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels([behaviour_titles[l] for l in labels])
ax.set_title("Counts - removed {}".format(leave_out))
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(labels)):
for j in range(len(labels)):
if percentages[i, j] > 0.5:
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
color="black", size=6)
else:
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
color="white", size=6)
ax_col = fig.add_subplot(gs[1, :])
data = [np.arange(0, 1.001, 0.01)] * 10
ax_col.set_xticks([0, 25, 50, 75, 100])
ax_col.set_xticklabels([0, 0.25, 0.5, 0.75, 1])
ax_col.set_yticks([])
ax_col.imshow(data)
ax_col.set_xlabel("Correlation Coefficients")
plt.tight_layout()
plt.savefig("figures/consistency_correlations_removed_{}.pdf".format(leave_out))
def test_correlations(fits_info, left_out, model_values=False):
bv_cell, bv_model = get_behaviour_values(fits_info)
# eod_frequencies = [fits_info[cell][3] for cell in sorted(fits_info.keys())]
if model_values:
behaviour_values = bv_model
else:
behaviour_values = bv_cell
labels = ["baseline_frequency", "serial_correlation", "vector_strength", "coefficient_of_variation",
"Burstiness", "f_inf_slope", "f_zero_slope"] # , "eodf"]
significance_counts = np.zeros((len(labels), len(labels)))
correction_factor = sum(range(len(labels)))
total_count = 0
for mask in iall_masks(len(behaviour_values["f_inf_slope"]), left_out):
total_count += 1
idx = np.ones(len(behaviour_values["f_inf_slope"]), dtype=np.int32)
for masked in mask:
idx[masked] = 0
for i in range(len(labels)):
for j in range(len(labels)):
if j > i:
continue
idx = np.array(idx, dtype=np.bool)
values_i = np.array(behaviour_values[labels[i]])[idx]
values_j = np.array(behaviour_values[labels[j]])[idx]
c, p = pearsonr(values_i, values_j)
if p*correction_factor < 0.05:
significance_counts[i, j] += 1
return significance_counts, total_count, labels
def iall_masks(values_count: int, left_out: int):
mask = np.array(range(left_out))
while True:
if mask[0] == values_count - left_out + 1:
break
yield mask
mask[-1] += 1
if mask[-1] >= values_count:
idx_to_start = 0
for i in range(left_out-1):
if mask[-1 - i] >= values_count-i:
mask[-1 - (i+1)] += 1
idx_to_start -= 1
else:
break
while idx_to_start < 0:
# print("i:", idx_to_start, "mask:", mask)
mask[idx_to_start] = mask[idx_to_start -1] + 1
idx_to_start += 1
# print("i:", idx_to_start, "mask:", mask, "end")
def dend_tau_and_ref_effect():
cells = ["2012-12-21-am-invivo-1", "2014-03-19-ad-invivo-1", "2014-03-25-aa-invivo-1"]
cell_type = ["no burster", "burster", "strong burster"]
folders = ["results/ref_and_tau/no_dend_tau/", "results/ref_and_tau/no_ref_period/", "results/final_2/"]
title = [r"without $\tau_{dend}$", r"without $t_{ref}$", "with both"]
fig, axes = plt.subplots(len(cells), 3, figsize=consts.FIG_SIZE_LARGE, sharey="row", sharex="all")
for i, cell in enumerate(cells):
cell_data = CellData("data/final/" + cell)
cell_baseline = BaselineCellData(cell_data)
cell_baseline.load_values(cell_data.get_data_path())
eodf = cell_data.get_eod_frequency()
print(cell)
print("EODf:", eodf)
print("base rate:", cell_baseline.get_baseline_frequency())
print("bursty:", cell_baseline.get_burstiness())
print()
for j, folder in enumerate(folders):
fit = get_best_fit(folder + cell)
model_baseline = BaselineModel(fit.get_model(), eodf)
cell_isis = cell_baseline.get_interspike_intervals() * eodf
model_isis = model_baseline.get_interspike_intervals() * eodf
bins = np.arange(0, 0.025, 0.0001) * eodf
if i == 0 and j == 2:
axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75,
label="model")
axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5, label="data")
axes[i, j].legend(loc="upper right", frameon=False)
else:
axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5)
if j == 0:
axes[i, j].set_ylabel(cell_type[i])
axes[i, j].set_yticklabels([])
if i == 0:
axes[0, j].set_title(title[j])
plt.xlim(0, 17.5)
fig.text(0.5, 0.04, 'Time [EOD periods]', ha='center', va='center') # shared x label
fig.text(0.06, 0.5, 'ISI Density', ha='center', va='center', rotation='vertical') # shared y label
fig.text(0.11, 0.9, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.3825, 0.9, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.655, 0.9, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.11, 0.86, '1', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.11, 0.59, '2', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.11, 0.32, '3', ha='center', va='center', rotation='horizontal', size=16, family='serif')
plt.savefig(consts.SAVE_FOLDER + "dend_ref_effect.pdf", transparent=True)
plt.close()
def create_parameter_distributions(par_values, prefix=""):
fig, axes = plt.subplots(4, 2, gridspec_kw={"left": 0.1, "hspace": 0.5}, figsize=consts.FIG_SIZE_LARGE_HIGH)
if len(par_values.keys()) != 8:
print("not eight parameters")
labels = ["input_scaling", "v_offset", "mem_tau", "noise_strength",
"tau_a", "delta_a", "dend_tau", "refractory_period"]
x_labels = ["[cm]", "[mV]", "[ms]", r"[mV$\sqrt{s}$]", "[ms]", "[mVms]", "[ms]", "[ms]"]
axes_flat = axes.flatten()
for i, l in enumerate(labels):
bins = calculate_bins(par_values[l], 20)
if "ms" in x_labels[i]:
bins *= 1000
par_values[l] = np.array(par_values[l]) * 1000
axes_flat[i].hist(par_values[l], bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
# axes_flat[i].set_title(parameter_titles[l])
axes_flat[i].set_xlabel(parameter_titles[l] + " " + x_labels[i])
fig.text(0.03, 0.5, 'Count', ha='center', va='center', rotation='vertical', size=12) # shared y label
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5, yoffset=1.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + prefix + "parameter_distributions.pdf")
plt.close()
def behaviour_correlations_plot(fits_info):
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.15, left=0.2)
# fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
labels = [behaviour_titles[k] for k in keys]
img = create_correlation_plot(fig.add_subplot(gs[0, 0]), labels, corr_values, corrected_p_values, "Data")
keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=True)
labels = [behaviour_titles[k] for k in keys]
ax = fig.add_subplot(gs[0, 1])
img = create_correlation_plot(ax, labels, corr_values, corrected_p_values, "Model", y_label=False)
# cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
ax_col = fig.add_subplot(gs[1, :])
data = [np.arange(-1, 1.001, 0.01)] * 10
ax_col.set_xticks([0, 25, 50, 75, 100, 125, 150, 175, 200])
ax_col.set_xticklabels([-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1])
ax_col.set_yticks([])
ax_col.imshow(data)
ax_col.set_xlabel("Correlation Coefficients")
plt.tight_layout()
plt.savefig(consts.SAVE_FOLDER + "behaviour_correlations.pdf")
plt.close()
def parameter_correlation_plot(fits_info):
labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
par_labels = [parameter_titles[l] for l in labels]
fig, ax = plt.subplots(1, 1, figsize=consts.FIG_SIZE_MEDIUM)
# ax, labels, correlations, p_values, title, y_label=True
im = create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "")
fig.colorbar(im, ax=ax)
plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.pdf")
plt.close()
def create_correlation_plot(ax, labels, correlations, p_values, title, y_label=True):
cleaned_cors = np.zeros(correlations.shape)
for i in range(correlations.shape[0]):
for j in range(correlations.shape[1]):
if abs(p_values[i, j]) < 0.05:
cleaned_cors[i, j] = correlations[i, j]
else:
cleaned_cors[i, j] = np.NAN
if j > i:
cleaned_cors[i, j] = np.NAN
im = ax.imshow(cleaned_cors, vmin=-1, vmax=1)
# We want to show all ticks...
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels(labels)
# remove frame:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ... and label them with the respective list entries
if y_label:
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels(labels)
else:
ax.set_yticklabels([])
ax.set_title(title)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(labels)):
for j in range(len(labels)):
if not np.isnan(cleaned_cors[i, j]):
if cleaned_cors[i, j] > 0:
text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="black", size=6)
else:
text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="white", size=6)
# if p_values[i][j] < 0.0001:
# text = ax.text(j, i, "***", ha="center", va="center", color="b")
# elif p_values[i][j] < 0.001:
# text = ax.text(j, i, "**", ha="center", va="center", color="b")
# elif p_values[i][j] < 0.05:
# text = ax.text(j, i, "*", ha="center", va="center", color="b")
return im
def example_good_hist_fits(dir_path):
strong_bursty_cell = "2018-05-08-ac-invivo-1"
bursty_cell = "2014-03-19-ad-invivo-1"
non_bursty_cell = "2012-12-21-am-invivo-1"
fig, axes = plt.subplots(1, 3, sharex="all", figsize=(8, 4))
for i, cell in enumerate([non_bursty_cell, bursty_cell, strong_bursty_cell]):
fit_dir = dir_path + cell + "/"
fit = get_best_fit(fit_dir)
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
model = fit.get_model()
baseline_model = BaselineModel(model, eodf, trials=5)
model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf
cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf
bins = np.arange(0, 0.025, 0.0001) * eodf
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL)
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA)
axes[i].set_xlabel("ISI in EOD periods")
axes[0].set_ylabel("Density")
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "example_good_isi_hist_fits.pdf", transparent=True)
plt.close()
def example_bad_hist_fits(dir_path):
bursty_cell = "2014-06-06-ag-invivo-1"
strong_bursty_cell = "2018-05-08-ab-invivo-1"
extra_structure_cell = "2014-12-11-ad-invivo-1"
fig, axes = plt.subplots(1, 3, sharex="all", figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE) # , gridspec_kw={"top": 0.95})
for i, cell in enumerate([bursty_cell, strong_bursty_cell, extra_structure_cell]):
fit_dir = dir_path + cell + "/"
fit = get_best_fit(fit_dir)
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
model = fit.get_model()
baseline_model = BaselineModel(model, eodf, trials=5)
cell_baseline = BaselineCellData(cell_data)
print(cell)
print("EODf:", eodf)
print("base rate:", cell_baseline.get_baseline_frequency())
print("bursty:", cell_baseline.get_burstiness())
print()
model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf
cell_isi = cell_baseline.get_interspike_intervals() * eodf
bins = np.arange(0, 0.025, 0.0001) * eodf
if i == 0:
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL, label="model")
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA, label="data")
axes[i].legend(loc="upper right", frameon=False)
else:
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL)
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA)
axes[i].set_xlabel("ISI [EOD periods]")
axes[0].set_ylabel("Density")
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5, yoffset=1.25)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "example_bad_isi_hist_fits.pdf", transparent=True)
plt.close()
def example_good_fi_fits(dir_path):
fig, axes = plt.subplots(1, 3, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE, sharey="all")
for i, cell in enumerate(["2012-12-21-am-invivo-1", "2014-03-19-ae-invivo-1", "2014-03-25-aa-invivo-1" ]):
fit_dir = dir_path + cell + "/"
fit = get_best_fit(fit_dir)
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
cell_baseline = BaselineCellData(cell_data)
print(cell)
print("EODf:", eodf)
print("base rate:", cell_baseline.get_baseline_frequency())
print("bursty:", cell_baseline.get_burstiness())
print()
model = fit.get_model()
contrasts = cell_data.get_fi_contrasts()
fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path())
contrasts = fi_curve_data.stimulus_values
x_values = np.arange(min(contrasts), max(contrasts), 0.001)
fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10)
f_zero_fit = fi_curve_data.f_zero_fit
f_inf_fit = fi_curve_data.f_inf_fit
# f zero response
axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',',
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$")
axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]),
color=consts.COLOR_DATA_f0, alpha=0.75)
axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',',
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$")
# f inf response
axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',',
marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$")
axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]),
color=consts.COLOR_DATA_finf, alpha=0.5)
axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',',
marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$")
axes[i].set_xlabel("Contrast")
axes[i].set_xlim((-0.22, 0.22))
axes[0].legend(loc="upper left", frameon=False)
axes[0].set_ylabel("Frequency [Hz]")
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "example_good_fi_fits.pdf", transparent=True)
plt.close()
def example_bad_fi_fits(dir_path):
fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE)
# "2013-01-08-aa-invivo-1" candidate cell
for i, cell in enumerate(["2012-12-13-ao-invivo-1", "2014-01-23-ab-invivo-1"]):
fit_dir = dir_path + cell + "/"
fit = get_best_fit(fit_dir)
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
cell_baseline = BaselineCellData(cell_data)
print(cell)
print("EODf:", eodf)
print("base rate:", cell_baseline.get_baseline_frequency())
print("bursty:", cell_baseline.get_burstiness())
print()
model = fit.get_model()
contrasts = cell_data.get_fi_contrasts()
fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path())
contrasts = fi_curve_data.stimulus_values
x_values = np.arange(min(contrasts), max(contrasts), 0.001)
fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10)
f_zero_fit = fi_curve_data.f_zero_fit
f_inf_fit = fi_curve_data.f_inf_fit
# f zero response
axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',',
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$")
axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]),
color=consts.COLOR_DATA_f0, alpha=0.75)
axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',',
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$")
# f inf response
axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',',
marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$")
axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]),
color=consts.COLOR_DATA_finf, alpha=0.5)
axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',',
marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$")
axes[i].set_xlabel("Contrast")
axes[i].set_xlim((-0.22, 0.2))
axes[0].set_ylabel("Frequency [Hz]")
axes[0].legend(loc="upper left", frameon=False)
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "example_bad_fi_fits.pdf", transparent=True)
plt.close()
def create_boxplots(errors):
labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())]
for k in sorted(errors.keys()):
print("{}: median %-error: {:.2f}".format(k, np.median(errors[k])))
y_values = [errors[k] for k in sorted(errors.keys())]
plt.boxplot(y_values)
plt.xticks(np.arange(1, len(y_values)+1, 1), labels, rotation=45)
plt.tight_layout()
plt.show()
plt.close()
def plot_cell_model_comp_baseline(cell_behavior, model_behaviour):
fig = plt.figure(figsize=(8, 4))
gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7],
left=0.1, right=0.95, bottom=0.1, top=0.9,
wspace=0.4, hspace=0.2)
num_of_bins = 20
cmap = 'jet'
cell_bursting = cell_behavior["Burstiness"]
# baseline freq plot:
i = 0
cell = cell_behavior["baseline_frequency"]
model = model_behaviour["baseline_frequency"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["baseline_frequency"], bins) # , cmap, cell_bursting)
ax.set_xlabel(r"Cell [Hz]")
ax.set_ylabel(r"Model [Hz]")
ax_histx.set_ylabel("Count")
i += 1
cell = cell_behavior["vector_strength"]
model = model_behaviour["vector_strength"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["vector_strength"], bins) # , cmap, cell_bursting)
ax.set_xlabel(r"Cell")
ax.set_ylabel(r"Model")
ax_histx.set_ylabel("Count")
i += 1
cell = cell_behavior["serial_correlation"]
model = model_behaviour["serial_correlation"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["serial_correlation"], bins) # , cmap, cell_bursting)
ax.set_xlabel(r"Cell")
ax.set_ylabel(r"Model")
fig.text(0.09, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.375, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.6625, 0.925, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif')
ax_histx.set_ylabel("Count")
i += 1
plt.tight_layout()
plt.savefig(consts.SAVE_FOLDER + "fit_baseline_comparison.pdf", transparent=True)
plt.close()
def plot_cell_model_comp_burstiness(cell_behavior, model_behaviour):
fig = plt.figure(figsize=consts.FIG_SIZE_MEDIUM_WIDE)
# ("Burstiness", "coefficient_of_variation")
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
# the size of the marginal axes and the main axes in both directions.
# Also adjust the subplot parameters for a square plot.
gs = fig.add_gridspec(2, 2, width_ratios=[5, 5], height_ratios=[3, 7],
left=0.1, right=0.9, bottom=0.1, top=0.9,
wspace=0.3, hspace=0.2)
num_of_bins = 20
# baseline freq plot:
i = 0
cmap = 'jet'
cell = cell_behavior["Burstiness"]
cell_bursting = cell
model = model_behaviour["Burstiness"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax.set_xlabel("Cell [%ms]")
ax.set_ylabel("Model [%ms]")
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
ax_histx.set_ylabel("Count")
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["Burstiness"], bins, cmap, cell_bursting)
i += 1
cell = cell_behavior["coefficient_of_variation"]
model = model_behaviour["coefficient_of_variation"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["coefficient_of_variation"], bins, cmap, cell_bursting)
ax.set_xlabel("Cell")
ax.set_ylabel("Model")
ax_histx.set_ylabel("Count")
plt.tight_layout()
fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.53, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
plt.savefig(consts.SAVE_FOLDER + "fit_burstiness_comparison.pdf", transparent=True)
plt.close()
def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
fig = plt.figure(figsize=(8, 4))
gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7],
left=0.1, right=0.95, bottom=0.1, top=0.9,
wspace=0.4, hspace=0.3)
# ("f_inf_slope", "f_zero_slope")
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
# the size of the marginal axes and the main axes in both directions.
# Also adjust the subplot parameters for a square plot.
mpl.rc("axes.formatter", limits=(-5, 3))
num_of_bins = 20
# baseline freq plot:
i = 0
cell = cell_behavior["f_inf_slope"]
model = model_behaviour["f_inf_slope"]
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins)
ax.set_xlabel(r"Cell [Hz]")
ax.set_ylabel(r"Model [Hz]")
ax_histx.set_ylabel("Count")
i += 1
cell = cell_behavior["f_zero_slope"]
model = model_behaviour["f_zero_slope"]
length_before = len(cell)
idx = np.array(cell) < 25000
cell = np.array(cell)[idx]
model = np.array(model)[idx]
idx = np.array(model) < 25000
cell = np.array(cell)[idx]
model = np.array(model)[idx]
print("removed {} values from f_zero_slope plot.".format(length_before - len(cell)))
minimum = min(min(cell), min(model))
maximum = max(max(cell), max(model))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins)
ax.set_xlabel("Cell [Hz]")
ax.set_ylabel("Model [Hz]")
ax_histx.set_ylabel("Count")
i += 1
# ratio:
cell_inf = cell_behavior["f_inf_slope"]
model_inf = model_behaviour["f_inf_slope"]
cell_zero = cell_behavior["f_zero_slope"]
model_zero = model_behaviour["f_zero_slope"]
cell_ratio = [cell_zero[i]/cell_inf[i] for i in range(len(cell_inf))]
model_ratio = [model_zero[i]/model_inf[i] for i in range(len(model_inf))]
idx = np.array(cell_ratio) < 60
cell_ratio = np.array(cell_ratio)[idx]
model_ratio = np.array(model_ratio)[idx]
idx = np.array(model_ratio) < 60
cell_ratio = np.array(cell_ratio)[idx]
model_ratio = np.array(model_ratio)[idx]
both_ratios = list(cell_ratio.copy())
both_ratios.extend(model_ratio)
bins = calculate_bins(both_ratios, num_of_bins)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell_ratio, model_ratio, ax, ax_histx, r"$f_0$ / $f_{\infty}$ slope ratio", bins)
ax.set_xlabel("Cell")
ax.set_ylabel("Model")
ax_histx.set_ylabel("Count")
plt.tight_layout()
# fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison_with_ratio.pdf", transparent=True)
plt.close()
mpl.rc("axes.formatter", limits=(-5, 6))
def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=None, color_values=None):
# copied from matplotlib
# the scatter plot:
minimum = min(min(cell_values), min(model_values))
maximum = max(max(cell_values), max(model_values))
ax.plot((minimum, maximum), (minimum, maximum), color="grey")
if cmap is None:
ax.scatter(cell_values, model_values, color="black")
else:
ax.scatter(cell_values, model_values, c=color_values, cmap=cmap)
ax_histx.hist(model_values, bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
ax_histx.hist(cell_values, bins=bins, color=consts.COLOR_DATA, alpha=0.50)
ax_histx.set_title(behaviour)
def calculate_bins(values, num_of_bins):
minimum = np.min(values)
maximum = np.max(values)
step = (maximum - minimum) / (num_of_bins-1)
bins = np.arange(minimum-0.5*step, maximum + step, step)
return bins
if __name__ == '__main__':
main()