P-unit_model/Figures_Model.py
2021-01-09 23:59:34 +01:00

197 lines
6.7 KiB
Python

from models.LIFACnoise import LifacNoiseModel
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from my_util import helperFunctions as hF
import Figure_constants as consts
import matplotlib.pyplot as plt
import numpy as np
import models.smallModels as sM
def main():
stimulus_development()
# model_adaption_example()
model_comparison()
pass
def isi_development():
model_params = consts.model_cell_1
pass
def model_comparison():
step = 0.00001
duration = 1.3
stimulus = np.arange(0, duration, step)
stimulus[0:int(0.7/step)] = 0.5
stimulus[int(0.7/step):int(0.9/step)] = 1
stimulus[int(0.9/step):int(1.1/step)] = 0
stimulus[int(1.1/step):int(1.3/step)] = 0.5
fig, axes = plt.subplots(4, 2, sharex=True, sharey="col", figsize=consts.FIG_SIZE_LARGE)
axes[0, 0].plot(np.arange(-0.5, duration, step)[:len(stimulus)], stimulus)
axes[0, 0].set_title("Stimulus")
axes[0, 0].set_ylabel("V [mV]")
axes[0, 1].set_frame_on(False)
axes[0, 1].set_axis_off()
axes[0, 0].set_ylim((-0.1, 1.5))
axes[0, 0].set_xlim((0, duration-0.5))
v1, spikes = sM.pif_simulation(stimulus, step)
spikes = np.array(spikes)-0.5
axes[1, 0].plot(np.arange(-0.5, duration, step)[:len(v1)], v1)
axes[1, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black")
time, freq = hF.calculate_time_and_frequency_trace(spikes, step)
axes[1, 1].plot(time, freq)
axes[1, 0].set_title("PIF")
axes[1, 0].set_ylabel("V [mV]")
axes[1, 1].set_ylabel("Frequency [Hz]")
v1, spikes = sM.lif_simulation(stimulus, step)
spikes = np.array(spikes)-0.5
axes[2, 0].plot(np.arange(-0.5, duration, step)[:len(v1)], v1)
axes[2, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black")
time, freq = hF.calculate_time_and_frequency_trace(spikes, step)
axes[2, 1].plot(time, freq)
axes[2, 0].set_title("LIF")
axes[2, 0].set_ylabel("V [mV]")
axes[2, 1].set_ylabel("Frequency [Hz]")
v1, spikes = sM.lifac_simulation(stimulus, step)
spikes = np.array(spikes) - 0.5
axes[3, 0].plot(np.arange(-0.5, duration, step)[:len(v1)], v1)
axes[3, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black")
time, freq = hF.calculate_time_and_frequency_trace(spikes, step)
axes[3, 1].plot(time, freq)
axes[3, 0].set_title("LIFAC")
axes[3, 0].set_ylabel("V [mV]")
axes[3, 1].set_ylabel("Frequency [Hz]")
axes[3, 0].set_xlabel("Time [s]")
axes[3, 1].set_xlabel("Time [s]")
# v1, spikes = sM.lifac_ref_simulation(stimulus, step)
# spikes = np.array(spikes) - 0.5
# axes[4, 0].plot(np.arange(-0.5, duration, step)[:len(v1)], v1)
# axes[4, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black")
# time, freq = hF.calculate_time_and_frequency_trace(spikes, step)
# axes[4, 1].plot(time, freq)
# axes[4, 0].set_title("LIFAC + ref")
# axes[4, 0].set_ylabel("V in mV")
# axes[4, 0].set_xlabel("Time [s]")
# axes[4, 1].set_xlabel("Time [s]")
# v1, spikes = sM.lifac_ref_noise_simulation(stimulus, step)
# axes[5, 0].plot(np.arange(0, duration, step)[:len(v1)], v1)
# axes[5, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black")
# time, freq = hF.calculate_time_and_frequency_trace(spikes, step)
# print(np.mean(freq))
# axes[5, 1].plot(time, freq)
plt.tight_layout()
plt.savefig(consts.SAVE_FOLDER + "model_comparison.pdf")
plt.close()
def stimulus_development():
time_start = -0.040
time_duration = 0.80
# freq, contrast, start_time=0, duration=np.inf, amplitude=1
stimulus = SinusoidalStepStimulus(745, 0.5, 0, 0.02)
step_size = 0.00005
stim_array = stimulus.as_array(time_start, time_duration, step_size)
rectified = hF.rectify_stimulus_array(stim_array)
filtered = dendritic_lowpass(rectified, 0.001, step_size)
fig, axes = plt.subplots(3, 1, figsize=consts.FIG_SIZE_MEDIUM, sharex="col")
time = np.arange(time_start, time_start+time_duration, step_size)
axes[0].plot(time, stim_array)
axes[0].set_title("Stimulus")
axes[1].plot(time, rectified)
axes[1].set_title("Rectified Stimulus")
axes[2].plot(time, filtered)
axes[2].set_title("Rectified plus Dendritic Filter")
axes[0].set_ylim((-1.55, 1.55))
axes[1].set_ylim((-0.1, 1.55))
axes[2].set_ylim((-0.1, 1.55))
axes[1].set_ylabel("Amplitude [mV]")
axes[2].set_xlabel("Time [s]")
axes[0].set_xlim((-0.02, 0.04))
# axes[2].set_ylim((0, 1.05))
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5, yoffset=1.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "stimulus_development.pdf")
plt.close()
def dendritic_lowpass(stimulus, dend_tau, step_size):
filtered = np.zeros(len(stimulus))
filtered[0] = stimulus[0]
for i in range(1, len(stimulus), 1):
filtered[i] = filtered[i - 1] + ((-filtered[i - 1] + stimulus[i]) / dend_tau) * step_size
return filtered
def model_adaption_example():
# TODO find a god example model
parameter = consts.model_cell_2
model = LifacNoiseModel(parameter)
# frequency, contrast, start_time=0, duration=np.inf, amplitude=1)
frequency = 350
contrast = 0
start_time = 5
duration = 0
stimulus = SinusoidalStepStimulus(frequency, contrast, start_time, duration)
time_start = 0
time_duration = 0.5
time_step = model.get_sampling_interval()
v1, spikes = model.simulate(stimulus, total_time_s=time_duration, time_start=time_start)
adaption = model.get_adaption_trace()
time = np.arange(time_start, time_start+time_duration, time_step)
fig, axes = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': [1, 1]})
# axes[0].plot(time, stimulus.as_array(time_start, time_duration, time_step))
start = 0.26
end = 0.29
start_idx = int(start / time_step)
end_idx = int(end / time_step)
time_part = time[start_idx:end_idx]
# axes[0].plot(time[start_idx:end_idx], v1[start_idx:end_idx])
axes[0].eventplot([s for s in spikes if start < s < end], lineoffsets=1.2, linelengths=0.2, colors="black")
# axes[0].set_ylim((0.5, 1.5))
# axes[0].set_frame_on(False)
# axes[0].set_axis_off()
# axes[0].set_ylabel("Spikes")
axes[0].plot(time_part, v1[start_idx:end_idx])
axes[0].set_ylabel("Membrane voltage [mV]")
# axes[1].plot(time[start_idx:end_idx], adaption[start_idx:end_idx])
axes[1].plot(time_part, -1*np.array(adaption[start_idx:end_idx]))
axes[1].set_ylabel("Adaption current [mV]")
axes[1].set_xlabel("Time [ms]")
axes[1].set_xlim((start, end))
plt.savefig(consts.SAVE_FOLDER + "adaptionExample.pdf")
plt.close()
if __name__ == '__main__':
main()