P-unit_model/introduction/old_helper_functions.py
2020-05-20 16:19:36 +02:00

100 lines
2.4 KiB
Python

import pyrelacs.DataLoader as dl
import os
import numpy as np
def get_subfolder_paths(basepath):
subfolders = []
for content in os.listdir(basepath):
content_path = basepath + content
if os.path.isdir(content_path):
subfolders.append(content_path)
return sorted(subfolders)
def get_traces(directory, trace_type, repro):
# trace_type = 1: Voltage p-unit
# trace_type = 2: EOD
# trace_type = 3: local EOD ~(EOD + stimulus)
# trace_type = 4: Stimulus
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
value_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
value_traces.append(x[trace_type-1])
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, value_traces
def get_all_traces(directory, repro):
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
v1_traces = []
eod_traces = []
local_eod_traces = []
stimulus_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
v1_traces.append(x[0])
eod_traces.append(x[1])
local_eod_traces.append(x[2])
stimulus_traces.append(x[3])
print(info)
traces = [v1_traces, eod_traces, local_eod_traces, stimulus_traces]
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, traces
def crappy_smoothing(signal:list, window_size:int = 5) -> list:
smoothed = []
for i in range(len(signal)):
k = window_size
if i < window_size:
k = i
j = window_size
if i + j > len(signal):
j = len(signal) - i
smoothed.append(np.mean(signal[i-k:i+j]))
return smoothed
def plot_frequency_curve(cell_data, save_path: str = None, indices: list = None):
contrast = cell_data.get_fi_contrasts()
time_axes = cell_data.get_time_axes_fi_curve_mean_frequencies()
mean_freqs = cell_data.get_mean_fi_curve_isi_frequencies()
if indices is None:
indices = np.arange(len(contrast))
for i in indices:
plt.plot(time_axes[i], mean_freqs[i], label=str(round(contrast[i], 2)))
if save_path is None:
plt.show()
else:
plt.savefig(save_path + "mean_frequency_curves.png")
plt.close()