P-unit_model/variableEffect.py

167 lines
5.2 KiB
Python

from models.LIFACnoise import LifacNoiseModel
from Baseline import BaselineModel
from FiCurve import FICurveModel
import numpy as np
import matplotlib.pyplot as plt
import copy
import os
SEARCH_WIDTH = 3
SEARCH_PRECISION = 30
CONTRASTS = np.arange(-0.4, 0.45, 0.1)
def main():
model_parameters = {'threshold': 1,
'step_size': 5e-05,
'a_zero': 2,
'delta_a': 0.2032269898801589,
'mem_tau': 0.011314027210564803,
'noise_strength': 0.056724809998220195,
'v_zero': 0,
'v_base': 0,
'tau_a': 0.05958195972016753,
'input_scaling': 119.81500448274554,
'dend_tau': 0.0027746086464721723,
'v_offset': -24.21875}
parameters_to_test = ["input_scaling", "dend_tau", "mem_tau", "noise_strength", "v_offset", "delta_a", "tau_a"]
effect_data = []
for p in parameters_to_test:
print("Working on parameter " + p)
effect_data.append(test_parameter_effect(model_parameters, p))
plot_effects(effect_data, "./figures/variable_effect/")
def test_parameter_effect(model_parameters, test_parameter):
model_parameters = copy.deepcopy(model_parameters)
start_value = model_parameters[test_parameter]
start = start_value*(1/SEARCH_WIDTH)
end = start_value*SEARCH_WIDTH
step = (end - start) / SEARCH_PRECISION
values = np.arange(start, end+step, step)
bf = []
vs = []
sc = []
cv = []
f_inf_s = []
f_inf_v = []
f_zero_s = []
f_zero_v = []
broken_i = []
for i in range(len(values)):
model_parameters[test_parameter] = values[i]
model = LifacNoiseModel(model_parameters)
fi_curve = FICurveModel(model, CONTRASTS, 600, trials=50)
f_inf_s.append(fi_curve.get_f_inf_slope())
f_inf_v.append(fi_curve.get_f_inf_frequencies())
f_zero_s.append(fi_curve.get_f_zero_fit_slope_at_stimulus_value(0.1))
f_zero_v.append(fi_curve.get_f_zero_frequencies())
if not os.path.exists("./figures/f_point_detection/"):
os.makedirs("./figures/f_point_detection/")
detection_save_path = "./figures/f_point_detection/{}_{:.4f}/".format(test_parameter, values[i])
if not os.path.exists(detection_save_path):
os.makedirs(detection_save_path)
fi_curve.plot_f_point_detections(detection_save_path)
baseline = BaselineModel(model, 600, trials=10)
bf.append(baseline.get_baseline_frequency())
vs.append(baseline.get_vector_strength())
sc.append(baseline.get_serial_correlation(2))
cv.append(baseline.get_coefficient_of_variation())
values = list(values)
if len(broken_i) > 0:
broken_i = sorted(broken_i, reverse=True)
for i in broken_i:
del values[i]
return ParameterEffectData(values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
# plot_effects(values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
def plot_effects(par_effect_data_list, save_path=None):
fig, axes = plt.subplots(8, len(par_effect_data_list), figsize=(32, 4*len(par_effect_data_list)), sharex="col")
names = ("bf", "vs", "sc", "cv", "f_inf_s", "f_inf_v", "f_zero_s", "f_zero_v")
for j in range(len(par_effect_data_list)):
ped = par_effect_data_list[j]
ranges = ((0, max(ped.get_data("bf")) * 1.1), (0, 1), (-1, 1), (0, 1),
(0, max(ped.get_data("f_inf_s")) * 1.1), (0, 800),
(0, max(ped.get_data("f_zero_s")) * 1.1), (0, 3000))
values = ped.values
for i in range(len(names)):
y_data = ped.get_data(names[i])
axes[i, j].plot(values, y_data)
axes[i, j].set_ylim(ranges[i])
if j == 0:
axes[i, j].set_ylabel(names[i])
if i == 0:
axes[i, j].set_title(ped.test_parameter)
plt.tight_layout()
if save_path is not None:
plt.savefig(save_path + "variable_effect_master_plot.png")
else:
plt.show()
plt.close()
class ParameterEffectData:
data_names = ("bf", "vs", "sc", "cv", "f_inf_s", "f_inf_v" "f_zero_s", "f_zero_v")
def __init__(self, values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v):
self.values = values
self.test_parameter = test_parameter
self.bf = bf
self.vs = vs
self.sc = sc
self.cv = cv
self.f_inf_s = f_inf_s
self.f_inf_v = f_inf_v
self.f_zero_s = f_zero_s
self.f_zero_v = f_zero_v
def get_data(self, name):
if name == "bf":
return self.bf
elif name == "vs":
return self.vs
elif name == "sc":
return self.sc
elif name == "cv":
return self.cv
elif name == "f_inf_s":
return self.f_inf_s
elif name == "f_inf_v":
return self.f_inf_v
elif name == "f_zero_s":
return self.f_zero_s
elif name == "f_zero_v":
return self.f_zero_v
else:
raise ValueError("Unknown attribute name!")
if __name__ == '__main__':
main()