43 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
 | |
| import argparse
 | |
| import os
 | |
| import numpy as np
 | |
| 
 | |
| from ModelFit import ModelFit
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     # parser = argparse.ArgumentParser()
 | |
|     # parser.add_argument("dir", help="folder containing the cell folders with the fit results")
 | |
|     # args = parser.parse_args()
 | |
| 
 | |
|     dir_path = "results/invivo_results/"  # args.dir
 | |
| 
 | |
|     # if not os.path.isdir(dir_path):
 | |
|     #     print("Argument dir is not a directory.")
 | |
|     #     parser.print_usage()
 | |
|     #     exit(0)
 | |
| 
 | |
|     for item in os.listdir(dir_path):
 | |
|         cell_folder = os.path.join(dir_path, item)
 | |
| 
 | |
|         if not os.path.isdir(cell_folder):
 | |
|             continue
 | |
|         min_err = np.inf
 | |
|         min_run = ""
 | |
| 
 | |
|         for run in os.listdir(cell_folder):
 | |
|             err = float(run.split("_")[-1])
 | |
|             if err < min_err:
 | |
|                 min_err = err
 | |
|                 min_run = os.path.join(cell_folder, run)
 | |
| 
 | |
|         results = ModelFit(min_run)
 | |
|         quit()
 | |
|         # search folders for one with min error
 | |
|         # gather images + info about parameters, behaviour
 | |
| 
 | |
|         pass
 | |
| 
 | |
| 
 |