220 lines
8.7 KiB
Python
220 lines
8.7 KiB
Python
|
|
from FiCurve import FICurve, get_fi_curve_class
|
|
from CellData import CellData
|
|
import matplotlib.pyplot as plt
|
|
from scipy.optimize import curve_fit
|
|
import os
|
|
import numpy as np
|
|
import functions as fu
|
|
|
|
|
|
class Adaption:
|
|
|
|
def __init__(self, fi_curve: FICurve):
|
|
|
|
self.fi_curve = fi_curve
|
|
|
|
# [[a, tau_eff, c], [], [a, tau_eff, c], ...]
|
|
self.exponential_fit_vars = []
|
|
self.tau_real = []
|
|
|
|
self.fit_exponential()
|
|
self.calculate_tau_from_tau_eff()
|
|
|
|
def fit_exponential(self, length_of_fit=0.1):
|
|
time_axes, mean_frequencies = self.fi_curve.get_mean_time_and_freq_traces()
|
|
f_baselines = self.fi_curve.get_f_baseline_frequencies()
|
|
f_infinities = self.fi_curve.get_f_inf_frequencies()
|
|
f_zeros = self.fi_curve.get_f_zero_frequencies()
|
|
for i in range(len(mean_frequencies)):
|
|
|
|
if abs(f_zeros[i] - f_infinities[i]) < 20:
|
|
self.exponential_fit_vars.append([])
|
|
continue
|
|
|
|
start_idx = self.__find_start_idx_for_exponential_fit(time_axes[i], mean_frequencies[i],
|
|
f_baselines[i], f_infinities[i], f_zeros[i])
|
|
|
|
if start_idx == -1:
|
|
# print("start index negative")
|
|
self.exponential_fit_vars.append([])
|
|
continue
|
|
|
|
# shorten length of fit to stay in stimulus region if given length is too long
|
|
sampling_interval = self.fi_curve.get_sampling_interval()
|
|
used_length_of_fit = length_of_fit
|
|
if (start_idx * sampling_interval) - self.fi_curve.get_delay() + length_of_fit > self.fi_curve.get_stimulus_end():
|
|
print(start_idx * sampling_interval, "start - end", start_idx * sampling_interval + length_of_fit)
|
|
print("Shortened length of fit to keep it in the stimulus region!")
|
|
used_length_of_fit = self.fi_curve.get_stimulus_end() - (start_idx * sampling_interval)
|
|
|
|
|
|
|
|
end_idx = start_idx + int(used_length_of_fit/sampling_interval)
|
|
y_values = mean_frequencies[i][start_idx:end_idx+1]
|
|
x_values = time_axes[i][start_idx:end_idx+1]
|
|
plt.title("f_zero {:.2f}, f_inf {:.2f}".format(f_zeros[i], f_infinities[i]))
|
|
plt.plot(time_axes[i], mean_frequencies[i])
|
|
plt.plot(x_values, y_values)
|
|
plt.show()
|
|
plt.close()
|
|
|
|
tau = self.__approximate_tau_for_exponential_fit(x_values, y_values, i)
|
|
|
|
# start the actual fit:
|
|
try:
|
|
p0 = (self.fi_curve.f_zero_frequencies[i], tau, self.fi_curve.f_inf_frequencies[i])
|
|
popt, pcov = curve_fit(fu.exponential_function, x_values, y_values,
|
|
p0=p0, maxfev=10000, bounds=([-np.inf, 0, -np.inf], [np.inf, np.inf, np.inf]))
|
|
|
|
# plt.plot(time_axes[i], mean_frequencies[i])
|
|
# plt.plot(x_values, [fu.exponential_function(x, popt[0], popt[1], popt[2]) for x in x_values])
|
|
# plt.show()
|
|
# plt.close()
|
|
|
|
except RuntimeError:
|
|
print("RuntimeError happened in fit_exponential.")
|
|
self.exponential_fit_vars.append([])
|
|
continue
|
|
|
|
# Obviously a bad fit - time constant, expected in range 3-10ms, has value over 1 second or is negative
|
|
if abs(popt[1] > 1) or popt[1] < 0:
|
|
print("detected an obviously bad fit")
|
|
self.exponential_fit_vars.append([])
|
|
else:
|
|
self.exponential_fit_vars.append(popt)
|
|
|
|
def __approximate_tau_for_exponential_fit(self, x_values, y_values, mean_freq_idx):
|
|
if self.fi_curve.f_inf_frequencies[mean_freq_idx] < self.fi_curve.f_baseline_frequencies[mean_freq_idx] * 0.95:
|
|
test_val = [y > 0.65 * self.fi_curve.f_inf_frequencies[mean_freq_idx] for y in y_values]
|
|
else:
|
|
test_val = [y < 0.65 * self.fi_curve.f_zero_frequencies[mean_freq_idx] for y in y_values]
|
|
|
|
try:
|
|
idx = test_val.index(True)
|
|
if idx == 0:
|
|
idx = 1
|
|
tau = x_values[idx] - x_values[0]
|
|
except ValueError:
|
|
tau = x_values[-1] - x_values[0]
|
|
|
|
return tau
|
|
|
|
def __find_start_idx_for_exponential_fit(self, time, frequency, f_base, f_inf, f_zero):
|
|
|
|
# plt.plot(time, frequency)
|
|
# plt.plot((time[0], time[-1]), (f_base, f_base), "-.")
|
|
# plt.plot((time[0], time[-1]), (f_inf, f_inf), "-")
|
|
# plt.plot((time[0], time[-1]), (f_zero, f_zero))
|
|
|
|
stimulus_start_idx = int((self.fi_curve.get_stimulus_start() - time[0]) / self.fi_curve.get_sampling_interval())
|
|
|
|
# plt.plot((time[stimulus_start_idx], ), (0, ), 'o')
|
|
#
|
|
# plt.show()
|
|
# plt.close()
|
|
|
|
if f_inf > f_base * 1.1:
|
|
# start setting starting variables for the fit
|
|
# search for the start_index by searching for the max
|
|
j = 0
|
|
while True:
|
|
try:
|
|
if frequency[stimulus_start_idx + j] == f_zero:
|
|
start_idx = stimulus_start_idx + j
|
|
break
|
|
except IndexError as e:
|
|
return -1
|
|
|
|
j += 1
|
|
|
|
elif f_inf < f_base * 0.9:
|
|
# start setting starting variables for the fit
|
|
# search for start by finding the end of the minimum
|
|
found_min = False
|
|
j = int(0.05 / self.fi_curve.get_sampling_interval())
|
|
nothing_to_fit = False
|
|
while True:
|
|
if not found_min:
|
|
if frequency[stimulus_start_idx + j] == f_zero:
|
|
found_min = True
|
|
else:
|
|
if frequency[stimulus_start_idx + j + 1] > f_zero:
|
|
start_idx = stimulus_start_idx + j
|
|
break
|
|
if j > 0.1 / self.fi_curve.get_sampling_interval():
|
|
# no rise in freq until to close to the end of the stimulus (to little place to fit)
|
|
return -1
|
|
j += 1
|
|
|
|
if nothing_to_fit:
|
|
return -1
|
|
else:
|
|
# there is nothing to fit to:
|
|
return -1
|
|
|
|
# plt.plot(time, frequency)
|
|
# plt.plot(time[start_idx], frequency[start_idx], 'o')
|
|
# plt.show()
|
|
# plt.close()
|
|
|
|
return start_idx
|
|
|
|
def calculate_tau_from_tau_eff(self):
|
|
tau_effs = []
|
|
indices = []
|
|
for i in range(len(self.exponential_fit_vars)):
|
|
if len(self.exponential_fit_vars[i]) == 0:
|
|
continue
|
|
indices.append(i)
|
|
tau_effs.append(self.exponential_fit_vars[i][1])
|
|
|
|
f_infinity_slope = self.fi_curve.get_f_inf_slope()
|
|
approx_tau_reals = []
|
|
for i, idx in enumerate(indices):
|
|
factor = self.fi_curve.get_f_zero_fit_slope_at_stimulus_value(self.fi_curve.stimulus_values[idx]) / f_infinity_slope
|
|
approx_tau_reals.append(tau_effs[i] * factor)
|
|
|
|
self.tau_real = np.median(approx_tau_reals)
|
|
|
|
def get_tau_real(self):
|
|
return np.median(self.tau_real)
|
|
|
|
def get_tau_effs(self):
|
|
return [ex_vars[1] for ex_vars in self.exponential_fit_vars if ex_vars != []]
|
|
|
|
def get_delta_a(self):
|
|
return self.fi_curve.get_f_zero_fit_slope_at_straight() / self.fi_curve.get_f_inf_slope() / 100
|
|
|
|
def plot_exponential_fits(self, save_path: str = None, indices: list = None, delete_previous: bool = False):
|
|
if delete_previous:
|
|
for val in self.fi_curve.stimulus_values():
|
|
|
|
prev_path = save_path + "mean_freq_exp_fit_contrast:" + str(round(val, 3)) + ".png"
|
|
|
|
if os.path.exists(prev_path):
|
|
os.remove(prev_path)
|
|
|
|
time_axes, mean_freqs = self.fi_curve.get_mean_time_and_freq_traces()
|
|
for i in range(len(self.fi_curve.stimulus_values)):
|
|
if indices is not None and i not in indices:
|
|
continue
|
|
|
|
if self.exponential_fit_vars[i] == []:
|
|
print("no fit vars for index {}!".format(i))
|
|
continue
|
|
|
|
plt.plot(time_axes[i], mean_freqs[i])
|
|
vars = self.exponential_fit_vars[i]
|
|
fit_x = np.arange(0, 0.4, self.fi_curve.get_sampling_interval())
|
|
plt.plot(fit_x, [fu.exponential_function(x, vars[0], vars[1], vars[2]) for x in fit_x])
|
|
plt.ylim([0, max(self.fi_curve.f_zero_frequencies[i], self.fi_curve.f_baseline_frequencies[i])*1.1])
|
|
plt.xlabel("Time [s]")
|
|
plt.ylabel("Frequency [Hz]")
|
|
|
|
if save_path is None:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(save_path + "mean_freq_exp_fit_contrast:" + str(round(self.fi_curve.stimulus_values[i], 3)) + ".png")
|
|
|
|
plt.close() |