P-unit_model/Figures_results.py
2020-09-08 18:24:06 +02:00

173 lines
6.1 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from analysis import get_fit_info, get_behaviour_values, calculate_percent_errors
from ModelFit import get_best_fit
from Baseline import BaselineModel, BaselineCellData
import Figure_constants as consts
def main():
dir_path = "results/final_2/"
fits_info = get_fit_info(dir_path)
# cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
# behaviour_overview_pairs(cell_behaviour, model_behaviour)
# errors = calculate_percent_errors(fits_info)
# create_boxplots(errors)
example_good_hist_fits(dir_path)
def example_good_hist_fits(dir_path):
strong_bursty_cell = "2018-05-08-ac-invivo-1"
bursty_cell = "2014-03-19-ad-invivo-1"
non_bursty_cell = "2012-12-21-am-invivo-1"
fig, axes = plt.subplots(1, 3, sharex="all", figsize=consts.FIG_SIZE_MEDIUM_WIDE)
for i, cell in enumerate([non_bursty_cell, bursty_cell, strong_bursty_cell]):
fit_dir = dir_path + cell + "/"
fit = get_best_fit(fit_dir)
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
model = fit.get_model()
baseline_model = BaselineModel(model, eodf, trials=5)
model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf
cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf
bins = np.arange(0, 0.025, 0.0001) * eodf
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA)
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_MODEL)
axes[i].set_xlabel("ISI in EOD periods")
axes[0].set_ylabel("Density")
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "example_good_isi_hist_fits.png", transparent=True)
plt.close()
def create_boxplots(errors):
labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())]
for k in sorted(errors.keys()):
print("{}: median %-error: {:.2f}".format(k, np.median(errors[k])))
y_values = [errors[k] for k in sorted(errors.keys())]
plt.boxplot(y_values)
plt.xticks(np.arange(1, len(y_values)+1, 1), labels, rotation=45)
plt.tight_layout()
plt.show()
plt.close()
def behaviour_overview_pairs(cell_behaviour, model_behaviour):
# behaviour_keys = ["Burstiness", "coefficient_of_variation", "serial_correlation",
# "vector_strength", "f_inf_slope", "f_zero_slope", "baseline_frequency"]
pairs = [("baseline_frequency", "vector_strength", "serial_correlation"),
("Burstiness", "coefficient_of_variation"),
("f_inf_slope", "f_zero_slope")]
for pair in pairs:
cell = []
model = []
for behaviour in pair:
cell.append(cell_behaviour[behaviour])
model.append(model_behaviour[behaviour])
overview_pair(cell, model, pair)
def overview_pair(cell, model, titles):
fig = plt.figure(figsize=(8, 6))
columns = len(cell)
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
# the size of the marginal axes and the main axes in both directions.
# Also adjust the subplot parameters for a square plot.
gs = fig.add_gridspec(2, columns, width_ratios=[5] * columns, height_ratios=[3, 7],
left=0.1, right=0.9, bottom=0.1, top=0.9,
wspace=0.2, hspace=0.05)
for i in range(len(cell)):
if titles[i] == "f_zero_slope":
length_before = len(cell[i])
idx = np.array(cell[i]) < 30000
cell[i] = np.array(cell[i])[idx]
model[i] = np.array(model[i])[idx]
idx = np.array(model[i]) < 30000
cell[i] = np.array(cell[i])[idx]
model[i] = np.array(model[i])[idx]
print("removed {} values from f_zero_slope plot.".format(length_before - len(cell[i])))
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell[i], model[i], ax, ax_histx, titles[i])
# plt.tight_layout()
plt.show()
def grouped_error_overview_behaviour_dist(cell_behaviours, model_behaviours):
# start with a square Figure
fig = plt.figure(figsize=(12, 12))
rows = 4
columns = 2
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
# the size of the marginal axes and the main axes in both directions.
# Also adjust the subplot parameters for a square plot.
gs = fig.add_gridspec(rows*2, columns, width_ratios=[5]*columns, height_ratios=[3, 7] * rows,
left=0.1, right=0.9, bottom=0.1, top=0.9,
wspace=0.2, hspace=0.5)
for i, behaviour in enumerate(sorted(cell_behaviours.keys())):
col = int(np.floor(i / rows))
row = i - rows*col
ax = fig.add_subplot(gs[row*2 + 1, col])
ax_histx = fig.add_subplot(gs[row*2, col])
# use the previously defined function
scatter_hist(cell_behaviours[behaviour], model_behaviours[behaviour], ax, ax_histx, behaviour)
plt.tight_layout()
plt.show()
def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, ax_histy=None):
# copied from matplotlib
# no labels
ax_histx.tick_params(axis="cell", labelbottom=False)
# ax_histy.tick_params(axis="model_values", labelleft=False)
# the scatter plot:
ax.scatter(cell_values, model_values)
minimum = min(min(cell_values), min(model_values))
maximum = max(max(cell_values), max(model_values))
ax.plot((minimum, maximum), (minimum, maximum), color="grey")
ax.set_xlabel("cell")
ax.set_ylabel("model")
ax_histx.hist(cell_values, color="blue", alpha=0.5)
ax_histx.hist(model_values, color="orange", alpha=0.5)
ax_labels = ax.get_xticklabels()
ax_histx.set_xticklabels([])
ax.set_xticklabels(ax_labels)
ax_histx.set_xticks(ax.get_xticks())
ax_histx.set_xlim(ax.get_xlim())
ax_histx.set_title(behaviour)
# ax_histy.hist(y, bins=bins, orientation='horizontal')
if __name__ == '__main__':
main()