111 lines
4.4 KiB
Python
111 lines
4.4 KiB
Python
|
|
from parser.CellData import CellData
|
|
from experiments.FiCurve import FICurve
|
|
from experiments.AdaptionCurrent import Adaption
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
class NeuronModel:
|
|
KEYS = ["mem_res", "mem_tau", "v_base", "v_zero", "threshold", "step_size"]
|
|
VALUES = [100 * 1000000, 0.1 * 200, 0, 0, 10, 0.01]
|
|
|
|
def __init__(self, cell_data: CellData, variables: dict = None):
|
|
self.cell_data = cell_data
|
|
self.fi_curve = FICurve(cell_data)
|
|
self.adaption = Adaption(cell_data, self.fi_curve)
|
|
|
|
if variables is not None:
|
|
self._test_given_variables(variables)
|
|
self.variables = variables
|
|
else:
|
|
self.variables = {}
|
|
self._add_standard_variables()
|
|
|
|
def __call__(self, stimulus):
|
|
raise NotImplementedError("Soon. sorry!")
|
|
|
|
def _approximate_variables_from_data(self):
|
|
# TODO don't return but save in class in some form! approximate/calculate other variables?
|
|
base_input = self._calculate_input_fro_base_frequency()
|
|
return base_input
|
|
|
|
def simulate(self, start_v, time_in_ms, stimulus):
|
|
response = []
|
|
spikes = []
|
|
current_v = start_v
|
|
current_a = 0
|
|
base_input = self._calculate_input_fro_base_frequency()
|
|
|
|
adaption_values = []
|
|
a_infties = []
|
|
print("base input:", base_input)
|
|
for time_step in np.arange(0, time_in_ms, self.variables["step_size"]):
|
|
stimulus_input = stimulus[int(time_step/self.variables["step_size"])] - current_a
|
|
|
|
new_v = self._calculate_next_step(current_v, current_a*base_input, base_input + base_input*stimulus_input)
|
|
new_a, a_infty = self._calculate_adaption_step(current_a, stimulus_input)
|
|
|
|
if new_v > self.variables["threshold"]:
|
|
new_v = self.variables["v_base"]
|
|
spikes.append(time_step)
|
|
response.append(new_v)
|
|
|
|
adaption_values.append(current_a)
|
|
a_infties.append(a_infty)
|
|
current_v = new_v
|
|
current_a = new_a
|
|
|
|
plt.title("Adaption variable")
|
|
plt.plot(np.arange(0, time_in_ms, self.variables["step_size"]), np.array(adaption_values), label="adaption")
|
|
plt.plot(np.arange(0, time_in_ms, self.variables["step_size"]), np.array(a_infties), label="a_inf")
|
|
plt.plot(np.arange(0, time_in_ms, self.variables["step_size"]), stimulus, label="stimulus")
|
|
plt.legend()
|
|
plt.xlabel("time in ms")
|
|
plt.ylabel("value as contrast?")
|
|
plt.show()
|
|
plt.close()
|
|
|
|
return response, spikes
|
|
|
|
def _calculate_next_step(self, current_v, current_a, input_v):
|
|
step_size = self.variables["step_size"]
|
|
v_base = self.variables["v_base"]
|
|
mem_tau = self.variables["mem_tau"]
|
|
|
|
return current_v + (step_size * (- current_v + v_base + input_v - current_a)) / mem_tau
|
|
|
|
def _calculate_adaption_step(self, current_a, stimulus_input):
|
|
step_size = self.variables["step_size"]
|
|
tau_a = self.adaption.tau_real
|
|
f_infty_freq = self.fi_curve.get_f_infinity_frequency_at_stimulus_value(stimulus_input)
|
|
a_infinity = stimulus_input - self.fi_curve.get_f_zero_inverse_at_frequency(f_infty_freq)
|
|
return current_a + (step_size * (- current_a + a_infinity)) / tau_a, a_infinity
|
|
|
|
def set_variable(self, key, value):
|
|
if key not in self.KEYS:
|
|
raise ValueError("Given key is unknown!\n"
|
|
"Please check spelling and refer to list NeuronModel.KEYS.")
|
|
self.variables[key] = value
|
|
|
|
def set_variables(self, variables: dict):
|
|
self._test_given_variables(variables)
|
|
|
|
for k in variables.keys():
|
|
self.variables[k] = variables[k]
|
|
|
|
def _calculate_input_fro_base_frequency(self):
|
|
return - self.variables["threshold"] / (
|
|
np.e ** (-1 / (self.cell_data.get_base_frequency()/1000 * self.variables["mem_tau"])) - 1)
|
|
|
|
def _test_given_variables(self, variables: dict):
|
|
for k in variables.keys():
|
|
if k not in self.KEYS:
|
|
raise ValueError("Unknown key in given model variables. \n"
|
|
"Please check spelling and refer to list NeuronModel.KEYS.")
|
|
|
|
def _add_standard_variables(self):
|
|
for i in range(len(self.KEYS)):
|
|
if self.KEYS[i] not in self.variables:
|
|
self.variables[self.KEYS[i]] = self.VALUES[i]
|