P-unit_model/Figures_Stimuli.py

67 lines
1.7 KiB
Python

from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus
import numpy as np
import matplotlib.pyplot as plt
def main():
plot_step_stimulus()
plot_sam_stimulus()
pass
def plot_step_stimulus():
start = 0
end = 1
time_start = -0.2
time_end = 1.2
step_size = 0.00005
frequency = 20
contrast = 0.5
# frequency, contrast, start_time=0, duration=np.inf, amplitude=1
step_stim= SinusoidalStepStimulus(frequency, contrast, start, end-start)
values = step_stim.as_array(time_start, time_end-time_start, step_size)
time = np.arange(time_start, time_end, step_size)
plt.plot(time, values)
plt.xlabel("Time [s]")
plt.ylabel("Voltage [mV]")
plt.savefig("thesis/figures/sin_step_stim_example.pdf")
plt.close()
def plot_sam_stimulus():
start = 0
end = 1
time_start = -0.2
time_end = 1.2
step_size = 0.00005
contrast = 0.5
mod_freq = 10
carrier_freq = 53
# carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1
step_stim = SinusAmplitudeModulationStimulus(carrier_freq, contrast, mod_freq, start, end - start)
values = step_stim.as_array(time_start, time_end - time_start, step_size)
time = np.arange(time_start, time_end, step_size)
plt.plot(time, values)
beat_time = np.arange(start, end, step_size)
beat_values = np.sin(beat_time*2*np.pi*mod_freq) * contrast + 1
plt.plot(beat_time, beat_values)
plt.xlabel("Time [s]")
plt.ylabel("Voltage [mV]")
# plt.show()
plt.savefig("thesis/figures/sam_stim_example.pdf")
plt.close()
if __name__ == '__main__':
main()