P-unit_model/test.py
alexanderott 9d68799c63 stuff
2021-06-07 09:26:21 +02:00

292 lines
12 KiB
Python

import os
from parser.CellData import CellData
from parser.DataParserFactory import DatParser
import numpy as np
from fitting.ModelFit import ModelFit, get_best_fit
# from plottools.axes import labelaxes_params
import matplotlib.pyplot as plt
from run_Fitter import iget_start_parameters
from experiments.FiCurve import FICurve, FICurveCellData, FICurveModel
from Figures_results import scatter_hist
from my_util.functions import exponential_function
colors = ["black", "red", "blue", "orange", "green"]
def main():
# results_dir = "data/final/"
# for folder in sorted(os.listdir(results_dir)):
# folder_path = os.path.join(results_dir, folder)
#
# if not os.path.isdir(folder_path):
# continue
#
# cell_data = CellData(folder_path)
# cell_name = cell_data.get_cell_name()
#
# fi_cell = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), cell_data.data_path)
#
# fi_cell.plot_fi_curve(title=cell_name, save_path="temp/cell_fi_curves_images/" + cell_name + "_")
#
# steady_state = fi_cell.get_f_inf_frequencies()
# onset = fi_cell.get_f_zero_frequencies()
# baseline = fi_cell.get_f_baseline_frequencies()
# contrasts = fi_cell.stimulus_values
#
# headers = ["contrasts", "f_baseline", "f_steady_state", "f_onset"]
# with open("temp/cell_fi_curves_csvs/" + cell_name + ".csv", 'w') as f:
# for i in range(len(headers)):
# if i == 0:
# f.write(headers[i])
# else:
# f.write("," + headers[i])
# f.write("\n")
#
# for i in range(len(contrasts)):
# f.write(str(contrasts[i]) + ",")
# f.write(str(baseline[i]) + ",")
# f.write(str(steady_state[i]) + ",")
# f.write(str(onset[i]) + "\n")
# quit()
step_response_comparison()
quit()
cell_taus = []
model_taus = []
results_dir = "results/sam_cells_only_best/"
for folder in sorted(os.listdir(results_dir)):
folder_path = os.path.join(results_dir, folder)
if not os.path.isdir(folder_path):
continue
fit = get_best_fit(folder_path)
print(fit.get_fit_routine_error())
model = fit.get_model()
cell_data = fit.get_cell_data()
fi_model = FICurveModel(model, cell_data.get_fi_contrasts(), cell_data.get_eod_frequency(), save_dir=folder_path)
tau_model = fi_model.calculate_time_constant(-2)
model_taus.append(tau_model[1])
fi_cell = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), cell_data.data_path)
tau_cell = fi_cell.calculate_time_constant(-2)
cell_taus.append(tau_cell[1])
model_taus_c = []
cell_taus_c = []
border = 1
for i in range(len(model_taus)):
if np.abs(model_taus[i]) < border and np.abs(cell_taus[i]) < border:
model_taus_c.append(model_taus[i])
cell_taus_c.append(cell_taus[i])
print("model removed:", len(model_taus) - len(model_taus_c))
print("cell removed:", len(cell_taus) - len(cell_taus_c))
plot_cell_model_comp_taus(cell_taus_c, model_taus_c)
# fig, axes = plt.subplots(1, 2, sharey="all", sharex="all")
#
# axes[0].hist(model_taus_c)
# axes[0].set_title("Model taus")
#
# axes[1].hist(cell_taus_c)
# axes[1].set_title("Cell taus")
#
# plt.show()
# plt.close()
print(model_taus)
print(cell_taus)
# sam_tests()
def step_response_comparison():
results_dir = "results/sam_cells_only_best/"
for folder in sorted(os.listdir(results_dir)):
folder_path = os.path.join(results_dir, folder)
if not os.path.isdir(folder_path):
continue
fit = get_best_fit(folder_path)
print(fit.get_fit_routine_error())
model = fit.get_model()
cell_data = fit.get_cell_data()
fi_model = FICurveModel(model, cell_data.get_fi_contrasts(), cell_data.get_eod_frequency(),
save_dir=folder_path)
# model_times, model_mean_freqs = fi_model.get_mean_time_and_freq_traces()
fi_cell = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), cell_data.data_path)
contrasts = cell_data.get_fi_contrasts()
mean_frequencies = cell_data.get_mean_fi_curve_isi_frequencies()
baseline_freqs = fi_cell.get_f_baseline_frequencies()
pre_duration = -1 * cell_data.get_recording_times()[0]
sampling_interval = cell_data.get_sampling_interval()
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
c_contrast_idx = -2
tau_params, tau_x = fi_cell.__calculate_time_constant_internal__(contrasts[c_contrast_idx], mean_frequencies[c_contrast_idx],
baseline_freqs[c_contrast_idx], sampling_interval,
pre_duration, plot=False, plot_data=True)
# cell
x_values = np.arange(len(mean_frequencies[c_contrast_idx])) * sampling_interval - pre_duration
index_range = (x_values > -0.05) & (x_values < 0.15)
plot_freq_with_tau_fit(axes[0, 0], x_values[index_range],
np.array(mean_frequencies[c_contrast_idx])[index_range], tau_x, tau_params)
axes[0, 0].set_title("2nd highest Contrast: {:.2f}".format(contrasts[c_contrast_idx]))
axes[0, 0].set_ylabel("Cell")
axes[0, 0].set_xlabel("Time [s]; tau: {:.3f}".format(tau_params[1]))
c_contrast_idx = -3
tau_params, tau_x = fi_cell.__calculate_time_constant_internal__(contrasts[c_contrast_idx], mean_frequencies[c_contrast_idx],
baseline_freqs[c_contrast_idx], sampling_interval,
pre_duration, plot=False, plot_data=True)
x_values = np.arange(len(mean_frequencies[c_contrast_idx])) * sampling_interval - pre_duration
index_range = (x_values > -0.05) & (x_values < 0.15)
plot_freq_with_tau_fit(axes[0, 1], x_values[index_range],
np.array(mean_frequencies[c_contrast_idx])[index_range], tau_x, tau_params)
axes[0, 1].set_title("3rd highest Contrast: {:.2f}".format(contrasts[c_contrast_idx]))
axes[0, 1].set_xlabel("Time [s]; tau: {:.3f}".format(tau_params[1]))
# model
contrasts = cell_data.get_fi_contrasts()
mean_frequencies = fi_model.mean_frequency_traces
baseline_freqs = fi_model.get_f_baseline_frequencies()
pre_duration = 0.5
sampling_interval = fi_model.model.get_sampling_interval()
c_contrast_idx = -2
tau_params, tau_x = fi_cell.__calculate_time_constant_internal__(contrasts[c_contrast_idx],
mean_frequencies[c_contrast_idx],
baseline_freqs[c_contrast_idx],
sampling_interval,
pre_duration, plot=False, plot_data=True)
x_values = np.arange(len(mean_frequencies[c_contrast_idx])) * sampling_interval - pre_duration
index_range = (x_values > -0.05) & (x_values < 0.15)
plot_freq_with_tau_fit(axes[1, 0], x_values[index_range],
np.array(mean_frequencies[c_contrast_idx])[index_range], tau_x, tau_params)
axes[1, 0].set_ylabel("Model")
axes[1, 0].set_xlabel("Time [s]; tau: {:.3f}".format(tau_params[1]))
c_contrast_idx = -3
tau_params, tau_x = fi_cell.__calculate_time_constant_internal__(contrasts[c_contrast_idx],
mean_frequencies[c_contrast_idx],
baseline_freqs[c_contrast_idx],
sampling_interval,
pre_duration, plot=False, plot_data=True)
x_values = np.arange(len(mean_frequencies[c_contrast_idx])) * sampling_interval - pre_duration
index_range = (x_values > -0.05) & (x_values < 0.15)
plot_freq_with_tau_fit(axes[1, 1], x_values[index_range],
np.array(mean_frequencies[c_contrast_idx])[index_range], tau_x, tau_params)
axes[1, 1].set_xlabel("Time [s]; tau: {:.3f}".format(tau_params[1]))
axes[0, 0].set_ylim((0, 800))
axes[0, 1].set_ylim((0, 800))
axes[1, 1].set_ylim((0, 800))
axes[1, 0].set_ylim((0, 800))
plt.tight_layout()
plt.savefig("figures/tau_images/" + cell_data.get_cell_name() + "_tau.png")
plt.close()
def plot_freq_with_tau_fit(ax, time, freq, tau_x, tau_params):
ax.plot(time, freq)
ax.plot(tau_x, exponential_function(tau_x, tau_params[0], tau_params[1], tau_params[2]))
def plot_cell_model_comp_taus(cell_taus, model_taus):
fig = plt.figure(figsize=(3, 4))
gs = fig.add_gridspec(2, 1, height_ratios=[3, 7],
left=0.1, right=0.95, bottom=0.1, top=0.9,
wspace=0.4, hspace=0.2)
num_of_bins = 20
minimum = min(min(cell_taus), min(model_taus))
maximum = max(max(cell_taus), max(model_taus))
step = (maximum - minimum) / num_of_bins
bins = np.arange(minimum, maximum + step, step)
ax = fig.add_subplot(gs[1, 0])
ax_histx = fig.add_subplot(gs[0, 0], sharex=ax)
scatter_hist(cell_taus, model_taus, ax, ax_histx, "Tau Comparison", bins) # , cmap, cell_bursting)
ax.set_xlabel(r"Cell [s]")
ax.set_ylabel(r"Model [s]")
ax_histx.set_ylabel("Count")
plt.tight_layout()
plt.savefig("figures/tau_images/fit_tau_comparison.pdf", transparent=True)
plt.close()
def sam_tests():
data_folder = "./data/final_sam/"
for cell in sorted(os.listdir(data_folder)):
print(cell)
cell_folder = os.path.join(data_folder, cell)
if not os.path.exists(os.path.join(cell_folder, "samspikes1.dat")):
continue
if "2018-05-08-aa-invivo-1" not in cell:
continue
cell_data = CellData(cell_folder)
sampling_rate = int(round(1 / cell_data.get_sampling_interval()))
sam_spikes = cell_data.get_sam_spiketimes()
delta_freqs = cell_data.get_sam_delta_frequencies()
[time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces] = cell_data.get_sam_traces()
print(len(time_traces))
for i in range(len(delta_freqs)):
if abs(delta_freqs[i]) > 50:
continue
fig, axes = plt.subplots(2, 1, sharex="all")
axes[0].plot(time_traces[i], local_eod_traces[i])
axes[0].set_title("Local EOD - dF {}".format(delta_freqs[i]))
axes[1].plot(time_traces[i], v1_traces[i])
axes[1].set_title("v1 trace")
ah_spike = average_spike_height(sam_spikes, v1_traces[i], sampling_rate)
for j, idx in enumerate(get_x_best(ah_spike)):
axes[1].eventplot(sam_spikes[idx], lineoffsets=max(v1_traces[i] + 1.5 * (j + 1)),
colors=colors[j % len(colors)])
plt.show()
plt.close()
def average_spike_height(spike_trains, local_eod, sampling_rate):
average_height = []
for spikes_train in spike_trains:
indices = np.array([s * sampling_rate for s in spikes_train[0]], dtype=np.int)
local_eod = np.array(local_eod)
spike_values = [local_eod[i] for i in indices if i < len(local_eod)]
average_height.append(np.mean(spike_values))
return average_height
def get_x_best(average_heights, x=5):
biggest_idx = []
biggest_heights = []
for i, height in enumerate(average_heights):
if len(biggest_idx) < x:
biggest_idx.append(i)
biggest_heights.append(height)
elif height > min(biggest_heights):
mini = np.argmin(biggest_heights)
biggest_heights[mini] = height
biggest_idx[mini] = i
biggest_heights, biggest_idx = (list(t) for t in zip(*sorted(zip(biggest_heights, biggest_idx), reverse=True)))
print(biggest_heights)
return biggest_idx
if __name__ == '__main__':
main()